File: NNTree.cc

package info (click to toggle)
qpdf 12.3.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 72,660 kB
  • sloc: cpp: 59,054; perl: 12,189; ansic: 6,809; sh: 1,231; python: 1,041; xml: 43; makefile: 42
file content (1249 lines) | stat: -rw-r--r-- 36,819 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
#include <qpdf/assert_debug.h>

#include <qpdf/NNTree.hh>

#include <qpdf/QPDFNameTreeObjectHelper.hh>
#include <qpdf/QPDFNumberTreeObjectHelper.hh>

#include <qpdf/QPDFObjectHandle_private.hh>
#include <qpdf/QPDF_private.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Util.hh>

#include <bit>
#include <exception>
#include <utility>

using namespace qpdf;

static std::string
get_description(QPDFObjectHandle const& node)
{
    std::string result("Name/Number tree node");
    if (node.indirect()) {
        result += " (object " + std::to_string(node.getObjectID()) + ")";
    }
    return result;
}

void
NNTreeImpl::warn(QPDFObjectHandle const& node, std::string const& msg)
{
    qpdf.warn(qpdf_e_damaged_pdf, get_description(node), 0, msg);
    if (++error_count > 5 && qpdf.doc().reconstructed_xref()) {
        error(node, "too many errors - giving up");
    }
}

void
NNTreeImpl::error(QPDFObjectHandle const& node, std::string const& msg) const
{
    throw QPDFExc(qpdf_e_damaged_pdf, qpdf.getFilename(), get_description(node), 0, msg);
}

void
NNTreeIterator::updateIValue(bool allow_invalid)
{
    // ivalue should never be used inside the class since we return a pointer/reference to it. Every
    // bit of code that ever changes what object the iterator points to should take care to call
    // updateIValue. Failure to do this means that any old references to *iter will point to
    // incorrect objects, though the next dereference of the iterator will fix it. This isn't
    // necessarily catastrophic, but it would be confusing. The test suite attempts to exercise
    // various cases to ensure we don't introduce that bug in the future, but sadly it's tricky to
    // verify by reasoning about the code that this constraint is always satisfied. Whenever we
    // update what the iterator points to, we should call setItemNumber, which calls this. If we
    // change what the iterator points to in some other way, such as replacing a value or removing
    // an item and making the iterator point at a different item in potentially the same position,
    // we must call updateIValue as well. These cases are handled, and for good measure, we also
    // call updateIValue in operator* and operator->.

    Array items = node[impl.itemsKey()];
    ivalue.first = items[item_number];
    ivalue.second = items[item_number + 1];
    if (ivalue.second) {
        return;
    }

    if (item_number < 0 || !node) {
        util::assertion(
            allow_invalid, "attempt made to dereference an invalid name/number tree iterator");
        return;
    }
    impl.error(node, "update ivalue: items array is too short");
}

Dictionary
NNTreeIterator::getNextKid(PathElement& pe, bool backward)
{
    while (true) {
        pe.kid_number += backward ? -1 : 1;
        Dictionary result = pe.node["/Kids"][pe.kid_number];
        if (result.contains("/Kids") || result.contains(impl.itemsKey())) {
            return result;
        }
        if (pe.kid_number < 0 || std::cmp_greater_equal(pe.kid_number, pe.node["/Kids"].size())) {
            return {};
        }
        impl.warn(pe.node, "skipping over invalid kid at index " + std::to_string(pe.kid_number));
    }
}
void
NNTreeIterator::increment(bool backward)
{
    if (item_number < 0) {
        deepen(impl.tree_root, !backward, true);
        return;
    }

    while (valid()) {
        item_number += backward ? -2 : 2;
        Array items = node[impl.itemsKey()];
        if (item_number < 0 || std::cmp_greater_equal(item_number, items.size())) {
            setItemNumber(QPDFObjectHandle(), -1);
            while (!path.empty()) {
                auto& element = path.back();
                if (auto pe_node = getNextKid(element, backward)) {
                    if (deepen(pe_node, !backward, false)) {
                        break;
                    }
                } else {
                    path.pop_back();
                }
            }
        }
        if (item_number >= 0) {
            items = node[impl.itemsKey()];
            if (std::cmp_greater_equal(item_number + 1, items.size())) {
                impl.warn(node, "items array doesn't have enough elements");
            } else if (!impl.keyValid(items[item_number])) {
                impl.warn(node, ("item " + std::to_string(item_number) + " has the wrong type"));
            } else if (!impl.value_valid(items[item_number + 1])) {
                impl.warn(node, "item " + std::to_string(item_number + 1) + " is invalid");
            } else {
                return;
            }
        }
    }
}

void
NNTreeIterator::resetLimits(Dictionary a_node, std::list<PathElement>::iterator parent)
{
    while (true) {
        if (parent == path.end()) {
            a_node.erase("/Limits");
            return;
        }

