File: qwt_raster_data.cpp

package info (click to toggle)
qsstv 9.2.4%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 17,120 kB
  • ctags: 10,635
  • sloc: cpp: 84,688; makefile: 7
file content (397 lines) | stat: -rw-r--r-- 11,604 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
 * Qwt Widget Library
 * Copyright (C) 1997   Josef Wilgen
 * Copyright (C) 2002   Uwe Rathmann
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the Qwt License, Version 1.0
 *****************************************************************************/

#include "qwt_raster_data.h"
#include "qwt_point_3d.h"

class QwtRasterData::ContourPlane
{
public:
    inline ContourPlane( double z ):
        d_z( z )
    {
    }

    inline bool intersect( const QwtPoint3D vertex[3],
        QPointF line[2], bool ignoreOnPlane ) const;

    inline double z() const { return d_z; }

private:
    inline int compare( double z ) const;
    inline QPointF intersection(
        const QwtPoint3D& p1, const QwtPoint3D &p2 ) const;

    double d_z;
};

inline bool QwtRasterData::ContourPlane::intersect(
    const QwtPoint3D vertex[3], QPointF line[2],
    bool ignoreOnPlane ) const
{
    bool found = true;

    // Are the vertices below (-1), on (0) or above (1) the plan ?
    const int eq1 = compare( vertex[0].z() );
    const int eq2 = compare( vertex[1].z() );
    const int eq3 = compare( vertex[2].z() );

    /*
        (a) All the vertices lie below the contour level.
        (b) Two vertices lie below and one on the contour level.
        (c) Two vertices lie below and one above the contour level.
        (d) One vertex lies below and two on the contour level.
        (e) One vertex lies below, one on and one above the contour level.
        (f) One vertex lies below and two above the contour level.
        (g) Three vertices lie on the contour level.
        (h) Two vertices lie on and one above the contour level.
        (i) One vertex lies on and two above the contour level.
        (j) All the vertices lie above the contour level.
     */

    static const int tab[3][3][3] =
    {
        // jump table to avoid nested case statements
        { { 0, 0, 8 }, { 0, 2, 5 }, { 7, 6, 9 } },
        { { 0, 3, 4 }, { 1, 10, 1 }, { 4, 3, 0 } },
        { { 9, 6, 7 }, { 5, 2, 0 }, { 8, 0, 0 } }
    };

    const int edgeType = tab[eq1+1][eq2+1][eq3+1];
    switch ( edgeType )
    {
        case 1:
            // d(0,0,-1), h(0,0,1)
            line[0] = vertex[0].toPoint();
            line[1] = vertex[1].toPoint();
            break;
        case 2:
            // d(-1,0,0), h(1,0,0)
            line[0] = vertex[1].toPoint();
            line[1] = vertex[2].toPoint();
            break;
        case 3:
            // d(0,-1,0), h(0,1,0)
            line[0] = vertex[2].toPoint();
            line[1] = vertex[0].toPoint();
            break;
        case 4:
            // e(0,-1,1), e(0,1,-1)
            line[0] = vertex[0].toPoint();
            line[1] = intersection( vertex[1], vertex[2] );
            break;
        case 5:
            // e(-1,0,1), e(1,0,-1)
            line[0] = vertex[1].toPoint();
            line[1] = intersection( vertex[2], vertex[0] );
            break;
        case 6:
            // e(-1,1,0), e(1,0,-1)
            line[0] = vertex[2].toPoint();
            line[1] = intersection( vertex[0], vertex[1] );
            break;
        case 7:
            // c(-1,1,-1), f(1,1,-1)
            line[0] = intersection( vertex[0], vertex[1] );
            line[1] = intersection( vertex[1], vertex[2] );
            break;
        case 8:
            // c(-1,-1,1), f(1,1,-1)
            line[0] = intersection( vertex[1], vertex[2] );
            line[1] = intersection( vertex[2], vertex[0] );
            break;
        case 9:
            // f(-1,1,1), c(1,-1,-1)
            line[0] = intersection( vertex[2], vertex[0] );
            line[1] = intersection( vertex[0], vertex[1] );
            break;
        case 10:
            // g(0,0,0)
            // The CONREC algorithm has no satisfying solution for
            // what to do, when all vertices are on the plane.

