1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
|
#include <qpdf/assert_debug.h>
#include <qpdf/NNTree.hh>
#include <qpdf/QPDFNameTreeObjectHelper.hh>
#include <qpdf/QPDFNumberTreeObjectHelper.hh>
#include <qpdf/QPDFObjectHandle_private.hh>
#include <qpdf/QPDF_private.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Util.hh>
#include <bit>
#include <exception>
#include <utility>
using namespace qpdf;
static std::string
get_description(QPDFObjectHandle const& node)
{
std::string result("Name/Number tree node");
if (node.indirect()) {
result += " (object " + std::to_string(node.getObjectID()) + ")";
}
return result;
}
void
NNTreeImpl::warn(QPDFObjectHandle const& node, std::string const& msg)
{
qpdf.warn(qpdf_e_damaged_pdf, get_description(node), 0, msg);
if (++error_count > 5 && qpdf.doc().reconstructed_xref()) {
error(node, "too many errors - giving up");
}
}
void
NNTreeImpl::error(QPDFObjectHandle const& node, std::string const& msg) const
{
throw QPDFExc(qpdf_e_damaged_pdf, qpdf.getFilename(), get_description(node), 0, msg);
}
void
NNTreeIterator::updateIValue(bool allow_invalid)
{
// ivalue should never be used inside the class since we return a pointer/reference to it. Every
// bit of code that ever changes what object the iterator points to should take care to call
// updateIValue. Failure to do this means that any old references to *iter will point to
// incorrect objects, though the next dereference of the iterator will fix it. This isn't
// necessarily catastrophic, but it would be confusing. The test suite attempts to exercise
// various cases to ensure we don't introduce that bug in the future, but sadly it's tricky to
// verify by reasoning about the code that this constraint is always satisfied. Whenever we
// update what the iterator points to, we should call setItemNumber, which calls this. If we
// change what the iterator points to in some other way, such as replacing a value or removing
// an item and making the iterator point at a different item in potentially the same position,
// we must call updateIValue as well. These cases are handled, and for good measure, we also
// call updateIValue in operator* and operator->.
Array items = node[impl.itemsKey()];
ivalue.first = items[item_number];
ivalue.second = items[item_number + 1];
if (ivalue.second) {
return;
}
if (item_number < 0 || !node) {
util::assertion(
allow_invalid, "attempt made to dereference an invalid name/number tree iterator");
return;
}
impl.error(node, "update ivalue: items array is too short");
}
Dictionary
NNTreeIterator::getNextKid(PathElement& pe, bool backward)
{
while (true) {
pe.kid_number += backward ? -1 : 1;
Dictionary result = pe.node["/Kids"][pe.kid_number];
if (result.contains("/Kids") || result.contains(impl.itemsKey())) {
return result;
}
if (pe.kid_number < 0 || std::cmp_greater_equal(pe.kid_number, pe.node["/Kids"].size())) {
return {};
}
impl.warn(pe.node, "skipping over invalid kid at index " + std::to_string(pe.kid_number));
}
}
void
NNTreeIterator::increment(bool backward)
{
if (item_number < 0) {
deepen(impl.tree_root, !backward, true);
return;
}
while (valid()) {
item_number += backward ? -2 : 2;
Array items = node[impl.itemsKey()];
if (item_number < 0 || std::cmp_greater_equal(item_number, items.size())) {
setItemNumber(QPDFObjectHandle(), -1);
while (!path.empty()) {
auto& element = path.back();
if (auto pe_node = getNextKid(element, backward)) {
if (deepen(pe_node, !backward, false)) {
break;
}
} else {
path.pop_back();
}
}
}
if (item_number >= 0) {
items = node[impl.itemsKey()];
if (std::cmp_greater_equal(item_number + 1, items.size())) {
impl.warn(node, "items array doesn't have enough elements");
} else if (!impl.keyValid(items[item_number])) {
impl.warn(node, ("item " + std::to_string(item_number) + " has the wrong type"));
} else if (!impl.value_valid(items[item_number + 1])) {
impl.warn(node, "item " + std::to_string(item_number + 1) + " is invalid");
} else {
return;
}
}
}
}
void
NNTreeIterator::resetLimits(Dictionary a_node, std::list<PathElement>::iterator parent)
{
while (true) {
if (parent == path.end()) {
a_node.erase("/Limits");
return;
}
QPDFObjectHandle first;
