1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/****************************************************************************
** $Id: qpoint.cpp,v 2.16 1999/05/31 10:26:48 warwick Exp $
**
** Implementation of QPoint class
**
** Created : 931028
**
** Copyright (C) 1992-1999 Troll Tech AS. All rights reserved.
**
** This file is part of the Qt GUI Toolkit.
**
** This file may be distributed under the terms of the Q Public License
** as defined by Troll Tech AS of Norway and appearing in the file
** LICENSE.QPL included in the packaging of this file.
**
** Licensees holding valid Qt Professional Edition licenses may use this
** file in accordance with the Qt Professional Edition License Agreement
** provided with the Qt Professional Edition.
**
** See http://www.troll.no/pricing.html or email sales@troll.no for
** information about the Professional Edition licensing, or see
** http://www.troll.no/qpl/ for QPL licensing information.
**
*****************************************************************************/
#include "qpoint.h"
#include "qdatastream.h"
/*!
\class QPoint qpoint.h
\brief The QPoint class defines a point in the plane.
\ingroup drawing
A point is specified by an x coordinate and a y coordinate.
The coordinate type is QCOORD (defined in qwindowdefs.h as \c int).
The minimum value of QCOORD is QCOORD_MIN (-2147483648) and the maximum
value is QCOORD_MAX (2147483647).
We have defined many operator functions that make arithmetic on points
simple and intuitive.
Example:
\code
QPoint p( 1, 2 );
QPoint q( -8, 5 );
QPoint r( 9, 7 );
QPoint x = 2*p + (q-r)*5.5 - (r+p/1.5);
\endcode
\sa QSize, QRect
*/
/*****************************************************************************
QPoint member functions
*****************************************************************************/
/*!
\fn QPoint::QPoint()
Constructs a point (0,0) (a \link QPoint::isNull() null point\endlink).
*/
/*!
\fn QPoint::QPoint( int xpos, int ypos )
Constructs a point with the x value \e xpos and y value \e ypos.
*/
/*!
\fn bool QPoint::isNull() const
Returns TRUE if both the x value and the y value are 0.
*/
/*!
\fn int QPoint::x() const
Returns the x coordinate of the point.
\sa y()
*/
/*!
\fn int QPoint::y() const
Returns the y coordinate of the point.
\sa x()
*/
/*!
\fn void QPoint::setX( int x )
Sets the x coordinate of the point to \e x.
\sa setY()
*/
/*!
\fn void QPoint::setY( int y )
Sets the y coordinate of the point to \e y.
\sa setX()
*/
/*!
\fn QCOORD &QPoint::rx()
Returns a reference to the x coordinate of the point.
Using a reference makes it possible to directly manipulate x.
Example:
\code
QPoint p( 1, 2 );
p.rx()--; // p becomes (0,2)
\endcode
\sa ry()
*/
/*!
\fn QCOORD &QPoint::ry()
Returns a reference to the y coordinate of the point.
Using a reference makes it possible to directly manipulate y.
Example:
\code
QPoint p( 1, 2 );
p.ry()++; // p becomes (1,3)
\endcode
\sa rx()
*/
/*!
\fn QPoint &QPoint::operator+=( const QPoint &p )
Adds \e p to the point and returns a reference to this point.
Example:
\code
QPoint p( 3, 7 );
QPoint q( -1, 4 );
p += q; // p becomes (2,11)
\endcode
*/
/*!
\fn QPoint &QPoint::operator-=( const QPoint &p )
Subtracts \e p from the point and returns a reference to this point.
Example:
\code
QPoint p( 3, 7 );
QPoint q( -1, 4 );
p -= q; // p becomes (4,3)
\endcode
*/
/*!
\fn QPoint &QPoint::operator*=( int c )
Multiplies both x and y with \e c, and return a reference to this point.
Example:
\code
QPoint p( -1, 4 );
p *= 2; // p becomes (-2,8)
\endcode
*/
/*!
\fn QPoint &QPoint::operator*=( double c )
Multiplies both x and y with \e c, and return a reference to this point.
