File: make_distance_boxplots.py

package info (click to toggle)
qiime 1.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 29,704 kB
  • sloc: python: 77,837; haskell: 379; sh: 113; makefile: 103
file content (324 lines) | stat: -rwxr-xr-x 15,659 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
from __future__ import division

__author__ = "Jai Rideout"
__copyright__ = "Copyright 2011, The QIIME project"
__credits__ = ["Jai Rideout"]
__license__ = "GPL"
__version__ = "1.4.0"
__maintainer__ = "Jai Rideout"
__email__ = "jr378@nau.edu"
__status__ = "Release"

from operator import itemgetter
from os import path
from string import strip
from cogent.util.misc import create_dir
from numpy import median
from qiime.group import get_all_grouped_distances, get_grouped_distances
from qiime.parse import parse_distmat, parse_mapping_file, QiimeParseError
from qiime.pycogent_backports.distribution_plots import generate_box_plots
from qiime.util import get_options_lookup, make_option, \
                       parse_command_line_parameters

script_info = {}
script_info['brief_description'] = "Creates boxplots to compare distances \
                                    between categories"

script_info['script_description'] = """
This script creates boxplots that allow for the comparison between different \
categories found within the mapping file. The boxplots that are created show \
the distances within all samples of a field value, as well as between \
different field values. Individual within and individual between distances \
are also plotted.

For more information and examples pertaining to this script, please refer to \
the accompanying tutorial, which can be found at \
http://qiime.org/tutorials/creating_distance_comparison_plots.html.
"""

script_info['script_usage'] = [("Compare distances between Fast and Control "
                                "for Treatment field",
                                "This example will generate an image "
                                "with boxplots for all within and all between "
                                "distances for the field Treatment, and will "
                                "also include plots for individual within "
                                "(e.g. Control vs. Control, Fast vs. Fast) "
                                "and individual between (e.g. Control vs. "
                                "Fast). The generated plot image PDF will be "
                                "written to the output directory 'out_files'.",
                                "%prog -d dist_matrix.txt -m map.txt -f "
                                "\"Treatment\" -o out_files"),
                               ("Only plot individual distances",
                                "This example will generate a PNG of all of "
                                "individual distances (within and between) "
                                "for the Treatment field.",
                                "%prog -d dist_matrix.txt -m map.txt -f "
                                "\"Treatment\" -o out_files -g png "
                                "--suppress_all_within "
                                "--suppress_all_between"),
                               ("Save raw data",
                                "This example will generate an SVG image of "
                                "the boxplots and also output the plotting "
                                "data to a tab-delimited file.",
                                "%prog -d dist_matrix.txt -m map.txt -f "
                                "\"Treatment\" -o out_files -g svg "
                                "--save_raw_data")]

script_info['output_description'] = "Images of the plots are written to \
                                    the specified output directory (one image \
                                    per field). The raw data used in the \
                                    plots can optionally be written into \
                                    tab-delimited files (one file per field)."

# Get a dictionary of common QIIME options.
options = get_options_lookup()

script_info['required_options'] = [
    options['mapping_fp'],
    options['output_dir'],
    make_option('-d', '--distance_matrix_fp',
        help='input distance matrix filepath (i.e. the result of '
             'beta_diversity.py)',
        type='existing_filepath'),
    make_option('-f', '--fields',
        help='comma-separated list of fields to compare, where the list of '
             'fields should be in quotes (e.g. "Field1,Field2,Field3")')]

