File: qpointarray.cpp

package info (click to toggle)
qt2 1%3A2.0.2-1.1
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,248 kB
  • ctags: 24,915
  • sloc: cpp: 150,477; makefile: 22,439; ansic: 21,468; yacc: 1,445; sh: 948; perl: 458; lex: 393; pascal: 141
file content (1007 lines) | stat: -rw-r--r-- 24,598 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
/****************************************************************************
** $Id: qpointarray.cpp,v 2.27.2.1 1999/09/01 10:49:34 aavit Exp $
**
** Implementation of QPointArray class
**
** Created : 940213
**
** Copyright (C) 1992-1999 Troll Tech AS.  All rights reserved.
**
** This file is part of the Qt GUI Toolkit.
**
** This file may be distributed under the terms of the Q Public License
** as defined by Troll Tech AS of Norway and appearing in the file
** LICENSE.QPL included in the packaging of this file.
**
** Licensees holding valid Qt Professional Edition licenses may use this
** file in accordance with the Qt Professional Edition License Agreement
** provided with the Qt Professional Edition.
**
** See http://www.troll.no/pricing.html or email sales@troll.no for
** information about the Professional Edition licensing, or see
** http://www.troll.no/qpl/ for QPL licensing information.
**
*****************************************************************************/

#include "qpointarray.h"
#include "qrect.h"
#include "qbitarray.h"
#include "qdatastream.h"
#include "qwmatrix.h"
#include <stdarg.h>

const double Q_PI   = 3.14159265358979323846;   // pi


/*!
  \class QPointArray qpointarray.h
  \brief The QPointArray class provides an array of points.

  \ingroup drawing

  \inherit QArray

  The QPointArray is an array of QPoint objects. In addition to the functions 
  provided by QArray, QPointArray provides some handy methods:

  For convenient reading and writing of the point data: setPoints(), 
  putPoints(), point(), and setPoint().

  For geometry operations: boundingRect() and translate(). As for the latter,
  note that QWMatrix provides a map() function for more general transformation
  of QPointArrays.

  QPointArray is used by the QPainter to draw
  \link QPainter::drawLineSegments() line segments\endlink,
  \link QPainter::drawPolyline() polylines\endlink,
  \link QPainter::drawPolygon() polygons\endlink and
  \link QPainter::drawQuadBezier() Bezier curves\endlink.


  Note that since this class is a QArray, it is
  \link shclass.html explicitly shared\endlink
  and works with shallow copies by default.
*/


/*****************************************************************************
  QPointArray member functions
 *****************************************************************************/

/*!
  \fn QPointArray::QPointArray()
  Constructs a null point array.
  \sa isNull()
*/

/*!
  \fn QPointArray::QPointArray( int size )
  Constructs a point array with room for \e size points.
  Makes a null array if \e size == 0.

  \sa resize(), isNull()
*/

/*!
  \fn QPointArray::QPointArray( const QPointArray &a )
  Constructs a
  \link shclass.html shallow copy\endlink of the point array \e a.

  \sa copy()
*/

/*!
  Constructs a point array from the rectangle \e r.

  If \e closed is FALSE, then the point array will contain the
  following four points (in the listed order):
  <ol>
  <li> r.topLeft()
  <li> r.topRight()
  <li> r.bottomRight()
  <li> r.bottomLeft()
  </ol>

  If \e closed is TRUE, then a fifth point is set to r.topLeft() to
  close the point array.
*/

QPointArray::QPointArray( const QRect &r, bool closed )
{
    setPoints( 4, r.left(),  r.top(),
		  r.right(), r.top(),
		  r.right(), r.bottom(),
		  r.left(),  r.bottom() );
    if ( closed ) {
	resize( 5 );
	setPoint( 4, r.left(), r.top() );
    }
}

/*!
  Constructs a point array with \e nPoints points, taken from the
  \e points array.

  Equivalent to setPoints(nPoints,points).
*/

QPointArray::QPointArray( int nPoints, const QCOORD *points )
{
    setPoints( nPoints, points );
}


/*!
  \fn QPointArray &QPointArray::operator=( const QPointArray &a )
  Assigns a
  \link shclass.html shallow copy\endlink of \e a to this point array
  and returns a reference to this point array.

