1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgscircle.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.py again *
************************************************************************/
class QgsCircle : QgsEllipse
{
%Docstring(signature="appended")
Circle geometry type.
A circle is defined by a center point with a radius and an azimuth. The
azimuth is the north angle to the semi-major axis, in degrees. By
default, the semi-major axis is oriented to the north (0 degrees).
%End
%TypeHeaderCode
#include "qgscircle.h"
%End
public:
QgsCircle();
QgsCircle( const QgsPoint ¢er, double radius, double azimuth = 0 ) /HoldGIL/;
%Docstring
Constructs a circle by defining all the members.
:param center: The center of the circle.
:param radius: The radius of the circle.
:param azimuth: Angle in degrees started from the North to the first
quadrant.
%End
static QgsCircle from2Points( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Constructs a circle by 2 points on the circle. The center point can have
m value which is the result from the midpoint operation between ``pt1``
and ``pt2``. Z dimension is also supported and is retrieved from the
first 3D point amongst ``pt1`` and ``pt2``. The radius is calculated
from the 2D distance between ``pt1`` and ``pt2``. The azimuth is the
angle between ``pt1`` and ``pt2``.
:param pt1: First point.
:param pt2: Second point.
%End
static QgsCircle from3Points( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon = 1E-8 ) /HoldGIL/;
%Docstring
Constructs a circle by 3 points on the circle. M value is dropped for
the center point. Z dimension is supported and is retrieved from the
first 3D point amongst ``pt1``, ``pt2`` and ``pt3``. The azimuth always
takes the default value. If the points are colinear an empty circle is
returned.
:param pt1: First point.
:param pt2: Second point.
:param pt3: Third point.
:param epsilon: Value used to compare point.
%End
static QgsCircle fromCenterDiameter( const QgsPoint ¢er, double diameter, double azimuth = 0 ) /HoldGIL/;
%Docstring
Constructs a circle by a center point and a diameter. The center point
keeps z and m values from ``center``.
:param center: Center point.
:param diameter: Diameter of the circle.
:param azimuth: Azimuth of the circle.
%End
static QgsCircle fromCenterPoint( const QgsPoint ¢er, const QgsPoint &pt1 ) /HoldGIL/;
%Docstring
Constructs a circle by a center point and another point. The center
point keeps z and m values from ``center``. Axes are calculated from the
2D distance between ``center`` and ``pt1``. The azimuth is the angle
between ``center`` and ``pt1``.
:param center: Center point.
:param pt1: A point on the circle.
%End
static QgsCircle from3Tangents( const QgsPoint &pt1_tg1, const QgsPoint &pt2_tg1,
const QgsPoint &pt1_tg2, const QgsPoint &pt2_tg2,
const QgsPoint &pt1_tg3, const QgsPoint &pt2_tg3,
double epsilon = 1E-8,
const QgsPoint &pos = QgsPoint() ) /HoldGIL/;
%Docstring
Constructs a circle by 3 tangents on the circle (aka inscribed circle of
a triangle). Z and m values are dropped for the center point. The
azimuth always takes the default value.
:param pt1_tg1: First point of the first tangent.
:param pt2_tg1: Second point of the first tangent.
:param pt1_tg2: First point of the second tangent.
:param pt2_tg2: Second point of the second tangent.
:param pt1_tg3: First point of the third tangent.
:param pt2_tg3: Second point of the third tangent.
:param epsilon: Value used to compare point.
:param pos: Point to determine which circle use in case of multi return.
If the solution is not unique and pos is an empty point, an
empty circle is returned. -- This case happens only when two
tangents are parallels. (since QGIS 3.18)
.. seealso:: :py:func:`from3TangentsMulti`
Example
-------------------------------------
.. code-block:: python
# [(0 0), (5 0)] and [(5 5), (10 5)] are parallels
QgsCircle.from3Tangents(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5))
# <QgsCircle: Empty>
QgsCircle.from3Tangents(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5), pos=QgsPoint(2, 0))
# <QgsCircle: Circle (Center: Point (1.46446609406726203 2.49999999999999911), Radius: 2.5, Azimuth: 0)>
QgsCircle.from3Tangents(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5), pos=QgsPoint(3, 0))
# <QgsCircle: Circle (Center: Point (8.53553390593273775 2.5), Radius: 2.5, Azimuth: 0)>
%End
static QVector<QgsCircle> from3TangentsMulti( const QgsPoint &pt1_tg1, const QgsPoint &pt2_tg1,
const QgsPoint &pt1_tg2, const QgsPoint &pt2_tg2,
const QgsPoint &pt1_tg3, const QgsPoint &pt2_tg3,
double epsilon = 1E-8,
const QgsPoint &pos = QgsPoint() ) /HoldGIL/;
%Docstring
Returns an array of circle constructed by 3 tangents on the circle (aka
inscribed circle of a triangle).
