1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
|
// This file implements methods from the QPDF class that involve encryption.
#include <qpdf/QPDF_private.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/MD5.hh>
#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_SHA2.hh>
#include <qpdf/QPDFObjectHandle_private.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/RC4.hh>
#include <qpdf/Util.hh>
#include <algorithm>
#include <cstring>
using namespace qpdf;
using namespace std::literals;
using Encryption = QPDF::Doc::Encryption;
static std::string padding_string =
"\x28\xbf\x4e\x5e\x4e\x75\x8a\x41\x64\x00\x4e\x56\xff\xfa\x01\x08"
"\x2e\x2e\x00\xb6\xd0\x68\x3e\x80\x2f\x0c\xa9\xfe\x64\x53\x69\x7a"s;
static unsigned int const key_bytes = 32;
static unsigned int const OU_key_bytes_V5 = 48;
static unsigned int const OUE_key_bytes_V5 = 32;
static unsigned int const Perms_key_bytes_V5 = 16;
int
QPDF::EncryptionData::getV() const
{
return this->V;
}
int
QPDF::EncryptionData::getR() const
{
return this->R;
}
int
QPDF::EncryptionData::getLengthBytes() const
{
return this->Length_bytes;
}
int
QPDF::EncryptionData::getP() const
{
return this->P;
}
std::string const&
QPDF::EncryptionData::getO() const
{
return this->O;
}
std::string const&
QPDF::EncryptionData::getU() const
{
return this->U;
}
std::string const&
QPDF::EncryptionData::getOE() const
{
return this->OE;
}
std::string const&
QPDF::EncryptionData::getUE() const
{
return this->UE;
}
std::string const&
QPDF::EncryptionData::getPerms() const
{
return this->Perms;
}
std::string const&
QPDF::EncryptionData::getId1() const
{
return this->id1;
}
bool
QPDF::EncryptionData::getEncryptMetadata() const
{
return this->encrypt_metadata;
}
void
QPDF::EncryptionData::setO(std::string const& O)
{
this->O = O;
}
void
QPDF::EncryptionData::setU(std::string const& U)
{
this->U = U;
}
void
QPDF::EncryptionData::setV5EncryptionParameters(
std::string const& O,
std::string const& OE,
std::string const& U,
std::string const& UE,
std::string const& Perms)
{
this->O = O;
this->OE = OE;
this->U = U;
this->UE = UE;
this->Perms = Perms;
}
int
Encryption::getV() const
{
return this->V;
}
int
Encryption::getR() const
{
return this->R;
}
int
Encryption::getLengthBytes() const
{
return this->Length_bytes;
}
int
Encryption::getP() const
{
return static_cast<int>(P.to_ulong());
}
bool
Encryption::getP(size_t bit) const
{
qpdf_assert_debug(bit);
return P.test(bit - 1);
}
bool
QPDF::EncryptionParameters::P(size_t bit) const
{
qpdf_assert_debug(bit);
return P_.test(bit - 1);
}
std::string const&
Encryption::getO() const
{
return this->O;
}
std::string const&
Encryption::getU() const
{
return this->U;
}
std::string const&
Encryption::getOE() const
{
return this->OE;
}
std::string const&
Encryption::getUE() const
{
return this->UE;
}
std::string const&
Encryption::getPerms() const
{
return this->Perms;
}
std::string const&
Encryption::getId1() const
{
return this->id1;
}
bool
Encryption::getEncryptMetadata() const
{
return this->encrypt_metadata;
}
void
Encryption::setO(std::string const& O)
{
this->O = O;
}
void
Encryption::setU(std::string const& U)
{
this->U = U;
}
void
Encryption::setP(size_t bit, bool val)
{
qpdf_assert_debug(bit);
P.set(bit - 1, val);
}
void
Encryption::setP(unsigned long val)
{
P = std::bitset<32>(val);
}
void
Encryption::setId1(std::string const& val)
{
id1 = val;
}
void
Encryption::setV5EncryptionParameters(
std::string const& O,
std::string const& OE,
std::string const& U,
std::string const& UE,
std::string const& Perms)
{
this->O = O;
this->OE = OE;
this->U = U;
this->UE = UE;
this->Perms = Perms;
}
void
QPDF::trim_user_password(std::string& user_password)
{
// Although unnecessary, this routine trims the padding string from the end of a user password.
