1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
/*
MDAL - Mesh Data Abstraction Library (MIT License)
Copyright (C) 2023 Lutra Consulting Ltd.
*/
#include <stddef.h>
#include <iosfwd>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <map>
#include <cassert>
#include <limits>
#include <algorithm>
#include <regex>
#include "mdal_mike21.hpp"
#include "mdal.h"
#include "mdal_utils.hpp"
#include "mdal_logger.hpp"
#define DRIVER_NAME "Mike21"
// function to split using regex, by default split on whitespace characters
std::vector<std::string> regex_split( const std::string &input, const std::regex &split_regex = std::regex{"\\s+"} )
{
std::sregex_token_iterator iter( input.begin(), input.end(), split_regex, -1 );
std::sregex_token_iterator end;
return {iter, end};
}
static bool parse_vertex_id_gaps( std::map<size_t, size_t> &vertexIDtoIndex, size_t vertexIndex, size_t vertexID )
{
if ( vertexIndex == vertexID )
return false;
std::map<size_t, size_t>::iterator search = vertexIDtoIndex.find( vertexID );
if ( search != vertexIDtoIndex.end() )
{
MDAL::Log::warning( Warn_ElementNotUnique, DRIVER_NAME, "could not find vertex" );
return true;
}
vertexIDtoIndex[vertexID] = vertexIndex;
return false;
}
static void persist_native_index( std::vector<double> &arr, size_t nativeID, size_t ourId, size_t maxOurId )
{
if ( !arr.empty() || ( nativeID != ourId + 1 ) )
{
// we have gaps in face indexing
if ( arr.empty() )
{
arr.resize( maxOurId );
for ( size_t i = 0; i < ourId; ++i )
arr[i] = static_cast<double>( i + 1 );
}
arr[ourId] = static_cast<double>( nativeID );
}
}
MDAL::MeshMike21::MeshMike21( size_t faceVerticesMaximumCount,
const std::string &uri,
const std::map<size_t, size_t> vertexIDtoIndex )
: MemoryMesh( DRIVER_NAME,
faceVerticesMaximumCount,
uri )
, mVertexIDtoIndex( vertexIDtoIndex )
{
}
MDAL::MeshMike21::~MeshMike21() = default;
size_t MDAL::MeshMike21::vertexIndex( size_t vertexID ) const
{
auto ni2i = mVertexIDtoIndex.find( vertexID );
if ( ni2i != mVertexIDtoIndex.end() )
{
return ni2i->second; // convert from ID to index
}
return vertexID;
}
size_t MDAL::MeshMike21::maximumVertexId() const
{
size_t maxIndex = verticesCount() - 1;
if ( mVertexIDtoIndex.empty() )
return maxIndex;
else
{
// std::map is sorted!
size_t maxID = mVertexIDtoIndex.rbegin()->first;
return std::max( maxIndex, maxID );
}
}
MDAL::DriverMike21::DriverMike21( ):
Driver( DRIVER_NAME,
"Mike21 Mesh File",
"*.mesh",
Capability::ReadMesh | Capability::SaveMesh
)
{
}
MDAL::DriverMike21 *MDAL::DriverMike21::create()
{
return new DriverMike21();
}
MDAL::DriverMike21::~DriverMike21() = default;
bool MDAL::DriverMike21::canReadHeader( const std::string &line )
{
bool header2012 = std::regex_match( line, mRegexHeader2012 );
bool header2011 = std::regex_match( line, mRegexHeader2011 );
return header2011 || header2012;
}
bool MDAL::DriverMike21::canReadMesh( const std::string &uri )
{
std::ifstream in = MDAL::openInputFile( uri );
std::string line;
if ( !MDAL::getHeaderLine( in, line ) || !canReadHeader( line ) || !MDAL::contains( filters(), MDAL::fileExtension( uri ) ) )
{
return false;
}
return true;
}
void MDAL::DriverMike21::parseHeader( const std::string &line )
{
auto matchResults = std::smatch{};
if ( std::regex_search( line, matchResults, mRegexHeader2012 ) )
{
if ( matchResults.size() > 4 )
{
mDataType = matchResults[1].str();
mDataUnit = matchResults[2].str();
mVertexCount = std::stoi( matchResults[3].str() );
mCrs = matchResults[4].str();
return;
}
}
if ( std::regex_search( line, matchResults, mRegexHeader2011 ) )
{
if ( matchResults.size() > 2 )
{
mVertexCount = std::stoi( matchResults[1].str() );
mCrs = matchResults[2].str();
return;
}
}
}
std::unique_ptr<MDAL::Mesh> MDAL::DriverMike21::load( const std::string &meshFile, const std::string & )
{
mMeshFile = meshFile;
MDAL::Log::resetLastStatus();
std::ifstream in = MDAL::openInputFile( meshFile );
std::string line;
if ( !std::getline( in, line ) || !canReadHeader( line ) )
{
MDAL::Log::error( MDAL_Status::Err_UnknownFormat, name(), meshFile + " could not be opened" );
