File: qgsgeometryutils_base.sip.in

package info (click to toggle)
qgis 3.40.11%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,183,800 kB
  • sloc: cpp: 1,595,841; python: 372,637; xml: 23,474; sh: 3,761; perl: 3,664; ansic: 2,257; sql: 2,137; yacc: 1,068; lex: 577; javascript: 540; lisp: 411; makefile: 154
file content (580 lines) | stat: -rw-r--r-- 24,957 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsgeometryutils_base.h                            *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.py again   *
 ************************************************************************/



class QgsGeometryUtilsBase
{
%Docstring(signature="appended")
Convenience functions for geometry utils.

.. versionadded:: 3.34
%End

%TypeHeaderCode
#include "qgsgeometryutils_base.h"
%End
  public:

    static double sqrDistance3D( double x1, double y1, double z1, double x2, double y2, double z2 ) /HoldGIL/;
%Docstring
Returns the squared 3D distance between (``x1``, ``y1``, ``z1``) and
(``x2``, ``y2``, ``z2``).

.. warning::

   No check is done if z contains NaN value. This is the caller's responsibility.

.. versionadded:: 3.36
%End

    static double distance3D( double x1, double y1, double z1, double x2, double y2, double z2 ) /HoldGIL/;
%Docstring
Returns the 3D distance between (``x1``, ``y1``, ``z1``) and (``x2``,
``y2``, ``z2``).

.. warning::

   No check is done if z contains NaN value. This is the caller's responsibility.

.. versionadded:: 3.36
%End

    static double sqrDistance2D( double x1, double y1, double x2, double y2 ) /HoldGIL/;
%Docstring
Returns the squared 2D distance between (``x1``, ``y1``) and (``x2``,
``y2``).
%End

    static double distance2D( double x1, double y1, double x2, double y2 ) /HoldGIL/;
%Docstring
Returns the 2D distance between (``x1``, ``y1``) and (``x2``, ``y2``).
%End

    static double sqrDistToLine( double ptX, double ptY, double x1, double y1, double x2, double y2, double &minDistX /Out/, double &minDistY /Out/, double epsilon ) /HoldGIL/;
%Docstring
Returns the squared distance between a point and a line.
%End

    static int leftOfLine( const double x, const double y, const double x1, const double y1, const double x2, const double y2 ) /HoldGIL/;
%Docstring
Returns a value < 0 if the point (``x``, ``y``) is left of the line from
(``x1``, ``y1``) -> (``x2``, ``y2``). A positive return value indicates
the point is to the right of the line.

If the return value is 0, then the test was unsuccessful (e.g. due to
testing a point exactly on the line, or exactly in line with the
segment) and the result is undefined.
%End


    static void perpendicularOffsetPointAlongSegment( double x1, double y1, double x2, double y2, double proportion, double offset, double *x /Out/, double *y /Out/ );
%Docstring
Calculates a point a certain ``proportion`` of the way along the segment
from (``x1``, ``y1``) to (``x2``, ``y2``), offset from the segment by
the specified ``offset`` amount.

:param x1: x-coordinate of start of segment
:param y1: y-coordinate of start of segment
:param x2: x-coordinate of end of segment
:param y2: y-coordinate of end of segment
:param proportion: proportion of the segment's length at which to place
                   the point (between 0.0 and 1.0)
:param offset: perpendicular offset from segment to apply to point. A
               negative ``offset`` shifts the point to the left of the
               segment, while a positive ``offset`` will shift it to the
               right of the segment.