// Its only purpose is for recovery of user passwords which is done in the test suite.
if (user_password.size() < key_bytes) {
return;
}
auto idx = user_password.find('\x28');
while (idx != user_password.npos) {
if (padding_string.starts_with(user_password.substr(idx))) {
user_password.resize(idx);
return;
}
QTC::TC("qpdf", "QPDF_encryption skip 0x28");
idx = user_password.find('\x28', ++idx);
}
}
static std::string
pad_or_truncate_password_V4(std::string password)
{
if (password.size() < key_bytes) {
password.append(padding_string);
}
password.resize(key_bytes);
return password;
}
static std::string
iterate_md5_digest(MD5& md5, int iterations, int key_len)
{
MD5::Digest digest;
md5.digest(digest);
auto len = std::min(QIntC::to_size(key_len), sizeof(digest));
for (int i = 0; i < iterations; ++i) {
MD5 m;
m.encodeDataIncrementally(reinterpret_cast<char*>(digest), len);
m.digest(digest);
}
return {reinterpret_cast<char*>(digest), len};
}
static void
iterate_rc4(std::string& data, std::string_view okey, int iterations, bool reverse)
{
auto len = okey.size();
std::string key(len, '\0');
for (int i = 0; i < iterations; ++i) {
int const xor_value = (reverse ? iterations - 1 - i : i);
for (size_t j = 0; j < len; ++j) {
key[j] = static_cast<char>(okey[j] ^ xor_value);
}
RC4::process(key, data);
}
}
static std::string
process_with_aes(
std::string const& key,
bool encrypt,
std::string const& data,
size_t outlength = 0,
unsigned int repetitions = 1,
unsigned char const* iv = nullptr,
size_t iv_length = 0)
{
Pl_Buffer buffer("buffer");
Pl_AES_PDF aes("aes", &buffer, encrypt, key);
if (iv) {
aes.setIV(iv, iv_length);
} else {
aes.useZeroIV();
}
aes.disablePadding();
for (unsigned int i = 0; i < repetitions; ++i) {
aes.writeString(data);
}
aes.finish();
if (outlength == 0) {
return buffer.getString();
} else {
return buffer.getString().substr(0, outlength);
}
}
std::string
Encryption::hash_V5(
std::string const& password, std::string const& salt, std::string const& udata) const
{
Pl_SHA2 hash(256);
hash.writeString(password);
hash.writeString(salt);
hash.writeString(udata);
hash.finish();
std::string K = hash.getRawDigest();
std::string result;
if (getR() < 6) {
result = K;
} else {
// Algorithm 2.B from ISO 32000-1 chapter 7: Computing a hash
int round_number = 0;
bool done = false;
while (!done) {
// The hash algorithm has us setting K initially to the R5 value and then repeating a
// series of steps 64 times before starting with the termination case testing. The
// wording of the specification is very unclear as to the exact number of times it
// should be run since the wording about whether the initial setup counts as round 0 or
// not is ambiguous. This code counts the initial setup (R5) value as round 0, which
// appears to be correct. This was determined to be correct by increasing or decreasing
// the number of rounds by 1 or 2 from this value and generating 20 test files. In this
// interpretation, all the test files worked with Adobe Reader X. In the other
// configurations, many of the files did not work, and we were accurately able to
// predict which files didn't work by looking at the conditions under which we
// terminated repetition.
++round_number;
std::string K1 = password + K + udata;
qpdf_assert_debug(K.length() >= 32);
std::string E = process_with_aes(
K.substr(0, 16),
true,
K1,
0,
64,
QUtil::unsigned_char_pointer(K.substr(16, 16)),
16);
// E_mod_3 is supposed to be mod 3 of the first 16 bytes of E taken as as a (128-bit)
// big-endian number. Since (xy mod n) is equal to ((x mod n) + (y mod n)) mod n and
// since 256 mod n is 1, we can just take the sums of the the mod 3s of each byte to get
// the same result.
int E_mod_3 = 0;
for (unsigned int i = 0; i < 16; ++i) {
E_mod_3 += static_cast<unsigned char>(E.at(i));
}
E_mod_3 %= 3;
int next_hash = ((E_mod_3 == 0) ? 256 : (E_mod_3 == 1) ? 384 : 512);
Pl_SHA2 sha2(next_hash);
sha2.writeString(E);
sha2.finish();
K = sha2.getRawDigest();
if (round_number >= 64) {
unsigned int ch = static_cast<unsigned char>(*(E.rbegin()));
if (ch <= QIntC::to_uint(round_number - 32)) {
done = true;
}
}
}
result = K.substr(0, 32);
}
return result;
}
static void
pad_short_parameter(std::string& param, size_t max_len)
{
if (param.length() < max_len) {
QTC::TC("qpdf", "QPDF_encryption pad short parameter");
param.append(max_len - param.length(), '\0');
}
}
std::string
QPDF::compute_data_key(
std::string const& encryption_key,
int objid,
int generation,
bool use_aes,
int encryption_V,
int encryption_R)
{
// Algorithm 3.1 from the PDF 1.7 Reference Manual
std::string result = encryption_key;
if (encryption_V >= 5) {
// Algorithm 3.1a (PDF 1.7 extension level 3): just use encryption key straight.