            if ( ignoreOnPlane )
                found = false;
            else
            {
                line[0] = vertex[2].toPoint();
                line[1] = vertex[0].toPoint();
            }
            break;
        default:
            found = false;
    }

    return found;
}

inline int QwtRasterData::ContourPlane::compare( double z ) const
{
    if ( z > d_z )
        return 1;

    if ( z < d_z )
        return -1;

    return 0;
}

inline QPointF QwtRasterData::ContourPlane::intersection(
    const QwtPoint3D& p1, const QwtPoint3D &p2 ) const
{
    const double h1 = p1.z() - d_z;
    const double h2 = p2.z() - d_z;

    const double x = ( h2 * p1.x() - h1 * p2.x() ) / ( h2 - h1 );
    const double y = ( h2 * p1.y() - h1 * p2.y() ) / ( h2 - h1 );

    return QPointF( x, y );
}

//! Constructor
QwtRasterData::QwtRasterData()
{
}

//! Destructor
QwtRasterData::~QwtRasterData()
{
}

/*!
   Set the bounding interval for the x, y or z coordinates.

   \param axis Axis
   \param interval Bounding interval

   \sa interval()
*/
void QwtRasterData::setInterval( Qt::Axis axis, const QwtInterval &interval )
{
    d_intervals[axis] = interval;
}

/*!
  \brief Initialize a raster

  Before the composition of an image QwtPlotSpectrogram calls initRaster(),
  announcing the area and its resolution that will be requested.

  The default implementation does nothing, but for data sets that
  are stored in files, it might be good idea to reimplement initRaster(),
  where the data is resampled and loaded into memory.

  \param area Area of the raster
  \param raster Number of horizontal and vertical pixels

  \sa initRaster(), value()
*/
void QwtRasterData::initRaster( const QRectF &area, const QSize &raster )
{
    Q_UNUSED( area );
    Q_UNUSED( raster );
}

/*!
  \brief Discard a raster

  After the composition of an image QwtPlotSpectrogram calls discardRaster().

  The default implementation does nothing, but if data has been loaded
  in initRaster(), it could deleted now.

  \sa initRaster(), value()
*/
void QwtRasterData::discardRaster()
{
}

/*!
   \brief Pixel hint

   pixelHint() returns the geometry of a pixel, that can be used 
   to calculate the resolution and alignment of the plot item, that is
   representing the data. 
   
   Width and height of the hint need to be the horizontal  
   and vertical distances between 2 neighbored points. 
   The center of the hint has to be the position of any point 
   ( it doesn't matter which one ).

   An empty hint indicates, that there are values for any detail level.

   Limiting the resolution of the image might significantly improve
   the performance and heavily reduce the amount of memory when rendering
   a QImage from the raster data. 

   The default implementation returns an empty rectangle recommending
   to render in target device ( f.e. screen ) resolution.

   \param area In most implementations the resolution of the data doesn't
               depend on the requested area.

   \return Bounding rectangle of a pixel 
*/
QRectF QwtRasterData::pixelHint( const QRectF &area ) const
{
    Q_UNUSED( area );
    return QRectF(); 
}

/*!
   Calculate contour lines

   \param rect Bounding rectangle for the contour lines
   \param raster Number of data pixels of the raster data
   \param levels List of limits, where to insert contour lines
   \param flags Flags to customize the contouring algorithm