  Equivalent to assign( a ).

  \sa copy()
*/

/*!
  \fn QPointArray QPointArray::copy() const

  Creates a
  \link shclass.html deep copy\endlink of the array.
*/



/*!
  Translates all points in the array \e (dx,dy).
*/

void QPointArray::translate( int dx, int dy )
{
    register QPoint *p = data();
    register int i = size();
    QPoint pt( dx, dy );
    while ( i-- ) {
	*p += pt;
	p++;
    }
}


/*!
  Returns the point at position \e index in the array in \e *x and \e *y.
*/

void QPointArray::point( uint index, int *x, int *y ) const
{
    QPoint p = QArray<QPoint>::at( index );
    *x = (int)p.x();
    *y = (int)p.y();
}

/*!
  Returns the point at position \e index in the array.
*/

QPoint QPointArray::point( uint index ) const
{
    return QArray<QPoint>::at( index );
}

/*!
  Sets the point at position \e index in the array to \e (x,y).
*/

void QPointArray::setPoint( uint index, int x, int y )
{
    QArray<QPoint>::at( index ) = QPoint( x, y );
}

/*!
  Resizes the array to \e nPoints and sets the points in the array to
  the values taken from \e points.

  Returns TRUE if successful, or FALSE if the array could not be resized.

  Example:
  \code
    static QCOORD points[] = { 1,2, 3,4 };
    QPointArray a;
    a.setPoints( 2, points );
  \endcode

  The example code creates an array with two points (1,2) and (3,4).

  \sa resize(), putPoints()
*/

bool QPointArray::setPoints( int nPoints, const QCOORD *points )
{
    if ( !resize(nPoints) )
	return FALSE;
    int i = 0;
    while ( nPoints-- ) {			// make array of points
	setPoint( i++, *points, *(points+1) );
	points++;
	points++;
    }
    return TRUE;
}

/*!
  \fn void QPointArray::setPoint( uint i, const QPoint &p )

  Equivalent to setPoint( i, p.x(), p.y() ).
*/

/*!
  Resizes the array to \e nPoints and sets the points in the array to
  the values taken from the variable argument list.

  Returns TRUE if successful, or FALSE if the array could not be resized.

  Example:
  \code
    QPointArray a;
    a.setPoints( 2, 1,2, 3,4 );
  \endcode

  The example code creates an array with two points (1,2) and (3,4).

  \sa resize(), putPoints()
*/

bool QPointArray::setPoints( int nPoints, int firstx, int firsty,
			     ... )
{
    va_list ap;
    if ( !resize(nPoints) )
	return FALSE;
    setPoint( 0, firstx, firsty );		// set first point
    int i = 1, x, y;
    nPoints--;
    va_start( ap, firsty );
    while ( nPoints-- ) {
	x = va_arg( ap, int );
	y = va_arg( ap, int );
	setPoint( i++, x, y );
    }
    va_end( ap );
    return TRUE;
}

/*!
  Copies \e nPoints points from the \e points array into this point array.
  Will resize this point array if <code>index+nPoints</code> exceeds
  the size of the array.

  Returns TRUE if successful, or FALSE if the array could not be resized.

  Example:
  \code
    QPointArray a( 1 );
    a[0] = QPoint( 1, 2 );
    static QCOORD points[] = { 3,4, 5,6 };
    a.putPoints( 1, 2, points );
  \endcode

  The example code creates an array with three points: (1,2), (3,4)
  and (5,6).

  This function differs from setPoints() in that it does not resize the
  array unless the array size is exceeded.

  \sa resize(), setPoints()
*/

bool QPointArray::putPoints( int index, int nPoints, const QCOORD *points )
{
    if ( index + nPoints > (int)size() ) {	// extend array
	if ( !resize( index + nPoints ) )
	    return FALSE;
    }
    int i = index;
    while ( nPoints-- ) {			// make array of points
	setPoint( i++, *points, *(points+1) );
	points++;
	points++;
    }
    return TRUE;
}

/*!
  Copies \e nPoints points from the variable argument list into this point
  array. Will resize this point array if <code>index+nPoints</code> exceeds
  the size of the array.