Example
-------------------------------------

.. code-block:: python

       # Offset point at center of segment by 2 units to the right
       x, y = QgsGeometryUtils.perpendicularOffsetPointAlongSegment( 1, 5, 11, 5, 0.5, 2 )
       # (6.0, 3.0)

       # Offset point at center of segment by 2 units to the left
       x, y = QgsGeometryUtils.perpendicularOffsetPointAlongSegment( 1, 5, 11, 5, 0.5, -2 )
       # (6.0, 7.0)

:return: - x: calculated point x-coordinate
         - y: calculated point y-coordinate

.. versionadded:: 3.20
%End

    static double ccwAngle( double dy, double dx ) /HoldGIL/;
%Docstring
Returns the counter clockwise angle between a line with components dx,
dy and the line with dx > 0 and dy = 0
%End

    static void circleCenterRadius( double x1, double y1, double x2, double y2, double x3, double y3, double &radius /Out/,
                                    double &centerX /Out/, double &centerY /Out/ ) /HoldGIL/;
%Docstring
Returns radius and center of the circle through (``x1`` ``y1``), (``x2``
``y2``), (``x3`` ``y3``)
%End

    static bool circleClockwise( double angle1, double angle2, double angle3 ) /HoldGIL/;
%Docstring
Returns ``True`` if the circle defined by three angles is ordered
clockwise.

The angles are defined counter-clockwise from the origin, i.e. using
Euclidean angles as opposed to geographic "North up" angles.
%End

    static bool circleAngleBetween( double angle, double angle1, double angle2, bool clockwise ) /HoldGIL/;
%Docstring
Returns ``True`` if, in a circle, angle is between angle1 and angle2
%End

    static bool angleOnCircle( double angle, double angle1, double angle2, double angle3 ) /HoldGIL/;
%Docstring
Returns ``True`` if an angle is between angle1 and angle3 on a circle
described by angle1, angle2 and angle3.
%End

    static double circleLength( double x1, double y1, double x2, double y2, double x3, double y3 ) /HoldGIL/;
%Docstring
Length of a circular string segment defined by pt1, pt2, pt3
%End

    static double sweepAngle( double centerX, double centerY, double x1, double y1, double x2, double y2, double x3, double y3 ) /HoldGIL/;
%Docstring
Calculates angle of a circular string part defined by pt1, pt2, pt3
%End

    static double interpolateArcValue( double angle, double a1, double a2, double a3, double zm1, double zm2, double zm3 ) /HoldGIL/;
%Docstring
Interpolate a value at given angle on circular arc given values (zm1,
zm2, zm3) at three different angles (a1, a2, a3).
%End

    static double normalizedAngle( double angle ) /HoldGIL/;
%Docstring
Ensures that an angle is in the range 0 <= angle < 2 pi.

:param angle: angle in radians

:return: equivalent angle within the range [0, 2 pi)
%End

    static double lineAngle( double x1, double y1, double x2, double y2 ) /HoldGIL/;
%Docstring
Calculates the direction of line joining two points in radians,
clockwise from the north direction.

:param x1: x-coordinate of line start
:param y1: y-coordinate of line start
:param x2: x-coordinate of line end
:param y2: y-coordinate of line end

:return: angle in radians. Returned value is undefined if start and end
         point are the same.
%End

    static double angleBetweenThreePoints( double x1, double y1, double x2, double y2,
                                           double x3, double y3 ) /HoldGIL/;
%Docstring
Calculates the angle between the lines AB and BC, where AB and BC
described by points a, b and b, c.

:param x1: x-coordinate of point a
:param y1: y-coordinate of point a
:param x2: x-coordinate of point b
:param y2: y-coordinate of point b
:param x3: x-coordinate of point c
:param y3: y-coordinate of point c

:return: angle between lines in radians. Returned value is undefined if
         two or more points are equal.
%End

    static double linePerpendicularAngle( double x1, double y1, double x2, double y2 ) /HoldGIL/;
%Docstring
Calculates the perpendicular angle to a line joining two points.
Returned angle is in radians, clockwise from the north direction.