return result;
}
// Append low three bytes of object ID and low two bytes of generation
result.append(1, static_cast<char>(objid & 0xff));
result.append(1, static_cast<char>((objid >> 8) & 0xff));
result.append(1, static_cast<char>((objid >> 16) & 0xff));
result.append(1, static_cast<char>(generation & 0xff));
result.append(1, static_cast<char>((generation >> 8) & 0xff));
if (use_aes) {
result += "sAlT";
}
return MD5::digest(result).substr(0, result.size());
}
std::string
QPDF::compute_encryption_key(std::string const& password, EncryptionData const& ed)
{
return Encryption(
ed.getV(),
ed.getR(),
ed.getLengthBytes(),
ed.getP(),
ed.getO(),
ed.getU(),
ed.getOE(),
ed.getUE(),
ed.getPerms(),
ed.getId1(),
ed.getEncryptMetadata())
.compute_encryption_key(password);
}
std::string
Encryption::compute_encryption_key(std::string const& password) const
{
if (getV() >= 5) {
// For V >= 5, the encryption key is generated and stored in the file, encrypted separately
// with both user and owner passwords.
return recover_encryption_key_with_password(password);
} else {
// For V < 5, the encryption key is derived from the user
// password.
return compute_encryption_key_from_password(password);
}
}
std::string
Encryption::compute_encryption_key_from_password(std::string const& password) const
{
// Algorithm 3.2 from the PDF 1.7 Reference Manual
// This code does not properly handle Unicode passwords. Passwords are supposed to be converted
// from OS codepage characters to PDFDocEncoding. Unicode passwords are supposed to be
// converted to OS codepage before converting to PDFDocEncoding. We instead require the
// password to be presented in its final form.
MD5 md5;
md5.encodeDataIncrementally(pad_or_truncate_password_V4(password));
md5.encodeDataIncrementally(getO());
char pbytes[4];
int p = getP();
pbytes[0] = static_cast<char>(p & 0xff);
pbytes[1] = static_cast<char>((p >> 8) & 0xff);
pbytes[2] = static_cast<char>((p >> 16) & 0xff);
pbytes[3] = static_cast<char>((p >> 24) & 0xff);
md5.encodeDataIncrementally(pbytes, 4);
md5.encodeDataIncrementally(getId1());
if (getR() >= 4 && !getEncryptMetadata()) {
md5.encodeDataIncrementally("\xff\xff\xff\xff");
}
return iterate_md5_digest(md5, (getR() >= 3 ? 50 : 0), getLengthBytes());
}
std::string
Encryption::compute_O_rc4_key(
std::string const& user_password, std::string const& owner_password) const
{
if (getV() >= 5) {
throw std::logic_error("compute_O_rc4_key called for file with V >= 5");
}
std::string password = owner_password.empty() ? user_password : owner_password;
MD5 md5;
md5.encodeDataIncrementally(pad_or_truncate_password_V4(password));
return iterate_md5_digest(md5, (getR() >= 3 ? 50 : 0), getLengthBytes());
}
std::string
Encryption::compute_O_value(
std::string const& user_password, std::string const& owner_password) const
{
// Algorithm 3.3 from the PDF 1.7 Reference Manual
auto upass = pad_or_truncate_password_V4(user_password);
std::string O_key = compute_O_rc4_key(user_password, owner_password);
pad_short_parameter(O_key, QIntC::to_size(getLengthBytes()));
iterate_rc4(upass, O_key, getR() >= 3 ? 20 : 1, false);
return upass;
}
std::string
Encryption::compute_U_value_R2(std::string const& user_password) const
{
// Algorithm 3.4 from the PDF 1.7 Reference Manual
std::string k1 = compute_encryption_key(user_password);
auto udata = padding_string;
pad_short_parameter(k1, QIntC::to_size(getLengthBytes()));
iterate_rc4(udata, k1, 1, false);
return udata;
}
std::string
Encryption::compute_U_value_R3(std::string const& user_password) const
{
// Algorithm 3.5 from the PDF 1.7 Reference Manual
std::string k1 = compute_encryption_key(user_password);
MD5 md5;
