1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/****************************************************************************
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of the Qt3D module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3.0 as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU General Public License version 3.0 requirements will be
** met: http://www.gnu.org/copyleft/gpl.html.
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qsphere3d.h"
#include "qray3d.h"
#include "qbox3d.h"
#include "qplane3d.h"
#include <QtGui/qmatrix4x4.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
/*!
\class QSphere3D
\brief The QSphere3D class represents a mathematical sphere in 3D space.
\since 4.8
\ingroup qt3d
\ingroup qt3d::math
QSphere3D can be used to represent the bounding regions of objects
in a 3D scene so that they can be easily culled if they are out of view.
It can also be used to assist with collision testing.
\sa QBox3D
*/
/*!
\fn QSphere3D::QSphere3D()
Constructs a default sphere with a center() of (0, 0, 0)
and radius() of 1.
*/
/*!
\fn QSphere3D::QSphere3D(const QVector3D ¢er, float radius)
Constructs a sphere with the specified \a center and \a radius.
*/
/*!
\fn QVector3D QSphere3D::center() const
Returns the center of this sphere.
\sa setCenter(), radius()
*/
/*!
\fn void QSphere3D::setCenter(const QVector3D ¢er)
Sets the \a center of this sphere.
\sa center(), setRadius()
*/
/*!
\fn float QSphere3D::radius() const
Returns the radius of this sphere.
\sa setRadius(), center()
*/
/*!
\fn void QSphere3D::setRadius(float radius)
Sets the \a radius of this sphere.
\sa radius(), setCenter()
*/
/*!
\fn bool QSphere3D::contains(const QVector3D &point) const
Returns true if \a point is contained within the bounds of
this sphere; false otherwise.
*/
/*!
Returns true if this sphere intersects \a ray; false otherwise.
\sa intersection()
*/
bool QSphere3D::intersects(const QRay3D &ray) const
{
QVector3D centerToOrigin = ray.origin() - m_center;
float term1 = ray.direction().lengthSquared();
float term2 = 2.0f * QVector3D::dotProduct(centerToOrigin, ray.direction());
float term3 = centerToOrigin.lengthSquared() - m_radius * m_radius;
float det = term2 * term2 - (4.0f * term1 * term3);
return term1 != 0.0f && det >= 0.0f;
}
/*!
\fn bool QSphere3D::intersects(const QSphere3D &sphere) const
Returns true if this sphere intersects \a sphere; false otherwise.
\sa contains()
*/
/*!
Returns true if this sphere intersects \a box; false otherwise.
*/
bool QSphere3D::intersects(const QBox3D &box) const
{
if (box.isFinite()) {
// Use Arvo's Algorithm to determine if we have an intersection.
float dist = 0.0f;
float center = m_center.x();
float minval = box.minimum().x();
float maxval = box.maximum().x();
if (center < minval)
dist += (center - minval) * (center - minval);
else if (center > maxval)
dist += (center - maxval) * (center - maxval);
center = m_center.y();
minval = box.minimum().y();
maxval = box.maximum().y();
if (center < minval)
dist += (center - minval) * (center - minval);
else if (center > maxval)
dist += (center - maxval) * (center - maxval);
center = m_center.z();
minval = box.minimum().z();
maxval = box.maximum().z();
if (center < minval)
dist += (center - minval) * (center - minval);
else if (center > maxval)
dist += (center - maxval) * (center - maxval);
return dist <= (m_radius * m_radius);
} else {
return box.isInfinite();
}
}
/*!
Returns true if this sphere intersects \a plane; false otherwise.
*/
bool QSphere3D::intersects(const QPlane3D &plane) const
{
return qAbs(plane.distance(m_center)) <= m_radius;
}
/*!
Finds the \a minimum_t and \a maximum_t values where \a ray intersects
this sphere. Returns true if intersections were found; or false if there
is no intersection.
If \a minimum_t and \a maximum_t are set to the same value, then \a ray
touches the surface of the sphere at a single point. If the t values are
negative, then the intersection occurs before the ray's origin point
in the reverse direction of the ray.