:param x1: x-coordinate of line start
:param y1: y-coordinate of line start
:param x2: x-coordinate of line end
:param y2: y-coordinate of line end

:return: angle in radians. Returned value is undefined if start and end
         point are the same.
%End

    static double averageAngle( double x1, double y1, double x2, double y2, double x3, double y3 ) /HoldGIL/;
%Docstring
Calculates the average angle (in radians) between the two linear
segments from (``x1``, ``y1``) to (``x2``, ``y2``) and (``x2``, ``y2``)
to (``x3``, ``y3``).
%End

    static double averageAngle( double a1, double a2 ) /HoldGIL/;
%Docstring
Averages two angles, correctly handling negative angles and ensuring the
result is between 0 and 2 pi.

:param a1: first angle (in radians)
:param a2: second angle (in radians)

:return: average angle (in radians)
%End

    static int closestSideOfRectangle( double right, double bottom, double left, double top, double x, double y );
%Docstring
Returns a number representing the closest side of a rectangle defined by
/a right, ``bottom``, ``left``, ``top`` to the point at (``x``, ``y``),
where the point may be in the interior of the rectangle or outside it.

The returned value may be:

1. Point is closest to top side of rectangle
2. Point is located on the top-right diagonal of rectangle, equally close to the top and right sides
3. Point is closest to right side of rectangle
4. Point is located on the bottom-right diagonal of rectangle, equally close to the bottom and right sides
5. Point is closest to bottom side of rectangle
6. Point is located on the bottom-left diagonal of rectangle, equally close to the bottom and left sides
7. Point is closest to left side of rectangle
8. Point is located on the top-left diagonal of rectangle, equally close to the top and left sides

.. note::

   This method effectively partitions the space outside of the rectangle into Voronoi cells, so a point
   to the top left of the rectangle may be assigned to the left or top sides based on its position relative
   to the diagonal line extended from the rectangle's top-left corner.

.. versionadded:: 3.20
%End


    static void perpendicularCenterSegment( double centerPointX, double centerPointY,
                                            double segmentPoint1x, double segmentPoint1y,
                                            double segmentPoint2x, double segmentPoint2y,
                                            double &perpendicularSegmentPoint1x /Out/, double &perpendicularSegmentPoint1y /Out/,
                                            double &perpendicularSegmentPoint2x /Out/, double &perpendicularSegmentPoint2y /Out/,
                                            double segmentLength = 0
                                          ) /HoldGIL/;
%Docstring
Create a perpendicular line segment to a given segment
[``segmentPoint1``,``segmentPoint2``] with its center at
``centerPoint``.

May be used to split geometries. Unless ``segmentLength`` is specified
the new centered perpendicular line segment will have double the length
of the input segment.

The result is a line (segment) centered in point p and perpendicular to
segment [segmentPoint1, segmentPoint2].

:param centerPointX: x-coordinate of the point where the center of the
                     perpendicular should be located
:param centerPointY: y-coordinate of the point where the center of the
                     perpendicular should be located
:param segmentPoint1x: : x-coordinate of segmentPoint1, the segment's
                       start point
:param segmentPoint1y: : y-coordinate of segmentPoint1, the segment's
                       start point
:param segmentPoint2x: : x-coordinate of segmentPoint2, the segment's
                       end point
:param segmentPoint2y: : y-coordinate of segmentPoint2, the segment's
                       end point
:param segmentLength: (optional) Trims to given length. A segmentLength
                      value of 0 refers to the default length which is
                      double the length of the input segment. Set to 1
                      for a normalized length.

:return: - perpendicularSegmentPoint1x: : x-coordinate of the
           perpendicularCenterSegment's start point
         - perpendicularSegmentPoint1y: : y-coordinate of the
           perpendicularCenterSegment's start point
         - perpendicularSegmentPoint2x: : x-coordinate of the
           perpendicularCenterSegment's end point
         - perpendicularSegmentPoint2y: : y-coordinate of the
           perpendicularCenterSegment's end point

.. versionadded:: 3.24
%End

    static double skewLinesDistance( const QgsVector3D &P1, const QgsVector3D &P12,
                                     const QgsVector3D &P2, const QgsVector3D &P22 ) /HoldGIL/;
%Docstring
An algorithm to calculate the shortest distance between two skew lines.