        QPDFObjectHandle first;
        QPDFObjectHandle last;
        Array items = a_node[impl.itemsKey()];
        size_t nitems = items.size();
        if (nitems >= 2) {
            first = items[0];
            last = items[(nitems - 1u) & ~1u];
        } else {
            Array kids = a_node["/Kids"];
            size_t nkids = kids.size();
            if (nkids > 0) {
                Array first_limits = kids[0]["/Limits"];
                if (first_limits.size() >= 2) {
                    first = first_limits[0];
                    last = kids[nkids - 1u]["/Limits"][1];
                }
            }
        }
        if (!(first && last)) {
            impl.warn(a_node, "unable to determine limits");
        } else {
            Array olimits = a_node["/Limits"];
            if (olimits.size() == 2) {
                auto ofirst = olimits[0];
                auto olast = olimits[1];
                if (impl.keyValid(ofirst) && impl.keyValid(olast) &&
                    impl.compareKeys(first, ofirst) == 0 && impl.compareKeys(last, olast) == 0) {
                    return;
                }
            }
            if (a_node != path.begin()->node) {
                a_node.replace("/Limits", Array({first, last}));
            }
        }

        if (parent == path.begin()) {
            return;
        }
        a_node = parent->node;
        --parent;
    }
}

void
NNTreeIterator::split(Dictionary to_split, std::list<PathElement>::iterator parent)
{
    // Split some node along the path to the item pointed to by this iterator, and adjust the
    // iterator so it points to the same item.

    // In examples, for simplicity, /Nums is shown to just contain numbers instead of pairs. Imagine
    // this tree:
    //
    // root: << /Kids [ A B C D ] >>
    // A: << /Nums [ 1 2 3 4 ] >>
    // B: << /Nums [ 5 6 7 8 ] >>
    // C: << /Nums [ 9 10 11 12 ] >>
    // D: << /Kids [ E F ]
    // E: << /Nums [ 13 14 15 16 ] >>
    // F: << /Nums [ 17 18 19 20 ] >>

    // iter1 (points to 19)
    //   path:
    //   - { node: root: kid_number: 3 }
    //   - { node: D, kid_number: 1 }
    //   node: F
    //   item_number: 2

    // iter2 (points to 1)
    //   path:
    //   - { node: root, kid_number: 0}
    //   node: A
    //   item_number: 0

    util::assertion(valid(), "NNTreeIterator::split called an invalid iterator");

    // Find the array we actually need to split, which is either this node's kids or items.
    Array kids = to_split["/Kids"];
    size_t nkids = kids.size();
    Array items = to_split[impl.itemsKey()];
    size_t nitems = items.size();

    Array first_half;
    size_t n = 0;
    std::string key;
    size_t threshold = static_cast<size_t>(impl.split_threshold);
    if (nkids > 0) {
        first_half = kids;
        n = nkids;
        key = "/Kids";
    } else {
        util::assertion(nitems > 0, "NNTreeIterator::split called on invalid node");
        first_half = items;
        n = nitems;
        threshold *= 2;
        key = impl.itemsKey();
    }

    if (n <= threshold) {
        return;
    }

    bool is_root = parent == path.end();
    bool is_leaf = nitems > 0;

    // CURRENT STATE: tree is in original state; iterator is valid and unchanged.

    if (is_root) {
        // What we want to do is to create a new node for the second half of the items and put it in
        // the parent's /Kids array right after the element that points to the current to_split
        // node, but if we're splitting root, there is no parent, so handle that first.

        // In the non-root case, parent points to the path element whose /Kids contains the first
        // half node, and the first half node is to_split. If we are splitting the root, we need to
        // push everything down a level, but we want to keep the actual root object the same so that
        // indirect references to it remain intact (and also in case it might be a direct object,
        // which it shouldn't be but that case probably exists in the wild). To achieve this, we
        // create a new node for the first half and then replace /Kids in the root to contain it.
        // Then we adjust the path so that the first element is root and the second element, if any,
        // is the new first half. In this way, we make the root case identical to the non-root case
        // so remaining logic can handle them in the same way.