md5.encodeDataIncrementally(padding_string);
md5.encodeDataIncrementally(getId1());
auto result = md5.digest();
pad_short_parameter(k1, QIntC::to_size(getLengthBytes()));
iterate_rc4(result, k1, 20, false);
// pad with arbitrary data -- make it consistent for the sake of testing
result += "\x0\x21\x44\x69\x90\xb9\xe4\x11\x40\x71\xa4\xd9\x10\x49\x84\xc1"s;
return result;
}
std::string
Encryption::compute_U_value(std::string const& user_password) const
{
if (getR() >= 3) {
return compute_U_value_R3(user_password);
}
return compute_U_value_R2(user_password);
}
bool
Encryption::check_user_password_V4(std::string const& user_password) const
{
// Algorithm 3.6 from the PDF 1.7 Reference Manual
std::string u_value = compute_U_value(user_password);
size_t to_compare = (getR() >= 3 ? sizeof(MD5::Digest) : key_bytes);
return memcmp(getU().c_str(), u_value.c_str(), to_compare) == 0;
}
bool
Encryption::check_user_password_V5(std::string const& user_password) const
{
// Algorithm 3.11 from the PDF 1.7 extension level 3
std::string user_data = getU().substr(0, 32);
std::string validation_salt = getU().substr(32, 8);
std::string password = user_password.substr(0, 127);
return hash_V5(user_password.substr(0, 127), validation_salt, "") == user_data;
}
bool
Encryption::check_user_password(std::string const& user_password) const
{
if (getV() < 5) {
return check_user_password_V4(user_password);
} else {
return check_user_password_V5(user_password);
}
}
bool
Encryption::check_owner_password_V4(
std::string& user_password, std::string const& owner_password) const
{
// Algorithm 3.7 from the PDF 1.7 Reference Manual
auto key = compute_O_rc4_key(user_password, owner_password);
pad_short_parameter(key, QIntC::to_size(getLengthBytes()));
auto new_user_password = O.substr(0, key_bytes);
iterate_rc4(new_user_password, key, (getR() >= 3) ? 20 : 1, true);
if (check_user_password(new_user_password)) {
user_password = new_user_password;
return true;
}
return false;
}
bool
Encryption::check_owner_password_V5(std::string const& owner_password) const
{
// Algorithm 3.12 from the PDF 1.7 extension level 3
std::string user_data = getU().substr(0, 48);
std::string owner_data = getO().substr(0, 32);
std::string validation_salt = getO().substr(32, 8);
return hash_V5(owner_password.substr(0, 127), validation_salt, user_data) == owner_data;
}
bool
Encryption::check_owner_password(
std::string& user_password, std::string const& owner_password) const
{
if (getV() < 5) {
return check_owner_password_V4(user_password, owner_password);
} else {
return check_owner_password_V5(owner_password);
}
}
std::string
Encryption::recover_encryption_key_with_password(std::string const& password) const
{
// Disregard whether Perms is valid.
bool disregard;
return recover_encryption_key_with_password(password, disregard);
}
std::string
Encryption::compute_Perms_value_V5_clear() const
{
// From algorithm 3.10 from the PDF 1.7 extension level 3
// cSpell:ignore Tadb
std::string k = " \xff\xff\xff\xffTadb ";
int perms = getP();
for (size_t i = 0; i < 4; ++i) {
k[i] = static_cast<char>(perms & 0xff);
perms >>= 8;
}
if (!getEncryptMetadata()) {
k[8] = 'F';
}
QUtil::initializeWithRandomBytes(reinterpret_cast<unsigned char*>(&k[12]), 4);
return k;
}
std::string
Encryption::recover_encryption_key_with_password(
std::string const& password, bool& perms_valid) const
{
// Algorithm 3.2a from the PDF 1.7 extension level 3
// This code does not handle Unicode passwords correctly. Empirical evidence suggests that most
// viewers don't. We are supposed to process the input string with the SASLprep (RFC 4013)
// profile of stringprep (RFC 3454) and then convert the result to UTF-8.
