1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM DSP Library
Centre for Digital Music, Queen Mary, University of London.
This file copyright 2008-2009 Matthew Davies and QMUL.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "TempoTrackV2.h"
#include <cmath>
#include <cstdlib>
#include <iostream>
#include "maths/MathUtilities.h"
#define EPS 0.0000008 // just some arbitrary small number
TempoTrackV2::TempoTrackV2(float rate, size_t increment) :
m_rate(rate), m_increment(increment) { }
TempoTrackV2::~TempoTrackV2() { }
void
TempoTrackV2::filter_df(d_vec_t &df)
{
d_vec_t a(3);
d_vec_t b(3);
d_vec_t lp_df(df.size());
//equivalent in matlab to [b,a] = butter(2,0.4);
a[0] = 1.0000;
a[1] = -0.3695;
a[2] = 0.1958;
b[0] = 0.2066;
b[1] = 0.4131;
b[2] = 0.2066;
double inp1 = 0.;
double inp2 = 0.;
double out1 = 0.;
double out2 = 0.;
// forwards filtering
for (unsigned int i = 0;i < df.size();i++)
{
lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
inp2 = inp1;
inp1 = df[i];
out2 = out1;
out1 = lp_df[i];
}
// copy forwards filtering to df...
// but, time-reversed, ready for backwards filtering
for (unsigned int i = 0;i < df.size();i++)
{
df[i] = lp_df[df.size()-i-1];
}
for (unsigned int i = 0;i < df.size();i++)
{
lp_df[i] = 0.;
}
inp1 = 0.; inp2 = 0.;
out1 = 0.; out2 = 0.;
// backwards filetering on time-reversed df
for (unsigned int i = 0;i < df.size();i++)
{
lp_df[i] = b[0]*df[i] + b[1]*inp1 + b[2]*inp2 - a[1]*out1 - a[2]*out2;
inp2 = inp1;
inp1 = df[i];
out2 = out1;
out1 = lp_df[i];
}
// write the re-reversed (i.e. forward) version back to df
for (unsigned int i = 0;i < df.size();i++)
{
df[i] = lp_df[df.size()-i-1];
}
}
// MEPD 28/11/12
// This function now allows for a user to specify an inputtempo (in BPM)
// and a flag "constraintempo" which replaces the general rayleigh weighting for periodicities
// with a gaussian which is centered around the input tempo
// Note, if inputtempo = 120 and constraintempo = false, then functionality is
// as it was before
void
TempoTrackV2::calculateBeatPeriod(const vector<double> &df,
vector<double> &beat_period,
vector<double> &tempi,
double inputtempo, bool constraintempo)
{
// to follow matlab.. split into 512 sample frames with a 128 hop size
// calculate the acf,
// then the rcf.. and then stick the rcfs as columns of a matrix
// then call viterbi decoding with weight vector and transition matrix
// and get best path
unsigned int wv_len = 128;
// MEPD 28/11/12
// the default value of inputtempo in the beat tracking plugin is 120
// so if the user specifies a different inputtempo, the rayparam will be updated
// accordingly.
// note: 60*44100/512 is a magic number
// this might (will?) break if a user specifies a different frame rate for the onset detection function
double rayparam = (60*44100/512)/inputtempo;
// these debug statements can be removed.