QPDFObjectHandle last;
Array items = a_node[impl.itemsKey()];
size_t nitems = items.size();
if (nitems >= 2) {
first = items[0];
last = items[(nitems - 1u) & ~1u];
} else {
Array kids = a_node["/Kids"];
size_t nkids = kids.size();
if (nkids > 0) {
Array first_limits = kids[0]["/Limits"];
if (first_limits.size() >= 2) {
first = first_limits[0];
last = kids[nkids - 1u]["/Limits"][1];
}
}
}
if (!(first && last)) {
impl.warn(a_node, "unable to determine limits");
} else {
Array olimits = a_node["/Limits"];
if (olimits.size() == 2) {
auto ofirst = olimits[0];
auto olast = olimits[1];
if (impl.keyValid(ofirst) && impl.keyValid(olast) &&
impl.compareKeys(first, ofirst) == 0 && impl.compareKeys(last, olast) == 0) {
return;
}
}
if (a_node != path.begin()->node) {
a_node.replace("/Limits", Array({first, last}));
}
}
if (parent == path.begin()) {
return;
}
a_node = parent->node;
--parent;
}
}
void
NNTreeIterator::split(Dictionary to_split, std::list<PathElement>::iterator parent)
{
// Split some node along the path to the item pointed to by this iterator, and adjust the
// iterator so it points to the same item.
// In examples, for simplicity, /Nums is shown to just contain numbers instead of pairs. Imagine
// this tree:
//
// root: << /Kids [ A B C D ] >>
// A: << /Nums [ 1 2 3 4 ] >>
// B: << /Nums [ 5 6 7 8 ] >>
// C: << /Nums [ 9 10 11 12 ] >>
// D: << /Kids [ E F ]
// E: << /Nums [ 13 14 15 16 ] >>
// F: << /Nums [ 17 18 19 20 ] >>
// iter1 (points to 19)
// path:
// - { node: root: kid_number: 3 }
// - { node: D, kid_number: 1 }
// node: F
// item_number: 2
// iter2 (points to 1)
// path:
// - { node: root, kid_number: 0}
// node: A
// item_number: 0
util::assertion(valid(), "NNTreeIterator::split called an invalid iterator");
// Find the array we actually need to split, which is either this node's kids or items.
Array kids = to_split["/Kids"];
size_t nkids = kids.size();
Array items = to_split[impl.itemsKey()];
size_t nitems = items.size();
Array first_half;
size_t n = 0;
std::string key;
size_t threshold = static_cast<size_t>(impl.split_threshold);
if (nkids > 0) {
first_half = kids;
n = nkids;
key = "/Kids";
} else {
util::assertion(nitems > 0, "NNTreeIterator::split called on invalid node");
first_half = items;
n = nitems;
threshold *= 2;
key = impl.itemsKey();
}
if (n <= threshold) {
return;
}
bool is_root = parent == path.end();
bool is_leaf = nitems > 0;
// CURRENT STATE: tree is in original state; iterator is valid and unchanged.
if (is_root) {
// What we want to do is to create a new node for the second half of the items and put it in
// the parent's /Kids array right after the element that points to the current to_split
// node, but if we're splitting root, there is no parent, so handle that first.
// In the non-root case, parent points to the path element whose /Kids contains the first
// half node, and the first half node is to_split. If we are splitting the root, we need to
// push everything down a level, but we want to keep the actual root object the same so that
// indirect references to it remain intact (and also in case it might be a direct object,
// which it shouldn't be but that case probably exists in the wild). To achieve this, we
// create a new node for the first half and then replace /Kids in the root to contain it.
// Then we adjust the path so that the first element is root and the second element, if any,
// is the new first half. In this way, we make the root case identical to the non-root case
// so remaining logic can handle them in the same way.
Dictionary first_node = impl.qpdf.makeIndirectObject(Dictionary({{key, first_half}}));
auto new_kids = Array::empty();
new_kids.push_back(first_node);
to_split.erase("/Limits"); // already shouldn't be there for root
to_split.erase(impl.itemsKey());
to_split.replace("/Kids", new_kids);
if (is_leaf) {
node = first_node;
} else {
auto next = path.begin();
next->node = first_node;
}
this->path.emplace_front(to_split, 0);
parent = path.begin();
to_split = first_node;
}
// CURRENT STATE: parent is guaranteed to be defined, and we have the invariants that
// parent[/Kids][kid_number] == to_split and (++parent).node == to_split.