perms_valid = false;
std::string key_password = password.substr(0, 127);
std::string key_salt;
std::string user_data;
std::string encrypted_file_key;
if (check_owner_password_V5(key_password)) {
key_salt = getO().substr(40, 8);
user_data = getU().substr(0, 48);
encrypted_file_key = getOE().substr(0, 32);
} else if (check_user_password_V5(key_password)) {
key_salt = getU().substr(40, 8);
encrypted_file_key = getUE().substr(0, 32);
}
std::string intermediate_key = hash_V5(key_password, key_salt, user_data);
std::string file_key = process_with_aes(intermediate_key, false, encrypted_file_key);
// Decrypt Perms and check against expected value
auto perms_check = process_with_aes(file_key, false, getPerms()).substr(0, 12);
perms_valid = compute_Perms_value_V5_clear().substr(0, 12) == perms_check;
return file_key;
}
QPDF::encryption_method_e
QPDF::EncryptionParameters::interpretCF(Name const& cf) const
{
if (!cf) {
// Default: /Identity
return e_none;
}
auto it = crypt_filters.find(cf);
if (it != crypt_filters.end()) {
return it->second;
}
if (cf == "/Identity") {
return e_none;
}
return e_unknown;
}
void
QPDF::initializeEncryption()
{
m->encp->initialize(*this);
}
void
QPDF::EncryptionParameters::initialize(QPDF& qpdf)
{
if (encryption_initialized) {
return;
}
encryption_initialized = true;
auto& c = qpdf.m->c;
auto& qm = *qpdf.m;
auto& trailer = qm.trailer;
auto& file = qm.file;
auto warn_damaged_pdf = [&qpdf, c](std::string const& msg) {
qpdf.warn(c.damagedPDF("encryption dictionary", msg));
};
auto throw_damaged_pdf = [&qpdf](std::string const& msg) {
throw qpdf.m->c.damagedPDF("encryption dictionary", msg);
};
auto unsupported = [&file](std::string const& msg) -> QPDFExc {
return {
qpdf_e_unsupported,
file->getName(),
"encryption dictionary",
file->getLastOffset(),
msg};
};
// After we initialize encryption parameters, we must use stored key information and never look
// at /Encrypt again. Otherwise, things could go wrong if someone mutates the encryption
// dictionary.
if (!trailer.contains("/Encrypt")) {
return;
}
// Go ahead and set m->encrypted here. That way, isEncrypted will return true even if there
// were errors reading the encryption dictionary.
encrypted = true;
std::string id1;
auto id_obj = trailer.getKey("/ID");
if (id_obj.size() != 2 || !id_obj.getArrayItem(0).isString()) {
// Treating a missing ID as the empty string enables qpdf to decrypt some invalid encrypted
// files with no /ID that poppler can read but Adobe Reader can't.
qpdf.warn(qpdf.m->c.damagedPDF("trailer", "invalid /ID in trailer dictionary"));
} else {
id1 = id_obj.getArrayItem(0).getStringValue();
}
auto encryption_dict = trailer.getKey("/Encrypt");
if (!encryption_dict.isDictionary()) {
throw qpdf.m->c.damagedPDF("/Encrypt in trailer dictionary is not a dictionary");
}
if (Name(encryption_dict["/Filter"]) != "/Standard") {
throw unsupported("unsupported encryption filter");
}
if (!encryption_dict.getKey("/SubFilter").null()) {
qpdf.warn(unsupported("file uses encryption SubFilters, which qpdf does not support"));
}
if (!(encryption_dict.getKey("/V").isInteger() && encryption_dict.getKey("/R").isInteger() &&
encryption_dict.getKey("/O").isString() && encryption_dict.getKey("/U").isString() &&
encryption_dict.getKey("/P").isInteger())) {
throw_damaged_pdf("some encryption dictionary parameters are missing or the wrong type");
}
int V = encryption_dict.getKey("/V").getIntValueAsInt();
int R = encryption_dict.getKey("/R").getIntValueAsInt();
std::string O = encryption_dict.getKey("/O").getStringValue();
std::string U = encryption_dict.getKey("/U").getStringValue();
int p = static_cast<int>(encryption_dict.getKey("/P").getIntValue());
// If supporting new encryption R/V values, remember to update error message inside this if
// statement.
if (!(2 <= R && R <= 6 && (V == 1 || V == 2 || V == 4 || V == 5))) {
throw unsupported(
"Unsupported /R or /V in encryption dictionary; R = " + std::to_string(R) +
" (max 6), V = " + std::to_string(V) + " (max 5)");
}
P_ = std::bitset<32>(static_cast<unsigned long long>(p));
encryption_V = V;
R_ = R;
// OE, UE, and Perms are only present if V >= 5.
std::string OE;
std::string UE;
std::string Perms;
if (V < 5) {
// These must be exactly the right number of bytes.
pad_short_parameter(O, key_bytes);
pad_short_parameter(U, key_bytes);
if (!(O.length() == key_bytes && U.length() == key_bytes)) {
throw_damaged_pdf("incorrect length for /O and/or /U in encryption dictionary");
}
} else {
if (!(encryption_dict.getKey("/OE").isString() &&
encryption_dict.getKey("/UE").isString() &&
encryption_dict.getKey("/Perms").isString())) {
throw_damaged_pdf(
"some V=5 encryption dictionary parameters are missing or the wrong type");
}
OE = encryption_dict.getKey("/OE").getStringValue();
UE = encryption_dict.getKey("/UE").getStringValue();
Perms = encryption_dict.getKey("/Perms").getStringValue();
// These may be longer than the minimum number of bytes.
pad_short_parameter(O, OU_key_bytes_V5);
pad_short_parameter(U, OU_key_bytes_V5);
pad_short_parameter(OE, OUE_key_bytes_V5);
pad_short_parameter(UE, OUE_key_bytes_V5);
pad_short_parameter(Perms, Perms_key_bytes_V5);
}
int Length = 128; // Just take a guess.
if (V <= 1) {
Length = 40;
} else if (V == 4) {
Length = 128;
} else if (V == 5) {
Length = 256;
} else {
if (encryption_dict.getKey("/Length").isInteger()) {
Length = encryption_dict.getKey("/Length").getIntValueAsInt();
if (Length % 8 || Length < 40 || Length > 128) {
Length = 128; // Just take a guess.