script_info['optional_options'] = [
    make_option('-g', '--imagetype',
        help='type of image to produce (i.e. png, svg, pdf) '
             '[default: %default]', default='pdf', type="choice",
        choices=['pdf', 'png', 'svg']),
    make_option('--save_raw_data', action='store_true',
        help='store raw data used to create boxplots in tab-delimited files '
             '[default: %default]',
        default=False),
    make_option('--suppress_all_within', action='store_true',
        help='suppress plotting of "all within" boxplot [default: %default]',
        default=False),
    make_option('--suppress_all_between', action='store_true',
        help='suppress plotting of "all between" boxplot [default: %default]',
        default=False),
    make_option('--suppress_individual_within', action='store_true',
        help='suppress plotting of individual "within" boxplot(s) '
             '[default: %default]',
        default=False),
    make_option('--suppress_individual_between', action='store_true',
        help='suppress plotting of individual "between" boxplot(s) '
             '[default: %default]',
        default=False),
    make_option('--y_min',
        help='the minimum y-axis value in the resulting plot. If "auto", '
             'it is automatically calculated [default: %default]',
        default=0, type='string'),
    make_option('--y_max',
        help='the maximum y-axis value in the resulting plot. If "auto", '
             'it is automatically calculated [default: %default]',
        default=1, type='string'),
    make_option('--width',
        help='width of the output image in inches. If not provided, '
             'a "best guess" width will be used [default: auto]',
        default=None, type='float'),
    make_option('--height',
        help='height of the output image in inches [default: %default]',
        default=6, type='float'),
    make_option('--transparent', action='store_true',
        help='make output images transparent (useful for overlaying an image '
             'on top of a colored background) [default: %default]',
        default=False),
    make_option('--whisker_length',
        help='length of the whiskers as a function of the IQR. For example, '
             'if 1.5, the whiskers extend to 1.5 * IQR. Anything outside of '
             'that range is seen as an outlier [default: %default]',
        default='1.5', type='float'),
    make_option('--box_width',
        help='width of each box in plot units [default: %default]',
        default='0.5', type='float'),
    make_option('--box_color',
        help='the color of the boxes. Can be any valid matplotlib color '
             'string, such as "black", "magenta", "blue", etc. See '
             'http://matplotlib.sourceforge.net/api/colors_api.html for more '
             'examples of valid color strings that may be used [default: '
             'same as plot background, which is white unless --transparent is '
             'enabled]',
        default=None, type='string'),
    make_option('--sort', action='store_true',
        help='sort boxplots by increasing median. If no sorting is applied, '
             'boxplots will be grouped logically as follows: all within, all '
             'between, individual within, and individual between '
             '[default: %default]', default=False)]

script_info['option_label'] = {'mapping_fp':'QIIME-formatted mapping filepath',
                               'output_dir':'output directory',
                               'distance_matrix_fp':'distance matrix filepath',
                               'fields':'categories to compare',
                               'imagetype':'output image format',
                               'save_raw_data':'save raw data used in plots',
                               'suppress_all_within':'suppress all within plot',
                               'suppress_all_between':'suppress all between '
                                   'plot',
                               'suppress_individual_within':'suppress '
                                   'individual within plot(s)',
                               'suppress_individual_between':'suppress '
                                   'individual between plot(s)',
                               'y_min':'y-axis min',
                               'y_max':'y-axis max',
                               'width':'image width',
                               'height':'image height',
                               'transparent':'make images transparent',
                               'whisker_length':'whisker length as function '
                                   'of IQR',
                               'box_width':'width of boxes',
                               'box_color':'color of the boxes',
                               'sort':'sort boxplots by ascending median'}

script_info['version'] = __version__

def main():
    option_parser, opts, args = parse_command_line_parameters(**script_info)

    # Create the output dir if it doesn't already exist.
    try:
        create_dir(opts.output_dir)
    except:
        option_parser.error("Could not create or access output directory "
                            "specified with the -o option.")

    # Parse the distance matrix and mapping file.
    try:
        dist_matrix_header, dist_matrix = parse_distmat(
            open(opts.distance_matrix_fp, 'U'))
    except:
        option_parser.error("This does not look like a valid distance matrix "
            "file. Please supply a valid distance matrix file using the -d "
            "option.")

    try:
        mapping, mapping_header, mapping_comments = parse_mapping_file(
            open(opts.mapping_fp, 'U'))
    except QiimeParseError:
        option_parser.error("This does not look like a valid metadata mapping "
            "file. Please supply a valid mapping file using the -m option.")

    fields = opts.fields
    fields = map(strip, fields.split(','))
    fields = [field.strip('"').strip("'") for field in fields]

    if fields is None:
        option_parser.error("You must provide at least one field using the -f "
                            "option.")