// Create a second half array, and transfer the second half of the items into the second half
// array.
auto second_half = Array::empty();
auto start_idx = static_cast<int>((n / 2) & ~1u);
while (std::cmp_greater(first_half.size(), start_idx)) {
second_half.push_back(first_half[start_idx]);
first_half.erase(start_idx);
}
resetLimits(to_split, parent);
// Create a new node to contain the second half
Dictionary second_node = impl.qpdf.makeIndirectObject(Dictionary({{key, second_half}}));
resetLimits(second_node, parent);
// CURRENT STATE: half the items from the kids or items array in the node being split have been
// moved into a new node. The new node is not yet attached to the tree. The iterator may have a
// path element or leaf node that is out of bounds.
// We need to adjust the parent to add the second node to /Kids and, if needed, update
// kid_number to traverse through it. We need to update to_split's path element, or the node if
// this is a leaf, so that the kid/item number points to the right place.
Array parent_kids = parent->node["/Kids"];
if (!parent_kids) {
impl.error(parent->node, "parent node has no /Kids array");
}
parent_kids.insert(parent->kid_number + 1, second_node);
auto cur_elem = parent;
++cur_elem; // points to end() for leaf nodes
int old_idx = (is_leaf ? item_number : cur_elem->kid_number);
if (old_idx >= start_idx) {
++parent->kid_number;
if (is_leaf) {
setItemNumber(second_node, item_number - start_idx);
} else {
cur_elem->node = second_node;
cur_elem->kid_number -= start_idx;
}
}
if (!is_root) {
auto next = parent->node;
resetLimits(next, parent);
--parent;
split(next, parent);
}
}
std::list<NNTreeIterator::PathElement>::iterator
NNTreeIterator::lastPathElement()
{
return path.empty() ? path.end() : std::prev(path.end());
}
void
NNTreeIterator::insertAfter(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
if (!valid()) {
impl.insertFirst(key, value);
deepen(impl.tree_root, true, false);
return;
}
Array items = node[impl.itemsKey()];
if (!items) {
impl.error(node, "node contains no items array");
}
if (std::cmp_less(items.size(), item_number + 2)) {
impl.error(node, "insert: items array is too short");
}
if (!(key && value)) {
impl.error(node, "insert: key or value is null");
}
if (!impl.value_valid(value)) {
impl.error(node, "insert: value is invalid");
}
items.insert(item_number + 2, key);
items.insert(item_number + 3, value);
resetLimits(node, lastPathElement());
split(node, lastPathElement());
increment(false);
}
void
NNTreeIterator::remove()
{
// Remove this item, leaving the tree valid and this iterator pointing to the next item.
util::assertion(valid(), "attempt made to remove an invalid iterator");
Array items = node[impl.itemsKey()];
int nitems = static_cast<int>(items.size());
if (std::cmp_greater(item_number + 2, nitems)) {
impl.error(node, "found short items array while removing an item");
}
items.erase(item_number);
items.erase(item_number);
nitems -= 2;
if (nitems > 0) {
// There are still items left
if (item_number == 0 || item_number == nitems) {
// We removed either the first or last item of an items array that remains non-empty, so
// we have to adjust limits.
resetLimits(node, lastPathElement());
}
if (item_number == nitems) {
// We removed the last item of a non-empty items array, so advance to the successor of
// the previous item.
item_number -= 2;
increment(false);
} else {
util::assertion(
item_number < nitems, "NNTreeIterator::remove: item_number > nitems after erase");
// We don't have to do anything since the removed item's successor now occupies its
// former location.
updateIValue();
}
return;
}
if (path.empty()) {
// Special case: if this is the root node, we can leave it empty.
setItemNumber(impl.tree_root, -1);
return;
}
// We removed the last item from this items array, so we need to remove this node from the
// parent on up the tree. Then we need to position ourselves at the removed item's successor.
while (true) {
auto element = lastPathElement();
auto parent = element;
--parent;
Array kids = element->node["/Kids"];
kids.erase(element->kid_number);
auto nkids = kids.size();
if (nkids > 0) {
// The logic here is similar to the items case.
if (element->kid_number == 0 || std::cmp_equal(element->kid_number, nkids)) {
resetLimits(element->node, parent);
}
if (std::cmp_equal(element->kid_number, nkids)) {
// Move to the successor of the last child of the previous kid.