:param P1: is the first point of the first line,
:param P12: is the second point on the first line,
:param P2: is the first point on the second line,
:param P22: is the second point on the second line.

:return: the shortest distance
%End

    static bool skewLinesProjection( const QgsVector3D &P1, const QgsVector3D &P12,
                                     const QgsVector3D &P2, const QgsVector3D &P22,
                                     QgsVector3D &X1 /Out/,
                                     double epsilon = 0.0001 ) /HoldGIL/;
%Docstring
A method to project one skew line onto another.

:param P1: is a first point that belonds to first skew line,
:param P12: is the second point that belongs to first skew line,
:param P2: is the first point that belongs to second skew line,
:param P22: is the second point that belongs to second skew line,
:param epsilon: the tolerance to use.

:return: - ``True`` if such point exists, ``False`` - otherwise.
         - X1: is the result projection point of line P2P22 onto line
           P1P12,
%End

    static bool linesIntersection3D( const QgsVector3D &La1, const QgsVector3D &La2,
                                     const QgsVector3D &Lb1, const QgsVector3D &Lb2,
                                     QgsVector3D &intersection /Out/ ) /HoldGIL/;
%Docstring
An algorithm to calculate an (approximate) intersection of two lines in
3D.

:param La1: is the first point on the first line,
:param La2: is the second point on the first line,
:param Lb1: is the first point on the second line,
:param Lb2: is the second point on the second line,

:return: - ``True`` if the intersection can be found, ``False`` -
           otherwise.
         - intersection: is the result intersection, of it can be found.

Example
-------------------------------------

.. code-block:: python

       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(2,1,0), QgsVector3D(2,3,0))
       # (True, PyQt5.QtGui.QgsVector3D(2.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(2,1,0), QgsVector3D(2,0,0))
       # (True, PyQt5.QtGui.QgsVector3D(2.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(0,1,0), QgsVector3D(0,3,0))
       # (True, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(0,1,0), QgsVector3D(0,0,0))
       # (True, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(5,1,0), QgsVector3D(5,3,0))
       # (False, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(0,0,0), QgsVector3D(5,0,0), QgsVector3D(5,1,0), QgsVector3D(5,0,0))
       # (False, PyQt5.QtGui.QgsVector3D(0.0, 0.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(1,1,0), QgsVector3D(2,2,0), QgsVector3D(3,1,0), QgsVector3D(3,2,0))
       # (True, PyQt5.QtGui.QgsVector3D(3.0, 3.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(1,1,0), QgsVector3D(2,2,0), QgsVector3D(3,2,0), QgsVector3D(3,1,0))
       # (True, PyQt5.QtGui.QgsVector3D(3.0, 3.0, 0.0))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(5,5,5), QgsVector3D(0,0,0), QgsVector3D(0,5,5), QgsVector3D(5,0,0))
       # (True, PyQt5.QtGui.QgsVector3D(2.5, 2.5, 2.5))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(2.5,2.5,2.5), QgsVector3D(0,5,0), QgsVector3D(2.5,2.5,2.5), QgsVector3D(5,0,0))
       # (True, PyQt5.QtGui.QgsVector3D(2.5, 2.5, 2.5))
       QgsGeometryUtils.linesIntersection3D(QgsVector3D(2.5,2.5,2.5), QgsVector3D(5,0,0), QgsVector3D(0,5,5), QgsVector3D(5,5,5))
       # (True, PyQt5.QtGui.QgsVector3D(0.0, 5.0, 5.0))
%End

    static double triangleArea( double aX, double aY, double bX, double bY, double cX, double cY ) /HoldGIL/;
%Docstring
Returns the area of the triangle denoted by the points (``aX``, ``aY``),
(``bX``, ``bY``) and (``cX``, ``cY``).