        Dictionary first_node = impl.qpdf.makeIndirectObject(Dictionary({{key, first_half}}));
        auto new_kids = Array::empty();
        new_kids.push_back(first_node);
        to_split.erase("/Limits"); // already shouldn't be there for root
        to_split.erase(impl.itemsKey());
        to_split.replace("/Kids", new_kids);
        if (is_leaf) {
            node = first_node;
        } else {
            auto next = path.begin();
            next->node = first_node;
        }
        this->path.emplace_front(to_split, 0);
        parent = path.begin();
        to_split = first_node;
    }

    // CURRENT STATE: parent is guaranteed to be defined, and we have the invariants that
    // parent[/Kids][kid_number] == to_split and (++parent).node == to_split.

    // Create a second half array, and transfer the second half of the items into the second half
    // array.
    auto second_half = Array::empty();
    auto start_idx = static_cast<int>((n / 2) & ~1u);
    while (std::cmp_greater(first_half.size(), start_idx)) {
        second_half.push_back(first_half[start_idx]);
        first_half.erase(start_idx);
    }
    resetLimits(to_split, parent);

    // Create a new node to contain the second half
    Dictionary second_node = impl.qpdf.makeIndirectObject(Dictionary({{key, second_half}}));
    resetLimits(second_node, parent);

    // CURRENT STATE: half the items from the kids or items array in the node being split have been
    // moved into a new node. The new node is not yet attached to the tree. The iterator may have a
    // path element or leaf node that is out of bounds.

    // We need to adjust the parent to add the second node to /Kids and, if needed, update
    // kid_number to traverse through it. We need to update to_split's path element, or the node if
    // this is a leaf, so that the kid/item number points to the right place.

    Array parent_kids = parent->node["/Kids"];
    if (!parent_kids) {
        impl.error(parent->node, "parent node has no /Kids array");
    }
    parent_kids.insert(parent->kid_number + 1, second_node);
    auto cur_elem = parent;
    ++cur_elem; // points to end() for leaf nodes
    int old_idx = (is_leaf ? item_number : cur_elem->kid_number);
    if (old_idx >= start_idx) {
        ++parent->kid_number;
        if (is_leaf) {
            setItemNumber(second_node, item_number - start_idx);
        } else {
            cur_elem->node = second_node;
            cur_elem->kid_number -= start_idx;
        }
    }
    if (!is_root) {
        auto next = parent->node;
        resetLimits(next, parent);
        --parent;
        split(next, parent);
    }
}

std::list<NNTreeIterator::PathElement>::iterator
NNTreeIterator::lastPathElement()
{
    return path.empty() ? path.end() : std::prev(path.end());
}

void
NNTreeIterator::insertAfter(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
    if (!valid()) {
        impl.insertFirst(key, value);
        deepen(impl.tree_root, true, false);
        return;
    }

    Array items = node[impl.itemsKey()];
    if (!items) {
        impl.error(node, "node contains no items array");
    }

    if (std::cmp_less(items.size(), item_number + 2)) {
        impl.error(node, "insert: items array is too short");
    }
    if (!(key && value)) {
        impl.error(node, "insert: key or value is null");
    }
    if (!impl.value_valid(value)) {
        impl.error(node, "insert: value is invalid");
    }
    items.insert(item_number + 2, key);
    items.insert(item_number + 3, value);
    resetLimits(node, lastPathElement());
    split(node, lastPathElement());
    increment(false);
}

void
NNTreeIterator::remove()
{
    // Remove this item, leaving the tree valid and this iterator pointing to the next item.

    util::assertion(valid(), "attempt made to remove an invalid iterator");
    Array items = node[impl.itemsKey()];
    int nitems = static_cast<int>(items.size());
    if (std::cmp_greater(item_number + 2, nitems)) {
        impl.error(node, "found short items array while removing an item");
    }

    items.erase(item_number);
    items.erase(item_number);
    nitems -= 2;

    if (nitems > 0) {
        // There are still items left

        if (item_number == 0 || item_number == nitems) {
            // We removed either the first or last item of an items array that remains non-empty, so
            // we have to adjust limits.
            resetLimits(node, lastPathElement());
        }

        if (item_number == nitems) {
            // We removed the last item of a non-empty items array, so advance to the successor of
            // the previous item.
            item_number -= 2;
            increment(false);
        } else {
            util::assertion(
                item_number < nitems, "NNTreeIterator::remove: item_number > nitems after erase");
            // We don't have to do anything since the removed item's successor now occupies its
            // former location.
            updateIValue();
        }
        return;
    }

    if (path.empty()) {
        // Special case: if this is the root node, we can leave it empty.
        setItemNumber(impl.tree_root, -1);
        return;
    }