setItemNumber({}, -1);
--element->kid_number;
deepen(kids[element->kid_number], false, true);
if (valid()) {
increment(false);
QTC::TC("qpdf", "NNTree erased last kid/item in tree", valid() ? 0 : 1);
}
} else {
// Next kid is in deleted kid's position
deepen(kids.get(element->kid_number), true, true);
}
return;
}
if (parent == path.end()) {
// We erased the very last item. Convert the root to an empty items array.
element->node.erase("/Kids");
element->node.replace(impl.itemsKey(), Array::empty());
path.clear();
setItemNumber(impl.tree_root, -1);
return;
}
// Walk up the tree and continue
path.pop_back();
}
}
bool
NNTreeIterator::operator==(NNTreeIterator const& other) const
{
if (item_number == -1 && other.item_number == -1) {
return true;
}
if (path.size() != other.path.size()) {
return false;
}
auto tpi = path.begin();
auto opi = other.path.begin();
while (tpi != path.end()) {
if (tpi->kid_number != opi->kid_number) {
return false;
}
++tpi;
++opi;
}
return item_number == other.item_number;
}
bool
NNTreeIterator::deepen(Dictionary a_node, bool first, bool allow_empty)
{
// Starting at this node, descend through the first or last kid until we reach a node with
// items. If we succeed, return true; otherwise return false and leave path alone.
auto opath = path;
auto fail = [this, &opath](Dictionary const& failed_node, std::string const& msg) {
impl.warn(failed_node, msg);
path = opath;
return false;
};
QPDFObjGen::set seen;
for (auto const& i: path) {
seen.add(i.node);
}
while (true) {
if (!seen.add(a_node)) {
return fail(a_node, "loop detected while traversing name/number tree");
}
if (!a_node) {
return fail(a_node, "non-dictionary node while traversing name/number tree");
}
Array items = a_node[impl.itemsKey()];
int nitems = static_cast<int>(items.size());
if (nitems > 1) {
setItemNumber(a_node, first ? 0 : nitems - 2);
return true;
}
Array kids = a_node["/Kids"];
int nkids = static_cast<int>(kids.size());
if (nkids == 0) {
if (allow_empty && items) {
setItemNumber(a_node, -1);
return true;
}
return fail(
a_node,
"name/number tree node has neither non-empty " + impl.itemsKey() + " nor /Kids");
}
int kid_number = first ? 0 : nkids - 1;
addPathElement(a_node, kid_number);
Dictionary next = kids[kid_number];
if (!next) {
return fail(a_node, "kid number " + std::to_string(kid_number) + " is invalid");
}
if (!next.indirect()) {
if (impl.auto_repair) {
impl.warn(
a_node,
"converting kid number " + std::to_string(kid_number) +
" to an indirect object");
next = impl.qpdf.makeIndirectObject(next);
kids.set(kid_number, next);
} else {
impl.warn(
a_node,
"kid number " + std::to_string(kid_number) + " is not an indirect object");
}
}
a_node = next;
}
}
NNTreeImpl::iterator
NNTreeImpl::begin()
{
iterator result(*this);
result.deepen(tree_root, true, true);
return result;
}
NNTreeImpl::iterator
NNTreeImpl::last()
{
iterator result(*this);
result.deepen(tree_root, false, true);
return result;
}
int
NNTreeImpl::compareKeys(QPDFObjectHandle a, QPDFObjectHandle b) const
{
// We don't call this without calling keyValid first
qpdf_assert_debug(keyValid(a));
qpdf_assert_debug(keyValid(b));
if (key_type == ::ot_string) {
auto as = a.getUTF8Value();
auto bs = b.getUTF8Value();
return as < bs ? -1 : (as > bs ? 1 : 0);
}
auto as = a.getIntValue();
auto bs = b.getIntValue();
return as < bs ? -1 : (as > bs ? 1 : 0);
}
int
NNTreeImpl::binarySearch(
QPDFObjectHandle const& key,
Array const& items,
size_t num_items,