return nullptr;
}
parseHeader( line );
size_t faceCount = 0;
size_t maxVerticesPerFace = 2;
size_t lineNumber = 1;
while ( std::getline( in, line ) )
{
if ( lineNumber == mVertexCount + 1 )
{
auto matchResults = std::smatch{};
if ( std::regex_search( line, matchResults, mRegexElementHeader ) )
{
if ( matchResults.size() >= 4 )
{
faceCount = MDAL::toSizeT( matchResults[1].str() );
maxVerticesPerFace = MDAL::toSizeT( matchResults[2].str() );
size_t meshType = MDAL::toSizeT( matchResults[3].str() );
if ( !( meshType == 21 || meshType == 25 ) )
{
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "unknown mesh type." );
return nullptr;
}
}
else
{
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "element header not in valid format." );
return nullptr;
}
}
else
{
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "element header not in valid format." );
return nullptr;
}
}
lineNumber++;
}
// number of lines in file does not match number of vertices and faces specifed in first and element line
if ( lineNumber > 2 + mVertexCount + faceCount )
{
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "Number of lines in file does not fit with number of vertexes and faces specified." );
return nullptr;
}
in.clear();
in.seekg( 0, std::ios::beg );
Vertices vertices( mVertexCount );
Faces faces( faceCount );
std::map<size_t, size_t> vertexIDtoIndex;
std::vector<double> vertexType( mVertexCount );
std::vector<double> nativeVertexIds;
std::vector<double> nativeFaceIds;
size_t lastVertexID = 0;
size_t faceIndex = 0;
size_t vertexIndex = 0;
std::vector<std::string> chunks;
lineNumber = 0;
while ( std::getline( in, line ) )
{
if ( 0 < lineNumber && lineNumber < mVertexCount + 1 )
{
chunks = regex_split( MDAL::trim( line ) );
if ( chunks.size() != 5 )
{
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "vertex line in invalid format." );
return nullptr;
}
size_t nodeID = toSizeT( chunks[0] );
if ( nodeID != 0 )
{
// specification of Mike21 does not state if vertexIDs need to continuos, expect that they might be not
// in the same way as in 2DM
if ( ( lastVertexID != 0 ) && ( nodeID <= lastVertexID ) )
{
// the algorithm requires that the file has points orderer by index
MDAL::Log::error( MDAL_Status::Err_InvalidData, name(), "nodes are not ordered by index" );
return nullptr;
}
lastVertexID = nodeID;
}
// in case we have gaps/reorders in native indexes, store it
persist_native_index( nativeVertexIds, nodeID, vertexIndex, mVertexCount );
parse_vertex_id_gaps( vertexIDtoIndex, vertexIndex, nodeID - 1 );
assert( vertexIndex < mVertexCount );
Vertex &vertex = vertices[vertexIndex];
vertex.x = toDouble( chunks[1] );
vertex.y = toDouble( chunks[2] );
vertex.z = toDouble( chunks[3] );
vertexType[vertexIndex] = MDAL::toInt( chunks[4] );
vertexIndex++;
}
if ( mVertexCount + 1 < lineNumber )
{
chunks = regex_split( MDAL::trim( line ) );
assert( faceIndex < faceCount );
size_t faceVertexCount = chunks.size() - 1;
// if the face should have 4 vertexes last chunk has value 0
// it actually means that there are only 3 vertexes
if ( faceVertexCount == 4 && chunks.size() == 5 )
{
if ( MDAL::toSizeT( chunks[4] ) == 0 )
faceVertexCount = faceVertexCount - 1;
}
assert( ( faceVertexCount == 3 ) || ( faceVertexCount == 4 ) );
if ( maxVerticesPerFace < faceVertexCount )
maxVerticesPerFace = faceVertexCount;
Face &face = faces[faceIndex];
face.resize( faceVertexCount );
// in case we have gaps/reorders in native indexes, store it
size_t nativeID = MDAL::toSizeT( chunks[0] );
persist_native_index( nativeFaceIds, nativeID, faceIndex, faceCount );
for ( size_t i = 0; i < faceVertexCount; ++i )
face[i] = MDAL::toSizeT( chunks[i + 1] ) - 1; // Mike21 is numbered from 1
faceIndex++;
}
lineNumber++;
}
for ( std::vector<Face>::iterator it = faces.begin(); it != faces.end(); ++it )
{
Face &face = *it;
for ( Face::size_type nd = 0; nd < face.size(); ++nd )
{
size_t nodeID = face[nd];
std::map<size_t, size_t>::iterator ni2i = vertexIDtoIndex.find( nodeID );
if ( ni2i != vertexIDtoIndex.end() )