// std::cerr << "inputtempo" << inputtempo << std::endl;
// std::cerr << "rayparam" << rayparam << std::endl;
// std::cerr << "constraintempo" << constraintempo << std::endl;
// make rayleigh weighting curve
d_vec_t wv(wv_len);
// check whether or not to use rayleigh weighting (if constraintempo is false)
// or use gaussian weighting it (constraintempo is true)
if (constraintempo)
{
for (unsigned int i=0; i<wv.size(); i++)
{
// MEPD 28/11/12
// do a gaussian weighting instead of rayleigh
wv[i] = exp( (-1.*pow((static_cast<double> (i)-rayparam),2.)) / (2.*pow(rayparam/4.,2.)) );
}
}
else
{
for (unsigned int i=0; i<wv.size(); i++)
{
// MEPD 28/11/12
// standard rayleigh weighting over periodicities
wv[i] = (static_cast<double> (i) / pow(rayparam,2.)) * exp((-1.*pow(-static_cast<double> (i),2.)) / (2.*pow(rayparam,2.)));
}
}
// beat tracking frame size (roughly 6 seconds) and hop (1.5 seconds)
unsigned int winlen = 512;
unsigned int step = 128;
// matrix to store output of comb filter bank, increment column of matrix at each frame
d_mat_t rcfmat;
int col_counter = -1;
// main loop for beat period calculation
for (unsigned int i=0; i+winlen<df.size(); i+=step)
{
// get dfframe
d_vec_t dfframe(winlen);
for (unsigned int k=0; k<winlen; k++)
{
dfframe[k] = df[i+k];
}
// get rcf vector for current frame
d_vec_t rcf(wv_len);
get_rcf(dfframe,wv,rcf);
rcfmat.push_back( d_vec_t() ); // adds a new column
col_counter++;
for (unsigned int j=0; j<rcf.size(); j++)
{
rcfmat[col_counter].push_back( rcf[j] );
}
}
// now call viterbi decoding function
viterbi_decode(rcfmat,wv,beat_period,tempi);
}
void
TempoTrackV2::get_rcf(const d_vec_t &dfframe_in, const d_vec_t &wv, d_vec_t &rcf)
{
// calculate autocorrelation function
// then rcf
// just hard code for now... don't really need separate functions to do this
// make acf
d_vec_t dfframe(dfframe_in);
MathUtilities::adaptiveThreshold(dfframe);
d_vec_t acf(dfframe.size());
for (unsigned int lag=0; lag<dfframe.size(); lag++)
{
double sum = 0.;
double tmp = 0.;
for (unsigned int n=0; n<(dfframe.size()-lag); n++)
{
tmp = dfframe[n] * dfframe[n+lag];
sum += tmp;
}
acf[lag] = static_cast<double> (sum/ (dfframe.size()-lag));
}
// now apply comb filtering
int numelem = 4;
for (unsigned int i = 2;i < rcf.size();i++) // max beat period
{
for (int a = 1;a <= numelem;a++) // number of comb elements
{
for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
{
rcf[i-1] += ( acf[(a*i+b)-1]*wv[i-1] ) / (2.*a-1.); // calculate value for comb filter row
}
}
}
// apply adaptive threshold to rcf
MathUtilities::adaptiveThreshold(rcf);
double rcfsum =0.;
for (unsigned int i=0; i<rcf.size(); i++)
{
rcf[i] += EPS ;
rcfsum += rcf[i];
}
// normalise rcf to sum to unity
for (unsigned int i=0; i<rcf.size(); i++)
{
rcf[i] /= (rcfsum + EPS);
}
}
void
TempoTrackV2::viterbi_decode(const d_mat_t &rcfmat, const d_vec_t &wv, d_vec_t &beat_period, d_vec_t &tempi)
{
// following Kevin Murphy's Viterbi decoding to get best path of
// beat periods through rfcmat
// make transition matrix
d_mat_t tmat;
for (unsigned int i=0;i<wv.size();i++)
{
tmat.push_back ( d_vec_t() ); // adds a new column
for (unsigned int j=0; j<wv.size(); j++)
{
tmat[i].push_back(0.); // fill with zeros initially
}
}
// variance of Gaussians in transition matrix
// formed of Gaussians on diagonal - implies slow tempo change
double sigma = 8.;
// don't want really short beat periods, or really long ones
for (unsigned int i=20;i <wv.size()-20; i++)
{
for (unsigned int j=20; j<wv.size()-20; j++)
{
double mu = static_cast<double>(i);
tmat[i][j] = exp( (-1.*pow((j-mu),2.)) / (2.*pow(sigma,2.)) );
}
}