Example:
\code
QPoint p( -1, 4 );
p *= 2.5; // p becomes (-3,10)
\endcode
Note that the result is truncated.
*/
/*!
\fn bool operator==( const QPoint &p1, const QPoint &p2 )
\relates QPoint
Returns TRUE if \e p1 and \e p2 are equal, or FALSE if they are different.
*/
/*!
\fn bool operator!=( const QPoint &p1, const QPoint &p2 )
\relates QPoint
Returns TRUE if \e p1 and \e p2 are different, or FALSE if they are equal.
*/
/*!
\fn QPoint operator+( const QPoint &p1, const QPoint &p2 )
\relates QPoint
Returns the sum of \e p1 and \e p2; each component is added separately.
*/
/*!
\fn QPoint operator-( const QPoint &p1, const QPoint &p2 )
\relates QPoint
Returns \e p2 subtracted from \e p1; each component is
subtracted separately.
*/
/*!
\fn QPoint operator*( const QPoint &p, int c )
\relates QPoint
Multiplies both of \e p's components by \e c and returns the result.
*/
/*!
\fn QPoint operator*( int c, const QPoint &p )
\relates QPoint
Multiplies both of \e p's components by \e c and returns the result.
*/
/*!
\fn QPoint operator*( const QPoint &p, double c )
\relates QPoint
Multiplies both of \e p's components by \e c and returns the
result.
*/
/*!
\fn QPoint operator*( double c, const QPoint &p )
\relates QPoint
Multiplies both of \e p's components by \e c and returns the
result.
*/
/*!
\fn QPoint operator-( const QPoint &p )
\relates QPoint
Returns \e p where x and y have opposite signs.
*/
/*!
\fn QPoint &QPoint::operator/=( int c )
Divides both x and y by \e c, and return a reference to this point.
Example:
\code
QPoint p( -2, 8 );
p /= 2; // p becomes (-1,4)
\endcode
*/
/*!
\fn QPoint &QPoint::operator/=( double c )
Divides both x and y by \e c, and return a reference to this point.
Example:
\code
QPoint p( -3, 10 );
p /= 2.5; // p becomes (-1,4)
\endcode
Note that the result is truncated.
*/
/*!
\fn QPoint operator/( const QPoint &p, int c )
\relates QPoint
Divides both of \e p's components by \e c and returns the result.
*/
/*!
\fn QPoint operator/( const QPoint &p, double c )
\relates QPoint
Divides both of \e p's components by \e c and returns the result.
Note that the result is truncated.
*/
void QPoint::warningDivByZero()
{
#if defined(CHECK_MATH)
qWarning( "QPoint: Division by zero error" );
#endif
}
/*****************************************************************************
QPoint stream functions
*****************************************************************************/
/*!
\relates QPoint
Writes a QPoint to the stream and returns a reference to the stream.
Serialization format: [x (Q_INT32), y (Q_INT32)].
*/
QDataStream &operator<<( QDataStream &s, const QPoint &p )
{
if ( s.version() == 1 )
s << (Q_INT16)p.x() << (Q_INT16)p.y();
else
s << (Q_INT32)p.x() << (Q_INT32)p.y();
return s;
}
/*!
\relates QPoint
Reads a QPoint from the stream and returns a reference to the stream.
*/
QDataStream &operator>>( QDataStream &s, QPoint &p )
{
if ( s.version() == 1 ) {
Q_INT16 x, y;
s >> x; p.rx() = x;
s >> y; p.ry() = y;
}
else {
Q_INT32 x, y;
s >> x; p.rx() = x;
s >> y; p.ry() = y;
}
return s;
}
/*!
Returns the sum of the absolute values of x() and y(), traditionally
known as the "Manhattan length" of the vector from the origin to the
point. The tradition arises since such distances apply
to travelers who can only travel on a rectangular grid, like the streets
of Manhattan.
This is a useful approximation to the true length,
sqrt(pow(x(),2)+pow(y(),2)).
*/
int QPoint::manhattanLength() const
{
return QABS(x())+QABS(y());
}
|