The vector can contain 0, 1 or 2 circles:
- 0: Impossible to construct a circle from 3 tangents (three parallel
tangents)
- 1: The three tangents make a triangle or when two tangents are
parallel there are two possible circles (see examples). If pos is not
an empty point, we use its coordinates to determine which circle will
be returned. More precisely the circle that will be returned will be
the one whose center is on the same side as pos relative to the third
tangent.
- 2: Returns both solutions when two tangents are parallel (this implies
that pos is an empty point).
Z and m values are dropped for the center point. The azimuth always
takes the default value.
:param pt1_tg1: First point of the first tangent.
:param pt2_tg1: Second point of the first tangent.
:param pt1_tg2: First point of the second tangent.
:param pt2_tg2: Second point of the second tangent.
:param pt1_tg3: First point of the third tangent.
:param pt2_tg3: Second point of the third tangent.
:param epsilon: Value used to compare point.
:param pos: (optional) Point to determine which circle use in case of
multi return.
.. seealso:: :py:func:`from3Tangents`
Example
-------------------------------------
.. code-block:: python
# [(0 0), (5 0)] and [(5 5), (10 5)] are parallels
QgsCircle.from3TangentsMulti(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5))
# [<QgsCircle: Circle (Center: Point (8.53553390593273775 2.5), Radius: 2.5, Azimuth: 0)>, <QgsCircle: Circle (Center: Point (1.46446609406726203 2.49999999999999911), Radius: 2.5, Azimuth: 0)>]
QgsCircle.from3TangentsMulti(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5), pos=QgsPoint(2, 0))
# [<QgsCircle: Circle (Center: Point (1.46446609406726203 2.49999999999999911), Radius: 2.5, Azimuth: 0)>]
QgsCircle.from3TangentsMulti(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(2.5, 0), QgsPoint(7.5, 5), pos=QgsPoint(3, 0))
# [<QgsCircle: Circle (Center: Point (8.53553390593273775 2.5), Radius: 2.5, Azimuth: 0)>]
# [(0 0), (5 0)], [(5 5), (10 5)] and [(15 5), (20 5)] are parallels
QgsCircle.from3TangentsMulti(QgsPoint(0, 0), QgsPoint(5, 0), QgsPoint(5, 5), QgsPoint(10, 5), QgsPoint(15, 5), QgsPoint(20, 5))
# []
%End
static QgsCircle fromExtent( const QgsPoint &pt1, const QgsPoint &pt2 ) /HoldGIL/;
%Docstring
Constructs a circle by an extent (aka bounding box /
:py:class:`QgsRectangle`). The center point can have m value which is
the result from the midpoint operation between ``pt1`` and ``pt2``. Z
dimension is also supported and is retrieved from the first 3D point
amongst ``pt1`` and ``pt2``. Axes are calculated from the 2D distance
between ``pt1`` and ``pt2``. The azimuth always takes the default value.
:param pt1: First corner.
:param pt2: Second corner.
%End
static QgsCircle minimalCircleFrom3Points( const QgsPoint &pt1, const QgsPoint &pt2, const QgsPoint &pt3, double epsilon = 1E-8 ) /HoldGIL/;
%Docstring
Constructs the smallest circle from 3 points. Z and m values are dropped
for the center point. The azimuth always takes the default value. If the
points are colinear an empty circle is returned.
:param pt1: First point.
:param pt2: Second point.
:param pt3: Third point.
:param epsilon: Value used to compare point.
%End
int intersections( const QgsCircle &other, QgsPoint &intersection1 /Out/, QgsPoint &intersection2 /Out/, bool useZ = false ) const;
%Docstring
Calculates the intersections points between this circle and an ``other``
circle.
If found, the intersection points will be stored in ``intersection1``
and ``intersection2``.
By default this method does not consider any z values and instead treats
the circles as 2-dimensional. If ``useZ`` is set to ``True``, then an
intersection will only occur if the z values of both circles are equal.
In this case the points returned for ``intersection1`` and
``intersection2`` will contain the z value of the circle intersections.
:return: number of intersection points found.
.. versionadded:: 3.2
%End
bool tangentToPoint( const QgsPointXY &p, QgsPointXY &pt1 /Out/, QgsPointXY &pt2 /Out/ ) const;
%Docstring
Calculates the tangent points between this circle and the point ``p``.
If found, the tangent points will be stored in ``pt1`` and ``pt2``.