The \a minimum_t and \a maximum_t values can be passed to QRay3D::point()
to determine the actual intersection points, as shown in the following
example:
\code
float minimum_t, maximum_t;
if (sphere.intersection(ray, &minimum_t, &maximum_t)) {
qDebug() << "intersections at"
<< ray.point(minimum_t) << "and"
<< ray.point(maximum_t);
}
\endcode
\sa intersects(), QRay3D::point()
*/
bool QSphere3D::intersection(const QRay3D &ray, float *minimum_t, float *maximum_t) const
{
QVector3D centerToOrigin = ray.origin() - m_center;
float term1 = ray.direction().lengthSquared();
float term2 = 2.0f * QVector3D::dotProduct(centerToOrigin, ray.direction());
float term3 = centerToOrigin.lengthSquared() - m_radius * m_radius;
float det = term2 * term2 - (4.0f * term1 * term3);
if (term1 == 0.0f || det < 0.0f) {
*minimum_t = qSNaN();
*maximum_t = qSNaN();
return false;
} else if (det == 0.0f) {
*minimum_t = *maximum_t = -term2 / (2.0f * term1);
} else {
float sqrtDet = sqrtf(det);
float t1 = (-term2 - sqrtDet) / (2.0f * term1);
float t2 = (-term2 + sqrtDet) / (2.0f * term1);
if (t1 < t2) {
*minimum_t = t1;
*maximum_t = t2;
} else {
*minimum_t = t2;
*maximum_t = t1;
}
}
return true;
}
/*!
Returns the t value at which \a ray first intersects the surface of
this sphere, or not-a-number if there is no intersection.
When the \a ray intersects this sphere, the return value is a
parametric value that can be passed to QRay3D::point() to determine
the actual intersection point, as shown in the following example:
\code
float t = sphere.intersection(ray);
QVector3D pt;
if (qIsNaN(t)) {
qWarning("no intersection occurred");
else
pt = ray.point(t);
\endcode
The \a ray might intersect at two points - as the ray passes through
the sphere - one on the near side, one on the far side; where near and far
are relative to the origin point of the ray. This function only
returns the near intersection point.
Only positive values on the ray are considered. This means that if
the origin point of the ray is inside the sphere, there is only one
solution, not two. To get the other solution, simply change
the sign of the ray's direction vector. If the origin point of
the ray is outside the sphere, and the direction points away from
the sphere, then there will be no intersection.
When the ray does not intersect the sphere in the positive direction,
then the return value is not-a-number.
\sa intersects(), QRay3D::point()
*/
float QSphere3D::intersection(const QRay3D &ray) const
{
float minimum_t, maximum_t;
if (intersection(ray, &minimum_t, &maximum_t)) {
if (minimum_t >= 0.0f)
return minimum_t;
else if (maximum_t >= 0.0f)
return maximum_t;
else
return qSNaN();
} else {
return qSNaN();
}
}
/*!
\fn void QSphere3D::transform(const QMatrix4x4 &matrix)
Transforms this sphere's center() and radius() according to \a matrix.
It is assumed that \a matrix contains a uniform scale factor in the
x, y, and z directions. Otherwise the radius() in the result is undefined.
\sa transformed()
*/
/*!
Returns the result of transforming this sphere's center() and radius()
according to \a matrix.
It is assumed that \a matrix contains a uniform scale factor in the
x, y, and z directions. Otherwise the radius() in the result is undefined.
\sa transform()
*/
QSphere3D QSphere3D::transformed(const QMatrix4x4 &matrix) const
{
return QSphere3D(matrix * m_center,
matrix.mapVector(QVector3D(m_radius, 0, 0)).length());
}
/*!
\fn bool QSphere3D::operator==(const QSphere3D &sphere) const
Returns true if this sphere is the same as \a sphere; false otherwise.
\sa operator!=()
*/
/*!
\fn bool QSphere3D::operator!=(const QSphere3D &sphere) const
Returns true if this sphere is not the same as \a sphere; false otherwise.
\sa operator==()
*/
/*!
\fn bool qFuzzyCompare(const QSphere3D &sphere1, const QSphere3D &sphere2)
\relates QSphere3D
Returns true if \a sphere1 and \a sphere2 are almost equal;
false otherwise.
*/
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QSphere3D &sphere)
{
dbg.nospace() << "QSphere3D(center=("
<< sphere.center().x() << ", " << sphere.center().y() << ", "
<< sphere.center().z() << "), radius=" << sphere.radius() << ')';
return dbg.space();
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\relates QSphere3D
Writes the given \a sphere to the given \a stream and returns a
reference to the stream.
*/
QDataStream &operator<<(QDataStream &stream, const QSphere3D &sphere)
{
stream << sphere.center();
stream << double(sphere.radius());
return stream;
}
/*!
\relates QSphere3D
Reads a 3D sphere from the given \a stream into the given \a sphere
and returns a reference to the stream.
*/
QDataStream &operator>>(QDataStream &stream, QSphere3D &sphere)
{
QVector3D center;
double radius;
stream >> center;
stream >> radius;
sphere.setCenter(center);
sphere.setRadius(float(radius));
return stream;
}
#endif
QT_END_NAMESPACE
|