bool return_prev_if_not_found,
bool search_kids) const
{
size_t max_idx = std::bit_ceil(num_items);
int step = static_cast<int>(max_idx / 2);
int checks = static_cast<int>(std::bit_width(max_idx)); // AppImage gcc version returns size_t
int idx = step;
int found_idx = -1;
for (int i = 0; i < checks; ++i) {
int status = -1;
if (std::cmp_less(idx, num_items)) {
status = search_kids ? compareKeyKid(key, items, idx) : compareKeyItem(key, items, idx);
if (status == 0) {
return idx;
}
if (status > 0) {
found_idx = idx;
}
}
step = std::max(step / 2, 1);
idx += status * step;
}
return return_prev_if_not_found ? found_idx : -1;
}
int
NNTreeImpl::compareKeyItem(QPDFObjectHandle const& key, Array const& items, int idx) const
{
if (!keyValid(items[2 * idx])) {
error(tree_root, ("item at index " + std::to_string(2 * idx) + " is not the right type"));
}
return compareKeys(key, items[2 * idx]);
}
int
NNTreeImpl::compareKeyKid(QPDFObjectHandle const& key, Array const& kids, int idx) const
{
Dictionary kid = kids[idx];
if (!kid) {
error(tree_root, "invalid kid at index " + std::to_string(idx));
}
Array limits = kid["/Limits"];
if (!(keyValid(limits[0]) && keyValid(limits[1]))) {
error(kids[idx], "node is missing /Limits");
}
if (compareKeys(key, limits[0]) < 0) {
return -1;
}
if (compareKeys(key, limits[1]) > 0) {
return 1;
}
return 0;
}
namespace
{
struct Cmp
{
bool
operator()(const QPDFObjectHandle& lhs, const QPDFObjectHandle& rhs) const
{
Integer l = lhs;
Integer r = rhs;
if (l && r) {
return l.value() < r.value();
}
return lhs.getUTF8Value() < rhs.getUTF8Value();
}
};
} // namespace
void
NNTreeImpl::repair()
{
auto new_node = Dictionary({{itemsKey(), Array::empty()}});
NNTreeImpl repl(qpdf, new_node, key_type, value_valid, false);
std::map<QPDFObjectHandle, QPDFObjectHandle, Cmp> items;
for (auto const& [key, value]: *this) {
if (key && value && repl.keyValid(key) && repl.value_valid(value)) {
items.insert_or_assign(key, value);
}
}
for (auto const& [key, value]: items) {
repl.insert(key, value);
}
tree_root.replace("/Kids", new_node["/Kids"]);
tree_root.replace(itemsKey(), new_node[itemsKey()]);
}
NNTreeImpl::iterator
NNTreeImpl::find(QPDFObjectHandle const& key, bool return_prev_if_not_found)
{
try {
return findInternal(key, return_prev_if_not_found);
} catch (QPDFExc& e) {
if (auto_repair) {
warn(tree_root, std::string("attempting to repair after error: ") + e.what());
repair();
return findInternal(key, return_prev_if_not_found);
} else {
throw;
}
}
}
NNTreeImpl::iterator
NNTreeImpl::findInternal(QPDFObjectHandle const& key, bool return_prev_if_not_found)
{
auto first_item = begin();
if (!first_item.valid()) {
return end();
}
if (!keyValid(first_item->first)) {
error(tree_root, "encountered invalid key in find");
}
if (!value_valid(first_item->second)) {
error(tree_root, "encountered invalid value in find");
}
if (compareKeys(key, first_item->first) < 0) {
// Before the first key
return end();
}
QPDFObjGen::set seen;
auto node = tree_root;
iterator result(*this);
while (true) {
if (!seen.add(node)) {
error(node, "loop detected in find");
}
Array items = node[itemsKey()];
size_t nitems = items.size();
if (nitems > 1) {
int idx = binarySearch(key, items, nitems / 2, return_prev_if_not_found, false);
if (idx >= 0) {
result.setItemNumber(node, 2 * idx);
if (!result.impl.keyValid(result.ivalue.first)) {
error(node, "encountered invalid key in find");
}
if (!result.impl.value_valid(result.ivalue.second)) {