    // We removed the last item from this items array, so we need to remove this node from the
    // parent on up the tree. Then we need to position ourselves at the removed item's successor.
    while (true) {
        auto element = lastPathElement();
        auto parent = element;
        --parent;
        Array kids = element->node["/Kids"];
        kids.erase(element->kid_number);
        auto nkids = kids.size();
        if (nkids > 0) {
            // The logic here is similar to the items case.
            if (element->kid_number == 0 || std::cmp_equal(element->kid_number, nkids)) {
                resetLimits(element->node, parent);
            }
            if (std::cmp_equal(element->kid_number, nkids)) {
                // Move to the successor of the last child of the previous kid.
                setItemNumber({}, -1);
                --element->kid_number;
                deepen(kids[element->kid_number], false, true);
                if (valid()) {
                    increment(false);
                    QTC::TC("qpdf", "NNTree erased last kid/item in tree", valid() ? 0 : 1);
                }
            } else {
                // Next kid is in deleted kid's position
                deepen(kids.get(element->kid_number), true, true);
            }
            return;
        }

        if (parent == path.end()) {
            // We erased the very last item. Convert the root to an empty items array.
            element->node.erase("/Kids");
            element->node.replace(impl.itemsKey(), Array::empty());
            path.clear();
            setItemNumber(impl.tree_root, -1);
            return;
        }

        // Walk up the tree and continue
        path.pop_back();
    }
}

bool
NNTreeIterator::operator==(NNTreeIterator const& other) const
{
    if (item_number == -1 && other.item_number == -1) {
        return true;
    }
    if (path.size() != other.path.size()) {
        return false;
    }
    auto tpi = path.begin();
    auto opi = other.path.begin();
    while (tpi != path.end()) {
        if (tpi->kid_number != opi->kid_number) {
            return false;
        }
        ++tpi;
        ++opi;
    }
    return item_number == other.item_number;
}

bool
NNTreeIterator::deepen(Dictionary a_node, bool first, bool allow_empty)
{
    // Starting at this node, descend through the first or last kid until we reach a node with
    // items. If we succeed, return true; otherwise return false and leave path alone.

    auto opath = path;

    auto fail = [this, &opath](Dictionary const& failed_node, std::string const& msg) {
        impl.warn(failed_node, msg);
        path = opath;
        return false;
    };

    QPDFObjGen::set seen;
    for (auto const& i: path) {
        seen.add(i.node);
    }
    while (true) {
        if (!seen.add(a_node)) {
            return fail(a_node, "loop detected while traversing name/number tree");
        }

        if (!a_node) {
            return fail(a_node, "non-dictionary node while traversing name/number tree");
        }

        Array items = a_node[impl.itemsKey()];
        int nitems = static_cast<int>(items.size());
        if (nitems > 1) {
            setItemNumber(a_node, first ? 0 : nitems - 2);
            return true;
        }

        Array kids = a_node["/Kids"];
        int nkids = static_cast<int>(kids.size());
        if (nkids == 0) {
            if (allow_empty && items) {
                setItemNumber(a_node, -1);
                return true;
            }
            return fail(
                a_node,
                "name/number tree node has neither non-empty " + impl.itemsKey() + " nor /Kids");
        }

        int kid_number = first ? 0 : nkids - 1;
        addPathElement(a_node, kid_number);
        Dictionary next = kids[kid_number];
        if (!next) {
            return fail(a_node, "kid number " + std::to_string(kid_number) + " is invalid");
        }
        if (!next.indirect()) {
            if (impl.auto_repair) {
                impl.warn(
                    a_node,
                    "converting kid number " + std::to_string(kid_number) +
                        " to an indirect object");
                next = impl.qpdf.makeIndirectObject(next);
                kids.set(kid_number, next);
            } else {
                impl.warn(
                    a_node,
                    "kid number " + std::to_string(kid_number) + " is not an indirect object");
            }
        }

        a_node = next;
    }
}

NNTreeImpl::iterator
NNTreeImpl::begin()
{
    iterator result(*this);
    result.deepen(tree_root, true, true);
    return result;
}

NNTreeImpl::iterator
NNTreeImpl::last()
{
    iterator result(*this);
    result.deepen(tree_root, false, true);
    return result;
}

int
NNTreeImpl::compareKeys(QPDFObjectHandle a, QPDFObjectHandle b) const
{
    // We don't call this without calling keyValid first
    qpdf_assert_debug(keyValid(a));
    qpdf_assert_debug(keyValid(b));
    if (key_type == ::ot_string) {
        auto as = a.getUTF8Value();
        auto bs = b.getUTF8Value();
        return as < bs ? -1 : (as > bs ? 1 : 0);
    }
    auto as = a.getIntValue();
    auto bs = b.getIntValue();
    return as < bs ? -1 : (as > bs ? 1 : 0);
}