}
}
}
encrypt_metadata = true;
if (V >= 4 && encryption_dict.getKey("/EncryptMetadata").isBool()) {
encrypt_metadata = encryption_dict.getKey("/EncryptMetadata").getBoolValue();
}
if (V == 4 || V == 5) {
auto CF = encryption_dict.getKey("/CF");
for (auto const& [filter, cdict]: CF.as_dictionary()) {
if (cdict.isDictionary()) {
encryption_method_e method = e_none;
if (Name const& CFM = cdict["/CFM"]) {
if (CFM == "/V2") {
method = e_rc4;
} else if (CFM == "/AESV2") {
method = e_aes;
} else if (CFM == "/AESV3") {
method = e_aesv3;
} else {
// Don't complain now -- maybe we won't need to reference this type.
method = e_unknown;
}
}
crypt_filters[filter] = method;
}
}
cf_stream = interpretCF(encryption_dict["/StmF"]);
cf_string = interpretCF(encryption_dict["/StrF"]);
if (Name const& EFF = encryption_dict["/EFF"]) {
// qpdf does not use this for anything other than informational purposes. This is
// intended to instruct conforming writers on which crypt filter should be used when new
// file attachments are added to a PDF file, but qpdf never generates encrypted files
// with non-default crypt filters. Prior to 10.2, I was under the mistaken impression
// that this was supposed to be used for decrypting attachments, but the code was wrong
// in a way that turns out not to have mattered because no writers were generating files
// the way I was imagining. Still, providing this information could be useful when
// looking at a file generated by something else, such as Acrobat when specifying that
// only attachments should be encrypted.
cf_file = interpretCF(EFF);
} else {
cf_file = cf_stream;
}
}
Encryption data(V, R, Length / 8, p, O, U, OE, UE, Perms, id1, encrypt_metadata);
if (qm.cf.password_is_hex_key()) {
// ignore passwords in file
encryption_key = QUtil::hex_decode(provided_password);
return;
}
owner_password_matched = data.check_owner_password(user_password, provided_password);
if (owner_password_matched && V < 5) {
// password supplied was owner password; user_password has been initialized for V < 5
if (qpdf.getTrimmedUserPassword() == provided_password) {
user_password_matched = true;
QTC::TC("qpdf", "QPDF_encryption user matches owner V < 5");
}
} else {
user_password_matched = data.check_user_password(provided_password);
if (user_password_matched) {
user_password = provided_password;
}
}
if (user_password_matched && owner_password_matched) {
QTC::TC("qpdf", "QPDF_encryption same password", (V < 5) ? 0 : 1);
}
if (!(owner_password_matched || user_password_matched)) {
throw QPDFExc(qpdf_e_password, file->getName(), "", 0, "invalid password");
}
if (V < 5) {
// For V < 5, the user password is encrypted with the owner password, and the user password
// is always used for computing the encryption key.
encryption_key = data.compute_encryption_key(user_password);
} else {
// For V >= 5, either password can be used independently to compute the encryption key, and
// neither password can be used to recover the other.
bool perms_valid;
encryption_key = data.recover_encryption_key_with_password(provided_password, perms_valid);
if (!perms_valid) {
warn_damaged_pdf("/Perms field in encryption dictionary doesn't match expected value");
}
}
}
std::string
QPDF::getKeyForObject(std::shared_ptr<EncryptionParameters> encp, QPDFObjGen og, bool use_aes)
{
if (!encp->encrypted) {
throw std::logic_error("request for encryption key in non-encrypted PDF");
}
if (og != encp->cached_key_og) {
encp->cached_object_encryption_key = compute_data_key(
encp->encryption_key, og.getObj(), og.getGen(), use_aes, encp->encryption_V, encp->R());
encp->cached_key_og = og;
}
return encp->cached_object_encryption_key;
}
void
QPDF::decryptString(std::string& str, QPDFObjGen og)
{
if (!og.isIndirect()) {
return;
}
bool use_aes = false;
if (m->encp->encryption_V >= 4) {
switch (m->encp->cf_string) {
case e_none:
return;
case e_aes:
use_aes = true;
break;
case e_aesv3:
use_aes = true;
break;
case e_rc4:
break;
default:
warn(m->c.damagedPDF(
"unknown encryption filter for strings (check /StrF in "
"/Encrypt dictionary); strings may be decrypted improperly"));
// To avoid repeated warnings, reset cf_string. Assume we'd want to use AES if V == 4.