error(tree_root, "encountered invalid value in find");
}
}
return result;
}
Array kids = node["/Kids"];
size_t nkids = kids.size();
if (nkids == 0) {
error(node, "bad node during find");
}
int idx = binarySearch(key, kids, nkids, true, true);
if (idx == -1) {
error(node, "unexpected -1 from binary search of kids; limits may by wrong");
}
result.addPathElement(node, idx);
node = kids[idx];
}
}
NNTreeImpl::iterator
NNTreeImpl::insertFirst(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
auto iter = begin();
Array items = iter.node[items_key];
if (!items) {
error(tree_root, "unable to find a valid items node");
}
if (!(key && value)) {
error(tree_root, "unable to insert null key or value");
}
if (!value_valid(value)) {
error(tree_root, "attempting to insert an invalid value");
}
items.insert(0, key);
items.insert(1, value);
iter.setItemNumber(iter.node, 0);
iter.resetLimits(iter.node, iter.lastPathElement());
iter.split(iter.node, iter.lastPathElement());
return iter;
}
NNTreeImpl::iterator
NNTreeImpl::insert(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
auto iter = find(key, true);
if (!iter.valid()) {
return insertFirst(key, value);
} else if (compareKeys(key, iter->first) == 0) {
Array items = iter.node[itemsKey()];
items.set(iter.item_number + 1, value);
iter.updateIValue();
} else {
iter.insertAfter(key, value);
}
return iter;
}
bool
NNTreeImpl::remove(QPDFObjectHandle const& key, QPDFObjectHandle* value)
{
auto iter = find(key, false);
if (!iter.valid()) {
return false;
}
if (value) {
*value = iter->second;
}
iter.remove();
return true;
}
bool
NNTreeImpl::validate(bool a_repair)
{
bool first = true;
QPDFObjectHandle last_key;
try {
for (auto const& [key, value]: *this) {
if (!keyValid(key)) {
error(tree_root, "invalid key in validate");
}
if (!value_valid(value)) {
error(tree_root, "invalid value in validate");
}
if (first) {
first = false;
} else if (last_key && compareKeys(last_key, key) != -1) {
error(tree_root, "keys are not sorted in validate");
}
last_key = key;
}
} catch (QPDFExc& e) {
if (a_repair) {
warn(tree_root, std::string("attempting to repair after error: ") + e.what());
repair();
}
return false;
}
return true;
}
class QPDFNameTreeObjectHelper::Members
{
public:
Members(
QPDFObjectHandle& oh,
QPDF& q,
std::function<bool(QPDFObjectHandle const&)> value_validator,
bool auto_repair) :
impl(q, oh, ::ot_string, value_validator, auto_repair)
{
}
Members(Members const&) = delete;
~Members() = default;
NNTreeImpl impl;
};
// Must be explicit and not inline -- see QPDF_DLL_CLASS in README-maintainer. For this specific
// class, see github issue #745.
QPDFNameTreeObjectHelper::~QPDFNameTreeObjectHelper() = default;
QPDFNameTreeObjectHelper::QPDFNameTreeObjectHelper(QPDFObjectHandle oh, QPDF& q, bool auto_repair) :
QPDFNameTreeObjectHelper(
oh, q, [](QPDFObjectHandle const& o) -> bool { return static_cast<bool>(o); }, auto_repair)
{
}
QPDFNameTreeObjectHelper::QPDFNameTreeObjectHelper(
QPDFObjectHandle oh,
QPDF& q,
std::function<bool(QPDFObjectHandle const&)> value_validator,
bool auto_repair) :
QPDFObjectHelper(oh),
m(std::make_shared<Members>(oh, q, value_validator, auto_repair))
{
}
QPDFNameTreeObjectHelper
QPDFNameTreeObjectHelper::newEmpty(QPDF& qpdf, bool auto_repair)
{
return {qpdf.makeIndirectObject(Dictionary({{"/Names", Array::empty()}})), qpdf, auto_repair};
}
QPDFNameTreeObjectHelper::iterator::iterator(std::shared_ptr<NNTreeIterator> const& i) :