// parameters for Viterbi decoding... this part is taken from
// Murphy's matlab
d_mat_t delta;
i_mat_t psi;
for (unsigned int i=0;i <rcfmat.size(); i++)
{
delta.push_back( d_vec_t());
psi.push_back( i_vec_t());
for (unsigned int j=0; j<rcfmat[i].size(); j++)
{
delta[i].push_back(0.); // fill with zeros initially
psi[i].push_back(0); // fill with zeros initially
}
}
unsigned int T = delta.size();
if (T < 2) return; // can't do anything at all meaningful
unsigned int Q = delta[0].size();
// initialize first column of delta
for (unsigned int j=0; j<Q; j++)
{
delta[0][j] = wv[j] * rcfmat[0][j];
psi[0][j] = 0;
}
double deltasum = 0.;
for (unsigned int i=0; i<Q; i++)
{
deltasum += delta[0][i];
}
for (unsigned int i=0; i<Q; i++)
{
delta[0][i] /= (deltasum + EPS);
}
for (unsigned int t=1; t<T; t++)
{
d_vec_t tmp_vec(Q);
for (unsigned int j=0; j<Q; j++)
{
for (unsigned int i=0; i<Q; i++)
{
tmp_vec[i] = delta[t-1][i] * tmat[j][i];
}
delta[t][j] = get_max_val(tmp_vec);
psi[t][j] = get_max_ind(tmp_vec);
delta[t][j] *= rcfmat[t][j];
}
// normalise current delta column
double deltasum = 0.;
for (unsigned int i=0; i<Q; i++)
{
deltasum += delta[t][i];
}
for (unsigned int i=0; i<Q; i++)
{
delta[t][i] /= (deltasum + EPS);
}
}
i_vec_t bestpath(T);
d_vec_t tmp_vec(Q);
for (unsigned int i=0; i<Q; i++)
{
tmp_vec[i] = delta[T-1][i];
}
// find starting point - best beat period for "last" frame
bestpath[T-1] = get_max_ind(tmp_vec);
// backtrace through index of maximum values in psi
for (unsigned int t=T-2; t>0 ;t--)
{
bestpath[t] = psi[t+1][bestpath[t+1]];
}
// weird but necessary hack -- couldn't get above loop to terminate at t >= 0
bestpath[0] = psi[1][bestpath[1]];
unsigned int lastind = 0;
for (unsigned int i=0; i<T; i++)
{
unsigned int step = 128;
for (unsigned int j=0; j<step; j++)
{
lastind = i*step+j;
beat_period[lastind] = bestpath[i];
}
// std::cerr << "bestpath[" << i << "] = " << bestpath[i] << " (used for beat_periods " << i*step << " to " << i*step+step-1 << ")" << std::endl;
}
//fill in the last values...
for (unsigned int i=lastind; i<beat_period.size(); i++)
{
beat_period[i] = beat_period[lastind];
}
for (unsigned int i = 0; i < beat_period.size(); i++)
{
tempi.push_back((60. * m_rate / m_increment)/beat_period[i]);
}
}
double
TempoTrackV2::get_max_val(const d_vec_t &df)
{
double maxval = 0.;
for (unsigned int i=0; i<df.size(); i++)
{
if (maxval < df[i])
{
maxval = df[i];
}
}
return maxval;
}
int
TempoTrackV2::get_max_ind(const d_vec_t &df)
{
double maxval = 0.;
int ind = 0;
for (unsigned int i=0; i<df.size(); i++)
{
if (maxval < df[i])
{
maxval = df[i];
ind = i;
}
}
return ind;
}
void
TempoTrackV2::normalise_vec(d_vec_t &df)
{
double sum = 0.;
for (unsigned int i=0; i<df.size(); i++)
{
sum += df[i];
}
for (unsigned int i=0; i<df.size(); i++)
{
df[i]/= (sum + EPS);
}
}
// MEPD 28/11/12
// this function has been updated to allow the "alpha" and "tightness" parameters
// of the dynamic program to be set by the user
// the default value of alpha = 0.9 and tightness = 4
void
TempoTrackV2::calculateBeats(const vector<double> &df,
const vector<double> &beat_period,
vector<double> &beats, double alpha, double tightness)
{
if (df.empty() || beat_period.empty()) return;
d_vec_t cumscore(df.size()); // store cumulative score
i_vec_t backlink(df.size()); // backlink (stores best beat locations at each time instant)
d_vec_t localscore(df.size()); // localscore, for now this is the same as the detection function
for (unsigned int i=0; i<df.size(); i++)
{
localscore[i] = df[i];
backlink[i] = -1;
}
//double tightness = 4.;
//double alpha = 0.9;
// MEPD 28/11/12
// debug statements that can be removed.
