1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM DSP Library
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2008-2009 Matthew Davies and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "DownBeat.h"
#include "maths/MathAliases.h"
#include "maths/MathUtilities.h"
#include "maths/KLDivergence.h"
#include "dsp/transforms/FFT.h"
#include <iostream>
#include <cstdlib>
DownBeat::DownBeat(float originalSampleRate,
size_t decimationFactor,
size_t dfIncrement) :
m_bpb(0),
m_rate(originalSampleRate),
m_factor(decimationFactor),
m_increment(dfIncrement),
m_decimator1(0),
m_decimator2(0),
m_buffer(0),
m_decbuf(0),
m_bufsiz(0),
m_buffill(0),
m_beatframesize(0),
m_beatframe(0)
{
// beat frame size is next power of two up from 1.3 seconds at the
// downsampled rate (happens to produce 4096 for 44100 or 48000 at
// 16x decimation, which is our expected normal situation)
m_beatframesize = MathUtilities::nextPowerOfTwo
(int((m_rate / decimationFactor) * 1.3));
if (m_beatframesize < 2) {
m_beatframesize = 2;
}
// std::cerr << "rate = " << m_rate << ", dec = " << decimationFactor << ", bfs = " << m_beatframesize << std::endl;
m_beatframe = new double[m_beatframesize];
m_fftRealOut = new double[m_beatframesize];
m_fftImagOut = new double[m_beatframesize];
m_fft = new FFTReal(m_beatframesize);
}
DownBeat::~DownBeat()
{
delete m_decimator1;
delete m_decimator2;
if (m_buffer) free(m_buffer);
delete[] m_decbuf;
delete[] m_beatframe;
delete[] m_fftRealOut;
delete[] m_fftImagOut;
delete m_fft;
}
void
DownBeat::setBeatsPerBar(int bpb)
{
m_bpb = bpb;
}
void
DownBeat::makeDecimators()
{
// std::cerr << "m_factor = " << m_factor << std::endl;
if (m_factor < 2) return;
size_t highest = Decimator::getHighestSupportedFactor();
if (m_factor <= highest) {
m_decimator1 = new Decimator(m_increment, m_factor);
// std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
return;
}
m_decimator1 = new Decimator(m_increment, highest);
// std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
// std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
m_decbuf = new float[m_increment / highest];
}
void
DownBeat::pushAudioBlock(const float *audio)
{
if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
else m_bufsiz = m_bufsiz * 2;
if (!m_buffer) {
m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
} else {
// std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
}
}
if (!m_decimator1 && m_factor > 1) makeDecimators();
// float rmsin = 0, rmsout = 0;
// for (int i = 0; i < m_increment; ++i) {
// rmsin += audio[i] * audio[i];
// }
if (m_decimator2) {
m_decimator1->process(audio, m_decbuf);
m_decimator2->process(m_decbuf, m_buffer + m_buffill);
} else if (m_decimator1) {
m_decimator1->process(audio, m_buffer + m_buffill);
} else {
// just copy across (m_factor is presumably 1)
for (size_t i = 0; i < m_increment; ++i) {
(m_buffer + m_buffill)[i] = audio[i];
}
}
// for (int i = 0; i < m_increment / m_factor; ++i) {
// rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
// }
// std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
m_buffill += m_increment / m_factor;
}
const float *
DownBeat::getBufferedAudio(size_t &length) const
{
length = m_buffill;
return m_buffer;
}
void
DownBeat::resetAudioBuffer()
{
if (m_buffer) free(m_buffer);
m_buffer = 0;
m_buffill = 0;
m_bufsiz = 0;
}
void
DownBeat::findDownBeats(const float *audio,
size_t audioLength,
const d_vec_t &beats,
i_vec_t &downbeats)
{
// FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
// WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
// THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
// IMPLEMENTATION (MOSTLY) FOLLOWS:
// DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
// EUSIPCO 2006, FLORENCE, ITALY
d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
m_beatsd.clear();
if (audioLength == 0) return;
for (size_t i = 0; i + 1 < beats.size(); ++i) {
// Copy the extents of the current beat from downsampled array
// into beat frame buffer
size_t beatstart = (beats[i] * m_increment) / m_factor;
size_t beatend = (beats[i+1] * m_increment) / m_factor;
if (beatend >= audioLength) beatend = audioLength - 1;
if (beatend < beatstart) beatend = beatstart;
size_t beatlen = beatend - beatstart;
// Also apply a Hanning window to the beat frame buffer, sized
// to the beat extents rather than the frame size. (Because
// the size varies, it's easier to do this by hand than use
// our Window abstraction.)
// std::cerr << "beatlen = " << beatlen << std::endl;
// float rms = 0;
for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
m_beatframe[j] = audio[beatstart + j] * mul;
// rms += m_beatframe[j] * m_beatframe[j];
}
// rms = sqrt(rms);
// std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
for (size_t j = beatlen; j < m_beatframesize; ++j) {
m_beatframe[j] = 0.0;
}
// Now FFT beat frame
m_fft->forward(m_beatframe, m_fftRealOut, m_fftImagOut);
// Calculate magnitudes
for (size_t j = 0; j < m_beatframesize/2; ++j) {
newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
m_fftImagOut[j] * m_fftImagOut[j]);
}
// Preserve peaks by applying adaptive threshold
MathUtilities::adaptiveThreshold(newspec);
// Calculate JS divergence between new and old spectral frames
if (i > 0) { // otherwise we have no previous frame
m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
// std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
}
// Copy newspec across to old
for (size_t j = 0; j < m_beatframesize/2; ++j) {
oldspec[j] = newspec[j];
}
}
// We now have all spectral difference measures in specdiff
int timesig = m_bpb;
if (timesig == 0) timesig = 4;
d_vec_t dbcand(timesig); // downbeat candidates
for (int beat = 0; beat < timesig; ++beat) {
dbcand[beat] = 0;
}
// look for beat transition which leads to greatest spectral change
for (int beat = 0; beat < timesig; ++beat) {
int count = 0;
for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
if (example < 0) continue;
dbcand[beat] += (m_beatsd[example]) / timesig;
++count;
}
if (count > 0) dbcand[beat] /= count;
// std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
}
// first downbeat is beat at index of maximum value of dbcand
int dbind = MathUtilities::getMax(dbcand);
// remaining downbeats are at timesig intervals from the first
for (int i = dbind; i < (int)beats.size(); i += timesig) {
downbeats.push_back(i);
}
}
double
DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
{
// JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
if (SPECSIZE > oldspec.size()/4) {
SPECSIZE = oldspec.size()/4;
}
double SD = 0.;
double sd1 = 0.;
double sumnew = 0.;
double sumold = 0.;
for (unsigned int i = 0;i < SPECSIZE;i++)
{
newspec[i] +=EPS;
oldspec[i] +=EPS;
sumnew+=newspec[i];
sumold+=oldspec[i];
}
for (unsigned int i = 0;i < SPECSIZE;i++)
{
newspec[i] /= (sumnew);
oldspec[i] /= (sumold);
// IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
if (newspec[i] == 0)
{
newspec[i] = 1.;
}
if (oldspec[i] == 0)
{
oldspec[i] = 1.;
}
// JENSEN-SHANNON CALCULATION
sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
}
return SD;
}
void
DownBeat::getBeatSD(vector<double> &beatsd) const
{
for (int i = 0; i < (int)m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);
}
|