{
face[nd] = ni2i->second; // convert from ID to index
}
else if ( vertices.size() < nodeID )
{
MDAL::Log::warning( MDAL_Status::Warn_ElementWithInvalidNode, name(), "found invalid node" );
}
}
}
// create the mesh and set the required data
std::unique_ptr< MeshMike21 > mesh(
new MeshMike21(
maxVerticesPerFace,
mMeshFile,
vertexIDtoIndex
)
);
mesh->setFaces( std::move( faces ) );
mesh->setVertices( std::move( vertices ) );
// Add Vertex Type
MDAL::addVertexScalarDatasetGroup( mesh.get(), vertexType, "VertexType" );
// Add Bed Elevation
MDAL::addBedElevationDatasetGroup( mesh.get(), mesh->vertices() );
if ( !nativeFaceIds.empty() )
MDAL::addFaceScalarDatasetGroup( mesh.get(), nativeFaceIds, "NativeFaceIds" );
if ( !nativeVertexIds.empty() )
MDAL::addVertexScalarDatasetGroup( mesh.get(), nativeVertexIds, "NativeVertexIds" );
mesh->setSourceCrs( mCrs );
mesh->setMetadata( "crs", mCrs );
if ( !mDataType.empty() )
mesh->setMetadata( "data_type", mDataType );
if ( !mDataUnit.empty() )
mesh->setMetadata( "data_unit", mDataUnit );
return std::unique_ptr<Mesh>( mesh.release() );
}
void MDAL::DriverMike21::save( const std::string &fileName, const std::string &, MDAL::Mesh *mesh )
{
MDAL::Log::resetLastStatus();
std::ofstream file = MDAL::openOutputFile( fileName, std::ofstream::out );
if ( !file.is_open() )
{
MDAL::Log::error( MDAL_Status::Err_FailToWriteToDisk, name(), "Could not open file " + fileName );
}
std::string line;
const std::string dataType = mesh->getMetadata( "data_type" );
const std::string dataUnit = mesh->getMetadata( "data_unit" );
if ( !dataType.empty() && !dataUnit.empty() )
line.append( dataType + " " + dataUnit + " " );
line.append( std::to_string( mesh->verticesCount() ) + " " + mesh->getMetadata( "crs" ) );
file << line << std::endl;
std::vector<double> vertexTypes;
std::shared_ptr<MDAL::DatasetGroup> vertexTypeDG = mesh->group( "VertexType" );
if ( vertexTypeDG )
{
vertexTypes.resize( mesh->verticesCount() );
auto d = vertexTypeDG->datasets[0];
d->scalarData( 0, mesh->verticesCount(), vertexTypes.data() );
}
// write vertices
std::unique_ptr<MDAL::MeshVertexIterator> vertexIterator = mesh->readVertices();
double vertex[3];
for ( size_t i = 0; i < mesh->verticesCount(); ++i )
{
vertexIterator->next( 1, vertex );
line = "";
line.append( std::to_string( i + 1 ) );
for ( size_t j = 0; j < 2; ++j )
{
line.append( " " );
line.append( MDAL::coordinateToString( vertex[j] ) );
}
line.append( " " );
line.append( MDAL::doubleToString( vertex[2] ) );
line.append( " " );
if ( vertexTypes.size() == mesh->verticesCount() )
{
line.append( MDAL::doubleToString( vertexTypes.at( i ) ) );
}
else
{
line.append( MDAL::doubleToString( 0 ) );
}
file << line << std::endl;
}
//write element header line
size_t elementType = 0;
if ( mesh->faceVerticesMaximumCount() == 3 )
{
elementType = 21;
}
else if ( mesh->faceVerticesMaximumCount() == 4 )
{
elementType = 25;
}
line = std::to_string( mesh->facesCount() );
line.append( " " );
line.append( std::to_string( mesh->faceVerticesMaximumCount() ) );
line.append( " " );
line.append( std::to_string( elementType ) );
file << line << std::endl;
// write faces
std::vector<int> vertexIndices( mesh->faceVerticesMaximumCount() );
std::unique_ptr<MDAL::MeshFaceIterator> faceIterator = mesh->readFaces();
for ( size_t i = 0; i < mesh->facesCount(); ++i )
{
int faceOffsets[1];
faceIterator->next( 1, faceOffsets, 4, vertexIndices.data() );
if ( faceOffsets[0] > 2 && faceOffsets[0] < 5 )
{
line = "";
line.append( std::to_string( i + 1 ) );
for ( int j = 0; j < faceOffsets[0]; ++j )
{
line.append( " " );
line.append( std::to_string( vertexIndices[j] + 1 ) );
}
// if face has 3 vertexes but the mesh as whole is marked as having
// 4 vertex at maximum, the last element should 0 - indicating no vertex there
if ( faceOffsets[0] == 3 && mesh->faceVerticesMaximumCount() == 4 )
{
line.append( " " );
line.append( "0" );
}
}
file << line << std::endl;
}
file.close();
}
std::string MDAL::DriverMike21::saveMeshOnFileSuffix() const
{
return "mesh";
}
|