   \return Calculated contour lines

   An adaption of CONREC, a simple contouring algorithm.
   http://local.wasp.uwa.edu.au/~pbourke/papers/conrec/
*/
QwtRasterData::ContourLines QwtRasterData::contourLines(
    const QRectF &rect, const QSize &raster,
    const QList<double> &levels, ConrecFlags flags ) const
{
    ContourLines contourLines;

    if ( levels.size() == 0 || !rect.isValid() || !raster.isValid() )
        return contourLines;

    const double dx = rect.width() / raster.width();
    const double dy = rect.height() / raster.height();

    const bool ignoreOnPlane =
        flags & QwtRasterData::IgnoreAllVerticesOnLevel;

    const QwtInterval range = interval( Qt::ZAxis );
    bool ignoreOutOfRange = false;
    if ( range.isValid() )
        ignoreOutOfRange = flags & IgnoreOutOfRange;

    QwtRasterData *that = const_cast<QwtRasterData *>( this );
    that->initRaster( rect, raster );

    for ( int y = 0; y < raster.height() - 1; y++ )
    {
        enum Position
        {
            Center,

            TopLeft,
            TopRight,
            BottomRight,
            BottomLeft,

            NumPositions
        };

        QwtPoint3D xy[NumPositions];

        for ( int x = 0; x < raster.width() - 1; x++ )
        {
            const QPointF pos( rect.x() + x * dx, rect.y() + y * dy );

            if ( x == 0 )
            {
                xy[TopRight].setX( pos.x() );
                xy[TopRight].setY( pos.y() );
                xy[TopRight].setZ(
                    value( xy[TopRight].x(), xy[TopRight].y() )
                );

                xy[BottomRight].setX( pos.x() );
                xy[BottomRight].setY( pos.y() + dy );
                xy[BottomRight].setZ(
                    value( xy[BottomRight].x(), xy[BottomRight].y() )
                );
            }

            xy[TopLeft] = xy[TopRight];
            xy[BottomLeft] = xy[BottomRight];

            xy[TopRight].setX( pos.x() + dx );
            xy[TopRight].setY( pos.y() );
            xy[BottomRight].setX( pos.x() + dx );
            xy[BottomRight].setY( pos.y() + dy );

            xy[TopRight].setZ(
                value( xy[TopRight].x(), xy[TopRight].y() )
            );
            xy[BottomRight].setZ(
                value( xy[BottomRight].x(), xy[BottomRight].y() )
            );

            double zMin = xy[TopLeft].z();
            double zMax = zMin;
            double zSum = zMin;

            for ( int i = TopRight; i <= BottomLeft; i++ )
            {
                const double z = xy[i].z();

                zSum += z;
                if ( z < zMin )
                    zMin = z;
                if ( z > zMax )
                    zMax = z;
            }

            if ( ignoreOutOfRange )
            {
                if ( !range.contains( zMin ) || !range.contains( zMax ) )
                    continue;
            }

            if ( zMax < levels[0] ||
                zMin > levels[levels.size() - 1] )
            {
                continue;
            }

            xy[Center].setX( pos.x() + 0.5 * dx );
            xy[Center].setY( pos.y() + 0.5 * dy );
            xy[Center].setZ( 0.25 * zSum );

            const int numLevels = levels.size();
            for ( int l = 0; l < numLevels; l++ )
            {
                const double level = levels[l];
                if ( level < zMin || level > zMax )
                    continue;
                QPolygonF &lines = contourLines[level];
                const ContourPlane plane( level );

                QPointF line[2];
                QwtPoint3D vertex[3];

                for ( int m = TopLeft; m < NumPositions; m++ )
                {
                    vertex[0] = xy[m];
                    vertex[1] = xy[0];
                    vertex[2] = xy[m != BottomLeft ? m + 1 : TopLeft];

                    const bool intersects =
                        plane.intersect( vertex, line, ignoreOnPlane );
                    if ( intersects )
                    {
                        lines += line[0];
                        lines += line[1];
                    }
                }
            }
        }
    }

    that->discardRaster();

    return contourLines;
}