m->encp->cf_string = e_aes;
use_aes = true;
break;
}
}
std::string key = getKeyForObject(m->encp, og, use_aes);
try {
if (use_aes) {
QTC::TC("qpdf", "QPDF_encryption aes decode string");
Pl_Buffer bufpl("decrypted string");
Pl_AES_PDF pl("aes decrypt string", &bufpl, false, key);
pl.writeString(str);
pl.finish();
str = bufpl.getString();
} else {
QTC::TC("qpdf", "QPDF_encryption rc4 decode string");
size_t vlen = str.length();
// Using std::shared_ptr guarantees that tmp will be freed even if rc4.process throws an
// exception.
auto tmp = QUtil::make_unique_cstr(str);
RC4 rc4(QUtil::unsigned_char_pointer(key), QIntC::to_int(key.length()));
auto data = QUtil::unsigned_char_pointer(tmp.get());
rc4.process(data, vlen, data);
str = std::string(tmp.get(), vlen);
}
} catch (QPDFExc&) {
throw;
} catch (std::runtime_error& e) {
throw m->c.damagedPDF(
"error decrypting string for object " + og.unparse() + ": " + e.what());
}
}
// Prepend a decryption pipeline to 'pipeline'. The decryption pipeline (returned as
// 'decrypt_pipeline' must be owned by the caller to ensure that it stays alive while the pipeline
// is in use.
void
QPDF::decryptStream(
std::shared_ptr<EncryptionParameters> encp,
std::shared_ptr<InputSource> file,
QPDF& qpdf_for_warning,
Pipeline*& pipeline,
QPDFObjGen og,
QPDFObjectHandle& stream_dict,
bool is_root_metadata,
std::unique_ptr<Pipeline>& decrypt_pipeline)
{
if (Name(stream_dict["/Type"]) == "/XRef") {
return;
}
bool use_aes = false;
if (encp->encryption_V >= 4) {
encryption_method_e method = e_unknown;
std::string method_source = "/StmF from /Encrypt dictionary";
if (stream_dict.getKey("/Filter").isOrHasName("/Crypt")) {
if (Dictionary decode_parms = stream_dict["/DecodeParms"]) {
if (Name(decode_parms["/Type"]) == "/CryptFilterDecodeParms") {
method = encp->interpretCF(decode_parms["/Name"]);
method_source = "stream's Crypt decode parameters";
}
} else {
Array filter = stream_dict["/Filter"];
Array decode = stream_dict.getKey("/DecodeParms");
if (filter.size() == decode.size()) {
size_t i = 0;
for (Name item: filter) {
if (item == "/Crypt") {
if (Name name = decode[i]["/Name"]) {
method = encp->interpretCF(name);
method_source = "stream's Crypt decode parameters (array)";
}
break;
}
++i;
}
}
}
}
if (method == e_unknown) {
if (!encp->encrypt_metadata && is_root_metadata) {
method = e_none;
} else {
method = encp->cf_stream;
}
}
use_aes = false;
switch (method) {
case e_none:
return;
break;
case e_aes:
use_aes = true;
break;
case e_aesv3:
use_aes = true;
break;
case e_rc4:
break;
default:
// filter local to this stream.
qpdf_for_warning.warn(
{qpdf_e_damaged_pdf,
file->getName(),
"",
file->getLastOffset(),
"unknown encryption filter for streams (check " + method_source +
"); streams may be decrypted improperly"});
// To avoid repeated warnings, reset cf_stream. Assume we'd want to use AES if V == 4.