// std::cerr << "alpha" << alpha << std::endl;
// std::cerr << "tightness" << tightness << std::endl;
// main loop
for (unsigned int i=0; i<localscore.size(); i++)
{
int prange_min = -2*beat_period[i];
int prange_max = round(-0.5*beat_period[i]);
// transition range
d_vec_t txwt (prange_max - prange_min + 1);
d_vec_t scorecands (txwt.size());
for (unsigned int j=0;j<txwt.size();j++)
{
double mu = static_cast<double> (beat_period[i]);
txwt[j] = exp( -0.5*pow(tightness * log((round(2*mu)-j)/mu),2));
// IF IN THE ALLOWED RANGE, THEN LOOK AT CUMSCORE[I+PRANGE_MIN+J
// ELSE LEAVE AT DEFAULT VALUE FROM INITIALISATION: D_VEC_T SCORECANDS (TXWT.SIZE());
int cscore_ind = i+prange_min+j;
if (cscore_ind >= 0)
{
scorecands[j] = txwt[j] * cumscore[cscore_ind];
}
}
// find max value and index of maximum value
double vv = get_max_val(scorecands);
int xx = get_max_ind(scorecands);
cumscore[i] = alpha*vv + (1.-alpha)*localscore[i];
backlink[i] = i+prange_min+xx;
// std::cerr << "backlink[" << i << "] <= " << backlink[i] << std::endl;
}
// STARTING POINT, I.E. LAST BEAT.. PICK A STRONG POINT IN cumscore VECTOR
d_vec_t tmp_vec;
for (unsigned int i=cumscore.size() - beat_period[beat_period.size()-1] ; i<cumscore.size(); i++)
{
tmp_vec.push_back(cumscore[i]);
}
int startpoint = get_max_ind(tmp_vec) + cumscore.size() - beat_period[beat_period.size()-1] ;
// can happen if no results obtained earlier (e.g. input too short)
if (startpoint >= (int)backlink.size()) startpoint = backlink.size()-1;
// USE BACKLINK TO GET EACH NEW BEAT (TOWARDS THE BEGINNING OF THE FILE)
// BACKTRACKING FROM THE END TO THE BEGINNING.. MAKING SURE NOT TO GO BEFORE SAMPLE 0
i_vec_t ibeats;
ibeats.push_back(startpoint);
// std::cerr << "startpoint = " << startpoint << std::endl;
while (backlink[ibeats.back()] > 0)
{
// std::cerr << "backlink[" << ibeats.back() << "] = " << backlink[ibeats.back()] << std::endl;
int b = ibeats.back();
if (backlink[b] == b) break; // shouldn't happen... haha
ibeats.push_back(backlink[b]);
}
// REVERSE SEQUENCE OF IBEATS AND STORE AS BEATS
for (unsigned int i=0; i<ibeats.size(); i++)
{
beats.push_back( static_cast<double>(ibeats[ibeats.size()-i-1]) );
}
}
|