.. note::
This method is 2D only and does not consider the z-value of the circle.
:return: ``True`` if tangent was found.
.. seealso:: :py:func:`outerTangents`
.. seealso:: :py:func:`innerTangents`
.. versionadded:: 3.2
%End
int outerTangents( const QgsCircle &other,
QgsPointXY &line1P1 /Out/, QgsPointXY &line1P2 /Out/,
QgsPointXY &line2P1 /Out/, QgsPointXY &line2P2 /Out/ ) const;
%Docstring
Calculates the outer tangent points between this circle and an ``other``
circle.
The outer tangent points correspond to the points at which the two lines
which are drawn so that they are tangential to both circles touch the
circles.
The first tangent line is described by the points stored in ``line1P1``
and ``line1P2``, and the second line is described by the points stored
in ``line2P1`` and ``line2P2``.
Returns the number of tangents (either 0 or 2).
.. note::
This method is 2D only and does not consider the z-value of the circle.
.. seealso:: :py:func:`tangentToPoint`
.. seealso:: :py:func:`innerTangents`
.. versionadded:: 3.2
%End
int innerTangents( const QgsCircle &other,
QgsPointXY &line1P1 /Out/, QgsPointXY &line1P2 /Out/,
QgsPointXY &line2P1 /Out/, QgsPointXY &line2P2 /Out/ ) const;
%Docstring
Calculates the inner tangent points between this circle and an ``other``
circle.
The inner tangent points correspond to the points at which the two lines
which are drawn so that they are tangential to both circles but on
different sides, touching the circles and crossing each other.
The first tangent line is described by the points stored in ``line1P1``
and ``line1P2``, and the second line is described by the points stored
in ``line2P1`` and ``line2P2``.
Returns the number of tangents (either 0 or 2).
.. note::
This method is 2D only and does not consider the z-value of the circle.
.. seealso:: :py:func:`tangentToPoint`
.. seealso:: :py:func:`outerTangents`
.. versionadded:: 3.6
%End
virtual double area() const /HoldGIL/;
virtual double perimeter() const /HoldGIL/;
virtual void setSemiMajorAxis( double semiMajorAxis ) /HoldGIL/;
%Docstring
Inherited method. Use setRadius instead.
.. seealso:: :py:func:`radius`
.. seealso:: :py:func:`setRadius`
%End
virtual void setSemiMinorAxis( double semiMinorAxis ) /HoldGIL/;
%Docstring
Inherited method. Use setRadius instead.
.. seealso:: :py:func:`radius`
.. seealso:: :py:func:`setRadius`
%End
double radius() const /HoldGIL/;
%Docstring
Returns the radius of the circle
%End
void setRadius( double radius ) /HoldGIL/;
%Docstring
Sets the radius of the circle
%End
QVector<QgsPoint> northQuadrant() const /Factory/;
%Docstring
The four quadrants of the ellipse. They are oriented and started from
North.
:return: quadrants defined by four points.
.. seealso:: :py:func:`quadrant`
%End
QgsCircularString *toCircularString( bool oriented = false ) const;
%Docstring
Returns a circular string from the circle.
:param oriented: If oriented is ``True`` the start point is from azimuth
instead from north.
%End
bool contains( const QgsPoint &point, double epsilon = 1E-8 ) const;
%Docstring
Returns ``True`` if the circle contains the ``point``.
%End
virtual QgsRectangle boundingBox() const;
virtual QString toString( int pointPrecision = 17, int radiusPrecision = 17, int azimuthPrecision = 2 ) const;
QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", QgsAbstractGeometry::AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const;
%Docstring
Returns a GML2 representation of the geometry. Since GML2 does not
supports curve, it will be converted to a LineString.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asGml3`
%End
QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", QgsAbstractGeometry::AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const;
%Docstring
Returns a GML3 representation of the geometry.
From the GML3 description: A Circle is an arc whose ends coincide to
form a simple closed loop. The three control points shall be distinct
non-co-linear points for the circle to be unambiguously defined. The arc
is simply extended past the third control point until the first control
point is encountered.
Coordinates are taken from quadrant North, East and South.
:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML
.. seealso:: :py:func:`asGml2`
%End
SIP_PYOBJECT __repr__();
%MethodCode
QString str = QStringLiteral( "<QgsCircle: %1>" ).arg( sipCpp->toString() );
sipRes = PyUnicode_FromString( str.toUtf8().constData() );
%End
};
/************************************************************************
* This file has been generated automatically from *
* *
* src/core/geometry/qgscircle.h *
* *
* Do not edit manually ! Edit header and run scripts/sipify.py again *
************************************************************************/
|