    # Make sure each field is in the mapping file.
    for field in fields:
        if field not in mapping_header:
            option_parser.error("The field '%s' is not in the provided "
                "mapping file. Please supply correct fields (using the -f "
                "option) corresponding to fields in the mapping file."
                % field)

    # Make sure the y_min and y_max options make sense, as they can be either
    # 'auto' or a number.
    y_min = opts.y_min
    y_max = opts.y_max
    try:
        y_min = float(y_min)
    except ValueError:
        if y_min == 'auto':
            y_min = None
        else:
            option_parser.error("The --y_min option must be either a number "
                                "or 'auto'.")
    try:
        y_max = float(y_max)
    except ValueError:
        if y_max == 'auto':
            y_max = None
        else:
            option_parser.error("The --y_max option must be either a number "
                                "or 'auto'.")

    # Generate the various boxplots, depending on what the user wanted
    # suppressed. Add them all to one encompassing plot.
    for field in fields:
        plot_data = []
        plot_labels = []

        if not opts.suppress_all_within:
            plot_data.append(get_all_grouped_distances(dist_matrix_header,
                    dist_matrix, mapping_header, mapping, field, within=True))
            plot_labels.append("All within %s" % field)
        if not opts.suppress_all_between:
            plot_data.append(get_all_grouped_distances(dist_matrix_header,
                    dist_matrix, mapping_header, mapping, field, within=False))
            plot_labels.append("All between %s" % field)
        if not opts.suppress_individual_within:
            within_dists = get_grouped_distances(dist_matrix_header,
                    dist_matrix, mapping_header, mapping, field, within=True)
            for grouping in within_dists:
                plot_data.append(grouping[2])
                plot_labels.append("%s vs. %s" % (grouping[0], grouping[1]))
        if not opts.suppress_individual_between:
            between_dists = get_grouped_distances(dist_matrix_header,
                    dist_matrix, mapping_header, mapping, field, within=False)
            for grouping in between_dists:
                plot_data.append(grouping[2])
                plot_labels.append("%s vs. %s" % (grouping[0], grouping[1]))

        # We now have our data and labels ready, so plot them!
        assert (len(plot_data) == len(plot_labels)), "The number " +\
                "of boxplot labels does not match the number of " +\
                "boxplots."
        if plot_data:
            if opts.sort:
                # Sort our plot data in order of increasing median.
                sorted_data = []
                for label, distribution in zip(plot_labels, plot_data):
                    sorted_data.append((label, distribution,
                        median(distribution)))
                sorted_data.sort(key=itemgetter(2))
                plot_labels = []
                plot_data = []
                for label, distribution, median_value in sorted_data:
                    plot_labels.append(label)
                    plot_data.append(distribution)

            plot_figure = generate_box_plots(plot_data,
                    x_tick_labels=plot_labels, title="%s Distances" % field,
                    x_label="Grouping", y_label="Distance",
                    x_tick_labels_orientation='vertical', y_min=y_min,
                    y_max=y_max, whisker_length=opts.whisker_length,
                    box_width=opts.box_width, box_color=opts.box_color)
            width = opts.width
            height = opts.height
            if width is None:
                width = len(plot_data) * opts.box_width + 2
            if width > 0 and height > 0:
                plot_figure.set_size_inches(width, height)
            else:
                option_parser.error("The specified width and height of the "
                                    "image must be greater than zero.")
            output_plot_fp = path.join(opts.output_dir, "%s_Distances.%s"
                                       % (field, opts.imagetype))
            plot_figure.savefig(output_plot_fp, format=opts.imagetype,
                    transparent=opts.transparent)
        else:
            option_parser.error("You have chosen to suppress all plots. At "
                                "least one type of plot must be unsuppressed.")

        if opts.save_raw_data:
            # Write the raw plot data into a tab-delimited file.
            assert(len(plot_labels) == len(plot_data))
            raw_data_fp = path.join(opts.output_dir, "%s_Distances.xls"
                                    % field)
            raw_data_f = open(raw_data_fp, 'w')

            for label, data in zip(plot_labels, plot_data):
                raw_data_f.write(label.replace(" ", "_") + "\t")
                raw_data_f.write("\t".join(map(str, data)))
                raw_data_f.write("\n")
            raw_data_f.close()


if __name__ == "__main__":
    main()