int
NNTreeImpl::binarySearch(
    QPDFObjectHandle const& key,
    Array const& items,
    size_t num_items,
    bool return_prev_if_not_found,
    bool search_kids) const
{
    size_t max_idx = std::bit_ceil(num_items);

    int step = static_cast<int>(max_idx / 2);
    int checks = static_cast<int>(std::bit_width(max_idx)); // AppImage gcc version returns size_t
    int idx = step;
    int found_idx = -1;

    for (int i = 0; i < checks; ++i) {
        int status = -1;
        if (std::cmp_less(idx, num_items)) {
            status = search_kids ? compareKeyKid(key, items, idx) : compareKeyItem(key, items, idx);
            if (status == 0) {
                return idx;
            }
            if (status > 0) {
                found_idx = idx;
            }
        }
        step = std::max(step / 2, 1);
        idx += status * step;
    }
    return return_prev_if_not_found ? found_idx : -1;
}

int
NNTreeImpl::compareKeyItem(QPDFObjectHandle const& key, Array const& items, int idx) const
{
    if (!keyValid(items[2 * idx])) {
        error(tree_root, ("item at index " + std::to_string(2 * idx) + " is not the right type"));
    }
    return compareKeys(key, items[2 * idx]);
}

int
NNTreeImpl::compareKeyKid(QPDFObjectHandle const& key, Array const& kids, int idx) const
{
    Dictionary kid = kids[idx];
    if (!kid) {
        error(tree_root, "invalid kid at index " + std::to_string(idx));
    }
    Array limits = kid["/Limits"];
    if (!(keyValid(limits[0]) && keyValid(limits[1]))) {
        error(kids[idx], "node is missing /Limits");
    }
    if (compareKeys(key, limits[0]) < 0) {
        return -1;
    }
    if (compareKeys(key, limits[1]) > 0) {
        return 1;
    }
    return 0;
}

namespace
{
    struct Cmp
    {
        bool
        operator()(const QPDFObjectHandle& lhs, const QPDFObjectHandle& rhs) const
        {
            Integer l = lhs;
            Integer r = rhs;
            if (l && r) {
                return l.value() < r.value();
            }
            return lhs.getUTF8Value() < rhs.getUTF8Value();
        }
    };
} // namespace

void
NNTreeImpl::repair()
{
    auto new_node = Dictionary({{itemsKey(), Array::empty()}});
    NNTreeImpl repl(qpdf, new_node, key_type, value_valid, false);
    std::map<QPDFObjectHandle, QPDFObjectHandle, Cmp> items;
    for (auto const& [key, value]: *this) {
        if (key && value && repl.keyValid(key) && repl.value_valid(value)) {
            items.insert_or_assign(key, value);
        }
    }
    for (auto const& [key, value]: items) {
        repl.insert(key, value);
    }
    tree_root.replace("/Kids", new_node["/Kids"]);
    tree_root.replace(itemsKey(), new_node[itemsKey()]);
}

NNTreeImpl::iterator
NNTreeImpl::find(QPDFObjectHandle const& key, bool return_prev_if_not_found)
{
    try {
        return findInternal(key, return_prev_if_not_found);
    } catch (QPDFExc& e) {
        if (auto_repair) {
            warn(tree_root, std::string("attempting to repair after error: ") + e.what());
            repair();
            return findInternal(key, return_prev_if_not_found);
        } else {
            throw;
        }
    }
}

NNTreeImpl::iterator
NNTreeImpl::findInternal(QPDFObjectHandle const& key, bool return_prev_if_not_found)
{
    auto first_item = begin();
    if (!first_item.valid()) {
        return end();
    }
    if (!keyValid(first_item->first)) {
        error(tree_root, "encountered invalid key in find");
    }
    if (!value_valid(first_item->second)) {
        error(tree_root, "encountered invalid value in find");
    }
    if (compareKeys(key, first_item->first) < 0) {
        // Before the first key
        return end();
    }

    QPDFObjGen::set seen;
    auto node = tree_root;
    iterator result(*this);

    while (true) {
        if (!seen.add(node)) {
            error(node, "loop detected in find");
        }

        Array items = node[itemsKey()];
        size_t nitems = items.size();
        if (nitems > 1) {
            int idx = binarySearch(key, items, nitems / 2, return_prev_if_not_found, false);
            if (idx >= 0) {
                result.setItemNumber(node, 2 * idx);
                if (!result.impl.keyValid(result.ivalue.first)) {
                    error(node, "encountered invalid key in find");
                }
                if (!result.impl.value_valid(result.ivalue.second)) {
                    error(tree_root, "encountered invalid value in find");
                }
            }
            return result;
        }