impl(i)
{
}
bool
QPDFNameTreeObjectHelper::iterator::valid() const
{
return impl->valid();
}
QPDFNameTreeObjectHelper::iterator&
QPDFNameTreeObjectHelper::iterator::operator++()
{
++(*impl);
updateIValue();
return *this;
}
QPDFNameTreeObjectHelper::iterator&
QPDFNameTreeObjectHelper::iterator::operator--()
{
--(*impl);
updateIValue();
return *this;
}
void
QPDFNameTreeObjectHelper::iterator::updateIValue()
{
if (impl->valid()) {
auto p = *impl;
ivalue.first = p->first.getUTF8Value();
ivalue.second = p->second;
} else {
ivalue.first = "";
ivalue.second = QPDFObjectHandle();
}
}
QPDFNameTreeObjectHelper::iterator::reference
QPDFNameTreeObjectHelper::iterator::operator*()
{
updateIValue();
return ivalue;
}
QPDFNameTreeObjectHelper::iterator::pointer
QPDFNameTreeObjectHelper::iterator::operator->()
{
updateIValue();
return &ivalue;
}
bool
QPDFNameTreeObjectHelper::iterator::operator==(iterator const& other) const
{
return *(impl) == *(other.impl);
}
void
QPDFNameTreeObjectHelper::iterator::insertAfter(std::string const& key, QPDFObjectHandle value)
{
impl->insertAfter(QPDFObjectHandle::newUnicodeString(key), value);
updateIValue();
}
void
QPDFNameTreeObjectHelper::iterator::remove()
{
impl->remove();
updateIValue();
}
QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::begin() const
{
return {std::make_shared<NNTreeIterator>(m->impl.begin())};
}
QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::end() const
{
return {std::make_shared<NNTreeIterator>(m->impl.end())};
}
QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::last() const
{
return {std::make_shared<NNTreeIterator>(m->impl.last())};
}
QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::find(std::string const& key, bool return_prev_if_not_found)
{
auto i = m->impl.find(QPDFObjectHandle::newUnicodeString(key), return_prev_if_not_found);
return {std::make_shared<NNTreeIterator>(i)};
}
QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::insert(std::string const& key, QPDFObjectHandle value)
{
auto i = m->impl.insert(QPDFObjectHandle::newUnicodeString(key), value);
return {std::make_shared<NNTreeIterator>(i)};
}
bool
QPDFNameTreeObjectHelper::remove(std::string const& key, QPDFObjectHandle* value)
{
return m->impl.remove(QPDFObjectHandle::newUnicodeString(key), value);
}
bool
QPDFNameTreeObjectHelper::hasName(std::string const& name)
{
auto i = find(name);
return (i != end());
}
bool
QPDFNameTreeObjectHelper::findObject(std::string const& name, QPDFObjectHandle& oh)
{
auto i = find(name);
if (i == end()) {
return false;
}
oh = i->second;
return true;
}
void
QPDFNameTreeObjectHelper::setSplitThreshold(int t)
{
m->impl.setSplitThreshold(t);
}
std::map<std::string, QPDFObjectHandle>
QPDFNameTreeObjectHelper::getAsMap() const
{
std::map<std::string, QPDFObjectHandle> result;
result.insert(begin(), end());
return result;
}
bool
QPDFNameTreeObjectHelper::validate(bool repair)
{
return m->impl.validate(repair);
}
class QPDFNumberTreeObjectHelper::Members
{
typedef QPDFNumberTreeObjectHelper::numtree_number numtree_number;
public:
Members(
QPDFObjectHandle& oh,
QPDF& q,
std::function<bool(QPDFObjectHandle const&)> value_validator,
bool auto_repair) :
impl(q, oh, ::ot_integer, value_validator, auto_repair)
{
}
Members(Members const&) = delete;
~Members() = default;
NNTreeImpl impl;
};
// Must be explicit and not inline -- see QPDF_DLL_CLASS in README-maintainer. For this specific
// class, see github issue #745.