encp->cf_stream = e_aes;
use_aes = true;
break;
}
}
std::string key = getKeyForObject(encp, og, use_aes);
if (use_aes) {
decrypt_pipeline =
std::make_unique<Pl_AES_PDF>("AES stream decryption", pipeline, false, key);
} else {
decrypt_pipeline = std::make_unique<Pl_RC4>("RC4 stream decryption", pipeline, key);
}
pipeline = decrypt_pipeline.get();
}
void
QPDF::compute_encryption_O_U(
char const* user_password,
char const* owner_password,
int V,
int R,
int key_len,
int P,
bool encrypt_metadata,
std::string const& id1,
std::string& out_O,
std::string& out_U)
{
Encryption data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata);
data.compute_encryption_O_U(user_password, owner_password);
out_O = data.getO();
out_U = data.getU();
}
void
Encryption::compute_encryption_O_U(char const* user_password, char const* owner_password)
{
if (V >= 5) {
throw std::logic_error("compute_encryption_O_U called for file with V >= 5");
}
O = compute_O_value(user_password, owner_password);
U = compute_U_value(user_password);
}
void
QPDF::compute_encryption_parameters_V5(
char const* user_password,
char const* owner_password,
int V,
int R,
int key_len,
int P,
bool encrypt_metadata,
std::string const& id1,
std::string& encryption_key,
std::string& out_O,
std::string& out_U,
std::string& out_OE,
std::string& out_UE,
std::string& out_Perms)
{
Encryption data(V, R, key_len, P, "", "", "", "", "", id1, encrypt_metadata);
encryption_key = data.compute_encryption_parameters_V5(user_password, owner_password);
out_O = data.getO();
out_U = data.getU();
out_OE = data.getOE();
out_UE = data.getUE();
out_Perms = data.getPerms();
}
std::string
Encryption::compute_encryption_parameters_V5(char const* user_password, char const* owner_password)
{
auto out_encryption_key = util::random_string(key_bytes);
// Algorithm 8 from the PDF 2.0
auto validation_salt = util::random_string(8);
auto key_salt = util::random_string(8);
U = hash_V5(user_password, validation_salt, "").append(validation_salt).append(key_salt);
auto intermediate_key = hash_V5(user_password, key_salt, "");
UE = process_with_aes(intermediate_key, true, out_encryption_key);
// Algorithm 9 from the PDF 2.0
validation_salt = util::random_string(8);
key_salt = util::random_string(8);
O = hash_V5(owner_password, validation_salt, U) + validation_salt + key_salt;
intermediate_key = hash_V5(owner_password, key_salt, U);
OE = process_with_aes(intermediate_key, true, out_encryption_key);
// Algorithm 10 from the PDF 2.0
Perms = process_with_aes(out_encryption_key, true, compute_Perms_value_V5_clear());
return out_encryption_key;
}
std::string
Encryption::compute_parameters(char const* user_password, char const* owner_password)
{
if (V < 5) {
compute_encryption_O_U(user_password, owner_password);
return compute_encryption_key(user_password);
} else {
return compute_encryption_parameters_V5(user_password, owner_password);
}
}
std::string const&
QPDF::getPaddedUserPassword() const
{
return m->encp->user_password;
}
std::string
QPDF::getTrimmedUserPassword() const
{
std::string result = m->encp->user_password;
trim_user_password(result);
return result;
}
std::string
QPDF::getEncryptionKey() const
{
return m->encp->encryption_key;
}
bool
QPDF::isEncrypted() const
{
return m->encp->encrypted;
}
bool
QPDF::isEncrypted(int& R, int& P)
{
if (!m->encp->encrypted) {
return false;
}
P = m->encp->P();
R = m->encp->R();
return true;
}
bool
QPDF::isEncrypted(
int& R,
int& P,
int& V,
encryption_method_e& stream_method,
encryption_method_e& string_method,
encryption_method_e& file_method)
{
if (!m->encp->encrypted) {
return false;
}
P = m->encp->P();
R = m->encp->R();
V = m->encp->encryption_V;
stream_method = m->encp->cf_stream;
string_method = m->encp->cf_string;
file_method = m->encp->cf_file;
return true;
}
bool
QPDF::ownerPasswordMatched() const
{
return m->encp->owner_password_matched;
}
bool
QPDF::userPasswordMatched() const
{
return m->encp->user_password_matched;
}
bool
QPDF::allowAccessibility()
{
return m->encp->R() < 3 ? m->encp->P(5) : m->encp->P(10);
}
bool
QPDF::allowExtractAll()
{
return m->encp->P(5);
}
bool
QPDF::allowPrintLowRes()
{
return m->encp->P(3);
}
bool
QPDF::allowPrintHighRes()
{
return allowPrintLowRes() && (m->encp->R() < 3 ? true : m->encp->P(12));
}
bool
QPDF::allowModifyAssembly()
{
return m->encp->R() < 3 ? m->encp->P(4) : m->encp->P(11);
}
bool
QPDF::allowModifyForm()
{
return m->encp->R() < 3 ? m->encp->P(6) : m->encp->P(9);
}
bool
QPDF::allowModifyAnnotation()
{
return m->encp->P(6);
}
bool
QPDF::allowModifyOther()
{
return m->encp->P(4);
}
bool
QPDF::allowModifyAll()
{
return allowModifyAnnotation() && allowModifyOther() &&
(m->encp->R() < 3 ? true : allowModifyForm() && allowModifyAssembly());
}
|