        Array kids = node["/Kids"];
        size_t nkids = kids.size();
        if (nkids == 0) {
            error(node, "bad node during find");
        }
        int idx = binarySearch(key, kids, nkids, true, true);
        if (idx == -1) {
            error(node, "unexpected -1 from binary search of kids; limits may by wrong");
        }
        result.addPathElement(node, idx);
        node = kids[idx];
    }
}

NNTreeImpl::iterator
NNTreeImpl::insertFirst(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
    auto iter = begin();
    Array items = iter.node[items_key];
    if (!items) {
        error(tree_root, "unable to find a valid items node");
    }
    if (!(key && value)) {
        error(tree_root, "unable to insert null key or value");
    }
    if (!value_valid(value)) {
        error(tree_root, "attempting to insert an invalid value");
    }
    items.insert(0, key);
    items.insert(1, value);
    iter.setItemNumber(iter.node, 0);
    iter.resetLimits(iter.node, iter.lastPathElement());
    iter.split(iter.node, iter.lastPathElement());
    return iter;
}

NNTreeImpl::iterator
NNTreeImpl::insert(QPDFObjectHandle const& key, QPDFObjectHandle const& value)
{
    auto iter = find(key, true);
    if (!iter.valid()) {
        return insertFirst(key, value);
    } else if (compareKeys(key, iter->first) == 0) {
        Array items = iter.node[itemsKey()];
        items.set(iter.item_number + 1, value);
        iter.updateIValue();
    } else {
        iter.insertAfter(key, value);
    }
    return iter;
}

bool
NNTreeImpl::remove(QPDFObjectHandle const& key, QPDFObjectHandle* value)
{
    auto iter = find(key, false);
    if (!iter.valid()) {
        return false;
    }
    if (value) {
        *value = iter->second;
    }
    iter.remove();
    return true;
}

bool
NNTreeImpl::validate(bool a_repair)
{
    bool first = true;
    QPDFObjectHandle last_key;
    try {
        for (auto const& [key, value]: *this) {
            if (!keyValid(key)) {
                error(tree_root, "invalid key in validate");
            }
            if (!value_valid(value)) {
                error(tree_root, "invalid value in validate");
            }
            if (first) {
                first = false;
            } else if (last_key && compareKeys(last_key, key) != -1) {
                error(tree_root, "keys are not sorted in validate");
            }
            last_key = key;
        }
    } catch (QPDFExc& e) {
        if (a_repair) {
            warn(tree_root, std::string("attempting to repair after error: ") + e.what());
            repair();
        }
        return false;
    }
    return true;
}

class QPDFNameTreeObjectHelper::Members
{
  public:
    Members(
        QPDFObjectHandle& oh,
        QPDF& q,
        std::function<bool(QPDFObjectHandle const&)> value_validator,
        bool auto_repair) :
        impl(q, oh, ::ot_string, value_validator, auto_repair)
    {
    }
    Members(Members const&) = delete;
    ~Members() = default;

    NNTreeImpl impl;
};

// Must be explicit and not inline -- see QPDF_DLL_CLASS in README-maintainer. For this specific
// class, see github issue #745.
QPDFNameTreeObjectHelper::~QPDFNameTreeObjectHelper() = default;

QPDFNameTreeObjectHelper::QPDFNameTreeObjectHelper(QPDFObjectHandle oh, QPDF& q, bool auto_repair) :
    QPDFNameTreeObjectHelper(
        oh, q, [](QPDFObjectHandle const& o) -> bool { return static_cast<bool>(o); }, auto_repair)
{
}

QPDFNameTreeObjectHelper::QPDFNameTreeObjectHelper(
    QPDFObjectHandle oh,
    QPDF& q,
    std::function<bool(QPDFObjectHandle const&)> value_validator,
    bool auto_repair) :
    QPDFObjectHelper(oh),
    m(std::make_shared<Members>(oh, q, value_validator, auto_repair))
{
}

QPDFNameTreeObjectHelper
QPDFNameTreeObjectHelper::newEmpty(QPDF& qpdf, bool auto_repair)
{
    return {qpdf.makeIndirectObject(Dictionary({{"/Names", Array::empty()}})), qpdf, auto_repair};
}

QPDFNameTreeObjectHelper::iterator::iterator(std::shared_ptr<NNTreeIterator> const& i) :
    impl(i)
{
}

bool
QPDFNameTreeObjectHelper::iterator::valid() const
{
    return impl->valid();
}

QPDFNameTreeObjectHelper::iterator&
QPDFNameTreeObjectHelper::iterator::operator++()
{
    ++(*impl);
    updateIValue();
    return *this;
}