.. versionadded:: 3.10
%End

    static double pointFractionAlongLine( double x1, double y1, double x2, double y2, double px, double py );
%Docstring
Given the line (``x1``, ``y1``) to (``x2``, ``y2``) and a point (``px``,
``py``) returns the fraction of the line length at which the point lies.

.. warning::

   this method requires that the point definitely lies on the line!

.. versionadded:: 3.32
%End

    static void weightedPointInTriangle( double aX, double aY, double bX, double bY, double cX, double cY,
                                         double weightB, double weightC, double &pointX /Out/, double &pointY /Out/ ) /HoldGIL/;
%Docstring
Returns a weighted point inside the triangle denoted by the points
(``aX``, ``aY``), (``bX``, ``bY``) and (``cX``, ``cY``).

:param aX: x-coordinate of first vertex in triangle
:param aY: y-coordinate of first vertex in triangle
:param bX: x-coordinate of second vertex in triangle
:param bY: y-coordinate of second vertex in triangle
:param cX: x-coordinate of third vertex in triangle
:param cY: y-coordinate of third vertex in triangle
:param weightB: weighting factor along axis A-B (between 0 and 1)
:param weightC: weighting factor along axis A-C (between 0 and 1)

:return: - pointX: x-coordinate of generated point
         - pointY: y-coordinate of generated point

.. versionadded:: 3.10
%End

    static bool pointsAreCollinear( double x1, double y1, double x2, double y2, double x3, double y3, double epsilon );
%Docstring
Given the points (``x1``, ``y1``), (``x2``, ``y2``) and (``x3``, ``y3``)
returns ``True`` if these points can be considered collinear with a
specified tolerance ``epsilon``.

.. versionadded:: 3.32
%End


    static bool angleBisector( double aX, double aY, double bX, double bY, double cX, double cY, double dX, double dY,
                               double &pointX /Out/, double &pointY /Out/, double &angle /Out/ ) /HoldGIL/;
%Docstring
Returns the point (``pointX``, ``pointY``) forming the bisector from
segment (``aX`` ``aY``) (``bX`` ``bY``) and segment (``bX``, ``bY``)
(``dX``, ``dY``). The bisector segment of AB-CD is (point, projection of
point by ``angle``)

:param aX: x-coordinate of first vertex of the segment ab
:param aY: y-coordinate of first vertex of the segment ab
:param bX: x-coordinate of second vertex of the segment ab
:param bY: y-coordinate of second vertex of the segment ab
:param cX: x-coordinate of first vertex of the segment cd
:param cY: y-coordinate of first vertex of the segment cd
:param dX: x-coordinate of second vertex of the segment cd
:param dY: y-coordinate of second vertex of the segment cd

:return: - ``True`` if the bisector exists (A B and C D are not
           collinear)
         - pointX: x-coordinate of generated point
         - pointY: y-coordinate of generated point
         - angle: angle of the bisector from pointX, pointY origin on
           [ab-cd]

.. versionadded:: 3.18
%End

    static bool bisector( double aX, double aY, double bX, double bY, double cX, double cY,
                          double &pointX /Out/, double &pointY /Out/ ) /HoldGIL/;
%Docstring
Returns the point (``pointX``, ``pointY``) forming the bisector from
point (``aX``, ``aY``) to the segment (``bX``, ``bY``) (``cX``, ``cY``).
The bisector segment of ABC is (A-point)

:param aX: x-coordinate of first vertex in triangle
:param aY: y-coordinate of first vertex in triangle
:param bX: x-coordinate of second vertex in triangle
:param bY: y-coordinate of second vertex in triangle
:param cX: x-coordinate of third vertex in triangle
:param cY: y-coordinate of third vertex in triangle

:return: - ``True`` if the bisector exists (A B and C are not collinear)
         - pointX: x-coordinate of generated point
         - pointY: y-coordinate of generated point

.. versionadded:: 3.18
%End


    static bool lineIntersection( double p1x, double p1y, QgsVector v1, double p2x, double p2y, QgsVector v2, double &intersectionX /Out/, double &intersectionY /Out/ ) /HoldGIL/;
%Docstring
Computes the intersection between two lines. Z dimension is supported
and is retrieved from the first 3D point amongst ``p1`` and ``p2``.