QPDFNumberTreeObjectHelper::~QPDFNumberTreeObjectHelper() = default;
QPDFNumberTreeObjectHelper::QPDFNumberTreeObjectHelper(
QPDFObjectHandle oh, QPDF& q, bool auto_repair) :
QPDFNumberTreeObjectHelper(
oh, q, [](QPDFObjectHandle const& o) -> bool { return static_cast<bool>(o); }, auto_repair)
{
}
QPDFNumberTreeObjectHelper::QPDFNumberTreeObjectHelper(
QPDFObjectHandle oh,
QPDF& q,
std::function<bool(QPDFObjectHandle const&)> value_validator,
bool auto_repair) :
QPDFObjectHelper(oh),
m(std::make_shared<Members>(oh, q, value_validator, auto_repair))
{
}
QPDFNumberTreeObjectHelper
QPDFNumberTreeObjectHelper::newEmpty(QPDF& qpdf, bool auto_repair)
{
return {qpdf.makeIndirectObject(Dictionary({{"/Nums", Array::empty()}})), qpdf, auto_repair};
}
QPDFNumberTreeObjectHelper::iterator::iterator(std::shared_ptr<NNTreeIterator> const& i) :
impl(i)
{
}
bool
QPDFNumberTreeObjectHelper::iterator::valid() const
{
return impl->valid();
}
QPDFNumberTreeObjectHelper::iterator&
QPDFNumberTreeObjectHelper::iterator::operator++()
{
++(*impl);
updateIValue();
return *this;
}
QPDFNumberTreeObjectHelper::iterator&
QPDFNumberTreeObjectHelper::iterator::operator--()
{
--(*impl);
updateIValue();
return *this;
}
void
QPDFNumberTreeObjectHelper::iterator::updateIValue()
{
if (impl->valid()) {
auto p = *impl;
this->ivalue.first = p->first.getIntValue();
this->ivalue.second = p->second;
} else {
this->ivalue.first = 0;
this->ivalue.second = QPDFObjectHandle();
}
}
QPDFNumberTreeObjectHelper::iterator::reference
QPDFNumberTreeObjectHelper::iterator::operator*()
{
updateIValue();
return this->ivalue;
}
QPDFNumberTreeObjectHelper::iterator::pointer
QPDFNumberTreeObjectHelper::iterator::operator->()
{
updateIValue();
return &this->ivalue;
}
bool
QPDFNumberTreeObjectHelper::iterator::operator==(iterator const& other) const
{
return *(impl) == *(other.impl);
}
void
QPDFNumberTreeObjectHelper::iterator::insertAfter(numtree_number key, QPDFObjectHandle value)
{
impl->insertAfter(QPDFObjectHandle::newInteger(key), value);
updateIValue();
}
void
QPDFNumberTreeObjectHelper::iterator::remove()
{
impl->remove();
updateIValue();
}
QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::begin() const
{
return {std::make_shared<NNTreeIterator>(m->impl.begin())};
}
QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::end() const
{
return {std::make_shared<NNTreeIterator>(m->impl.end())};
}
QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::last() const
{
return {std::make_shared<NNTreeIterator>(m->impl.last())};
}
QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::find(numtree_number key, bool return_prev_if_not_found)
{
auto i = m->impl.find(QPDFObjectHandle::newInteger(key), return_prev_if_not_found);
return {std::make_shared<NNTreeIterator>(i)};
}
QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::insert(numtree_number key, QPDFObjectHandle value)
{
auto i = m->impl.insert(QPDFObjectHandle::newInteger(key), value);
return {std::make_shared<NNTreeIterator>(i)};
}
bool
QPDFNumberTreeObjectHelper::remove(numtree_number key, QPDFObjectHandle* value)
{
return m->impl.remove(QPDFObjectHandle::newInteger(key), value);
}
QPDFNumberTreeObjectHelper::numtree_number
QPDFNumberTreeObjectHelper::getMin()
{
auto i = begin();
if (i == end()) {
return 0;
}
return i->first;
}
QPDFNumberTreeObjectHelper::numtree_number
QPDFNumberTreeObjectHelper::getMax()
{
auto i = last();
if (i == end()) {
return 0;
}
return i->first;
}
bool
QPDFNumberTreeObjectHelper::hasIndex(numtree_number idx)
{
auto i = find(idx);
return (i != this->end());
}
bool
QPDFNumberTreeObjectHelper::findObject(numtree_number idx, QPDFObjectHandle& oh)
{
auto i = find(idx);
if (i == end()) {
return false;
}
oh = i->second;
return true;
}
bool
QPDFNumberTreeObjectHelper::findObjectAtOrBelow(
numtree_number idx, QPDFObjectHandle& oh, numtree_number& offset)
{
auto i = find(idx, true);
if (i == end()) {
return false;
}
oh = i->second;
QIntC::range_check_subtract(idx, i->first);
offset = idx - i->first;
return true;
}
void
QPDFNumberTreeObjectHelper::setSplitThreshold(int t)
{
m->impl.setSplitThreshold(t);
}
std::map<QPDFNumberTreeObjectHelper::numtree_number, QPDFObjectHandle>
QPDFNumberTreeObjectHelper::getAsMap() const
{
std::map<numtree_number, QPDFObjectHandle> result;
result.insert(begin(), end());
return result;
}
bool
QPDFNumberTreeObjectHelper::validate(bool repair)
{
return m->impl.validate(repair);
}
|