QPDFNameTreeObjectHelper::iterator&
QPDFNameTreeObjectHelper::iterator::operator--()
{
    --(*impl);
    updateIValue();
    return *this;
}

void
QPDFNameTreeObjectHelper::iterator::updateIValue()
{
    if (impl->valid()) {
        auto p = *impl;
        ivalue.first = p->first.getUTF8Value();
        ivalue.second = p->second;
    } else {
        ivalue.first = "";
        ivalue.second = QPDFObjectHandle();
    }
}

QPDFNameTreeObjectHelper::iterator::reference
QPDFNameTreeObjectHelper::iterator::operator*()
{
    updateIValue();
    return ivalue;
}

QPDFNameTreeObjectHelper::iterator::pointer
QPDFNameTreeObjectHelper::iterator::operator->()
{
    updateIValue();
    return &ivalue;
}

bool
QPDFNameTreeObjectHelper::iterator::operator==(iterator const& other) const
{
    return *(impl) == *(other.impl);
}

void
QPDFNameTreeObjectHelper::iterator::insertAfter(std::string const& key, QPDFObjectHandle value)
{
    impl->insertAfter(QPDFObjectHandle::newUnicodeString(key), value);
    updateIValue();
}

void
QPDFNameTreeObjectHelper::iterator::remove()
{
    impl->remove();
    updateIValue();
}

QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::begin() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.begin())};
}

QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::end() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.end())};
}

QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::last() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.last())};
}

QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::find(std::string const& key, bool return_prev_if_not_found)
{
    auto i = m->impl.find(QPDFObjectHandle::newUnicodeString(key), return_prev_if_not_found);
    return {std::make_shared<NNTreeIterator>(i)};
}

QPDFNameTreeObjectHelper::iterator
QPDFNameTreeObjectHelper::insert(std::string const& key, QPDFObjectHandle value)
{
    auto i = m->impl.insert(QPDFObjectHandle::newUnicodeString(key), value);
    return {std::make_shared<NNTreeIterator>(i)};
}

bool
QPDFNameTreeObjectHelper::remove(std::string const& key, QPDFObjectHandle* value)
{
    return m->impl.remove(QPDFObjectHandle::newUnicodeString(key), value);
}

bool
QPDFNameTreeObjectHelper::hasName(std::string const& name)
{
    auto i = find(name);
    return (i != end());
}

bool
QPDFNameTreeObjectHelper::findObject(std::string const& name, QPDFObjectHandle& oh)
{
    auto i = find(name);
    if (i == end()) {
        return false;
    }
    oh = i->second;
    return true;
}

void
QPDFNameTreeObjectHelper::setSplitThreshold(int t)
{
    m->impl.setSplitThreshold(t);
}

std::map<std::string, QPDFObjectHandle>
QPDFNameTreeObjectHelper::getAsMap() const
{
    std::map<std::string, QPDFObjectHandle> result;
    result.insert(begin(), end());
    return result;
}

bool
QPDFNameTreeObjectHelper::validate(bool repair)
{
    return m->impl.validate(repair);
}

class QPDFNumberTreeObjectHelper::Members
{
    typedef QPDFNumberTreeObjectHelper::numtree_number numtree_number;

  public:
    Members(
        QPDFObjectHandle& oh,
        QPDF& q,
        std::function<bool(QPDFObjectHandle const&)> value_validator,
        bool auto_repair) :
        impl(q, oh, ::ot_integer, value_validator, auto_repair)
    {
    }
    Members(Members const&) = delete;
    ~Members() = default;

    NNTreeImpl impl;
};

// Must be explicit and not inline -- see QPDF_DLL_CLASS in README-maintainer. For this specific
// class, see github issue #745.
QPDFNumberTreeObjectHelper::~QPDFNumberTreeObjectHelper() = default;

QPDFNumberTreeObjectHelper::QPDFNumberTreeObjectHelper(
    QPDFObjectHandle oh, QPDF& q, bool auto_repair) :
    QPDFNumberTreeObjectHelper(
        oh, q, [](QPDFObjectHandle const& o) -> bool { return static_cast<bool>(o); }, auto_repair)
{
}

QPDFNumberTreeObjectHelper::QPDFNumberTreeObjectHelper(
    QPDFObjectHandle oh,
    QPDF& q,
    std::function<bool(QPDFObjectHandle const&)> value_validator,
    bool auto_repair) :
    QPDFObjectHelper(oh),
    m(std::make_shared<Members>(oh, q, value_validator, auto_repair))
{
}