:param p1x: x-coordinate of point on the first line
:param p1y: y-coordinate of point on the first line
:param v1: Direction vector of the first line
:param p2x: x-coordinate of second point on the first line
:param p2y: y-coordinate of second point on the first line
:param v2: Direction vector of the second line

:return: - Whether the lines intersect
         - intersectionX: x-coordinate of the intersection point
         - intersectionY: y-coordinate of the intersection point
%End

    static bool segmentIntersection( double p1x, double p1y, double p2x, double p2y, double q1x, double q1y, double q2x, double q2y, double &intersectionPointX /Out/, double &intersectionPointY /Out/, bool &isIntersection /Out/, double tolerance = 1e-8, bool acceptImproperIntersection = false ) /HoldGIL/;
%Docstring
Compute the intersection between two segments

:param p1x: x-coordinate of the first segment start point
:param p1y: y-coordinate of the first segment start point
:param p2x: x-coordinate of the first segment end point
:param p2y: y-coordinate of the first segment end point
:param q1x: x-coordinate of the second segment start point
:param q1y: y-coordinate of the second segment start point
:param q2x: x-coordinate of the second segment end point
:param q2y: y-coordinate of the second segment end point
:param tolerance: The tolerance to use
:param acceptImproperIntersection: By default, this method returns
                                   ``True`` only if segments have proper
                                   intersection. If set true, returns
                                   also ``True`` if segments have
                                   improper intersection (end of one
                                   segment on other segment ; continuous
                                   segments).

:return: - Whether the segments intersect
         - intersectionPointX: Output parameter, x-coordinate of the
           intersection point
         - intersectionPointY: Output parameter, y-coordinate of the
           intersection point
         - isIntersection: Output parameter, return ``True`` if an
           intersection is found
%End

    static void project( double aX, double aY, double aZ, double distance, double azimuth, double inclination, double &resultX /Out/, double &resultY /Out/, double &resultZ /Out/ ) /HoldGIL/;
%Docstring
Returns coordinates of a point which corresponds to this point projected
by a specified distance with specified angles (azimuth and inclination),
using Cartesian mathematics. M value is preserved. resultX, resultY,
resultZ are coordinates of the point projected. If a 2D point is
projected a 3D point will be returned except if inclination is 90. A 3D
point is always returned if a 3D point is projected.

:param aX: x-coordinate of the point to project
:param aY: y-coordinate of the point to project
:param aZ: z-coordinate of the point to project
:param distance: distance to project
:param azimuth: angle to project in X Y, clockwise in degrees starting
                from north
:param inclination: angle to project in Z (3D). If the point is 2D, the
                    Z value is assumed to be 0.

:return: - resultX: Output parameter, x-coordinates of the point
           projected.
         - resultY: Output parameter, y-coordinates of the point
           projected.
         - resultZ: Output parameter, z-coordinates of the point
           projected.

.. versionadded:: 3.34
%End

    static double azimuth( double x1, double y1, double x2, double y2 ) /HoldGIL/;
%Docstring
Calculates Cartesian azimuth between points (``x1``, ``y1``) and
(``x2``, ``y2``) (clockwise in degree, starting from north)

:param x1: x-coordinate of the start point
:param y1: y-coordinate of the start point
:param x2: x-coordinate of the end point
:param y2: y-coordinate of the end point

.. versionadded:: 3.34
%End


};
/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsgeometryutils_base.h                            *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.py again   *
 ************************************************************************/