QPDFNumberTreeObjectHelper
QPDFNumberTreeObjectHelper::newEmpty(QPDF& qpdf, bool auto_repair)
{
    return {qpdf.makeIndirectObject(Dictionary({{"/Nums", Array::empty()}})), qpdf, auto_repair};
}

QPDFNumberTreeObjectHelper::iterator::iterator(std::shared_ptr<NNTreeIterator> const& i) :
    impl(i)
{
}

bool
QPDFNumberTreeObjectHelper::iterator::valid() const
{
    return impl->valid();
}

QPDFNumberTreeObjectHelper::iterator&
QPDFNumberTreeObjectHelper::iterator::operator++()
{
    ++(*impl);
    updateIValue();
    return *this;
}

QPDFNumberTreeObjectHelper::iterator&
QPDFNumberTreeObjectHelper::iterator::operator--()
{
    --(*impl);
    updateIValue();
    return *this;
}

void
QPDFNumberTreeObjectHelper::iterator::updateIValue()
{
    if (impl->valid()) {
        auto p = *impl;
        this->ivalue.first = p->first.getIntValue();
        this->ivalue.second = p->second;
    } else {
        this->ivalue.first = 0;
        this->ivalue.second = QPDFObjectHandle();
    }
}

QPDFNumberTreeObjectHelper::iterator::reference
QPDFNumberTreeObjectHelper::iterator::operator*()
{
    updateIValue();
    return this->ivalue;
}

QPDFNumberTreeObjectHelper::iterator::pointer
QPDFNumberTreeObjectHelper::iterator::operator->()
{
    updateIValue();
    return &this->ivalue;
}

bool
QPDFNumberTreeObjectHelper::iterator::operator==(iterator const& other) const
{
    return *(impl) == *(other.impl);
}

void
QPDFNumberTreeObjectHelper::iterator::insertAfter(numtree_number key, QPDFObjectHandle value)
{
    impl->insertAfter(QPDFObjectHandle::newInteger(key), value);
    updateIValue();
}

void
QPDFNumberTreeObjectHelper::iterator::remove()
{
    impl->remove();
    updateIValue();
}

QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::begin() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.begin())};
}

QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::end() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.end())};
}

QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::last() const
{
    return {std::make_shared<NNTreeIterator>(m->impl.last())};
}

QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::find(numtree_number key, bool return_prev_if_not_found)
{
    auto i = m->impl.find(QPDFObjectHandle::newInteger(key), return_prev_if_not_found);
    return {std::make_shared<NNTreeIterator>(i)};
}

QPDFNumberTreeObjectHelper::iterator
QPDFNumberTreeObjectHelper::insert(numtree_number key, QPDFObjectHandle value)
{
    auto i = m->impl.insert(QPDFObjectHandle::newInteger(key), value);
    return {std::make_shared<NNTreeIterator>(i)};
}

bool
QPDFNumberTreeObjectHelper::remove(numtree_number key, QPDFObjectHandle* value)
{
    return m->impl.remove(QPDFObjectHandle::newInteger(key), value);
}

QPDFNumberTreeObjectHelper::numtree_number
QPDFNumberTreeObjectHelper::getMin()
{
    auto i = begin();
    if (i == end()) {
        return 0;
    }
    return i->first;
}

QPDFNumberTreeObjectHelper::numtree_number
QPDFNumberTreeObjectHelper::getMax()
{
    auto i = last();
    if (i == end()) {
        return 0;
    }
    return i->first;
}

bool
QPDFNumberTreeObjectHelper::hasIndex(numtree_number idx)
{
    auto i = find(idx);
    return (i != this->end());
}

bool
QPDFNumberTreeObjectHelper::findObject(numtree_number idx, QPDFObjectHandle& oh)
{
    auto i = find(idx);
    if (i == end()) {
        return false;
    }
    oh = i->second;
    return true;
}

bool
QPDFNumberTreeObjectHelper::findObjectAtOrBelow(
    numtree_number idx, QPDFObjectHandle& oh, numtree_number& offset)
{
    auto i = find(idx, true);
    if (i == end()) {
        return false;
    }
    oh = i->second;
    QIntC::range_check_subtract(idx, i->first);
    offset = idx - i->first;
    return true;
}

void
QPDFNumberTreeObjectHelper::setSplitThreshold(int t)
{
    m->impl.setSplitThreshold(t);
}

std::map<QPDFNumberTreeObjectHelper::numtree_number, QPDFObjectHandle>
QPDFNumberTreeObjectHelper::getAsMap() const
{
    std::map<numtree_number, QPDFObjectHandle> result;
    result.insert(begin(), end());
    return result;
}

bool
QPDFNumberTreeObjectHelper::validate(bool repair)
{
    return m->impl.validate(repair);
}