  Returns TRUE if successful, or FALSE if the array could not be resized.

  Example:
  \code
    QPointArray a( 1 );
    a[0] = QPoint( 1, 2 );
    a.putPoints( 1, 2, 3,4, 5,6 );
  \endcode

  The example code creates an array with two points (1,2), (3,4) and (5,6).

  This function differs from setPoints() because it does not resize the
  array unless the array size is exceeded.

  \sa resize(), setPoints()
*/

bool QPointArray::putPoints( int index, int nPoints, int firstx, int firsty,
			     ... )
{
    va_list ap;
    if ( index + nPoints > (int)size() ) {	// extend array
	if ( !resize(index + nPoints) )
	    return FALSE;
    }
    if ( nPoints <= 0 )
	return TRUE;
    setPoint( index, firstx, firsty );		// set first point
    int i = index + 1, x, y;
    nPoints--;
    va_start( ap, firsty );
    while ( nPoints-- ) {
	x = va_arg( ap, int );
	y = va_arg( ap, int );
	setPoint( i++, x, y );
    }
    va_end( ap );
    return TRUE;
}


/*!
  Returns the bounding rectangle of the points in the array, or
  QRect(0,0,0,0) if the array is empty.
*/

QRect QPointArray::boundingRect() const
{
    if ( isEmpty() )
	return QRect( 0, 0, 0, 0 );		// null rectangle
    register QPoint *pd = data();
    int minx, maxx, miny, maxy;
    minx = maxx = pd->x();
    miny = maxy = pd->y();
    pd++;
    for ( int i=1; i<(int)size(); i++ ) {	// find min+max x and y
	if ( pd->x() < minx )
	    minx = pd->x();
	else if ( pd->x() > maxx )
	    maxx = pd->x();
	if ( pd->y() < miny )
	    miny = pd->y();
	else if ( pd->y() > maxy )
	    maxy = pd->y();
	pd++;
    }
    return QRect( QPoint(minx,miny), QPoint(maxx,maxy) );
}


static inline int fix_angle( int a )
{
    if ( a > 16*360 )
	a %= 16*360;
    else if ( a < -16*360 )
	a = -((-a) % 16*360);
    return a;
}

/*!
  Sets the points of the array to those describing an arc of an
  ellipse with size \a w by \a h and position (\a x, \a y ), starting
  from angle \a1, spanning \a a2.  The resulting array has sufficient
  resolution for pixel accuracy (see the overloaded function which
  takes an additional QWMatrix parameter).

  Angles are specified in 16ths of a degree,
  i.e. a full circle equals 5760 (16*360). Positive values mean
  counter-clockwise while negative values mean clockwise direction.
  Zero degrees is at the 3'o clock position.
*/

void QPointArray::makeArc( int x, int y, int w, int h, int a1, int a2 )
{
    QWMatrix unit;
    makeArc(x,y,w,h,a1,a2,unit);
#if QT_OLD_MAKEELLIPSE // ### WWA says discard this.
    a1 = fix_angle( a1 );
    if ( a1 < 0 )
	a1 += 16*360;
    a2 = fix_angle( a2 );
    int a3 = a2 > 0 ? a2 : -a2;			// abs angle
    makeEllipse( x, y, w, h );
    int npts = a3*size()/(16*360);		// # points in arc array
    QPointArray a(npts);
    int i = a1*size()/(16*360);
    int j = 0;
    if ( a2 > 0 ) {
	while ( npts-- ) {
	    if ( i >= (int)size() )			// wrap index
		i = 0;
	    a.QArray<QPoint>::at( j++ ) = QArray<QPoint>::at( i++ );
	}
    } else {
	while ( npts-- ) {
	    if ( i < 0 )				// wrap index
		i = (int)size()-1;
	    a.QArray<QPoint>::at( j++ ) = QArray<QPoint>::at( i-- );
	}
    }
    *this = a;
    return;
#endif
}


// Based upon:
//   parelarc.c from Graphics Gems III
//   VanAken / Simar, "A Parametric Elliptical Arc Algorithm"
//
static void
qtr_elips(QPointArray& a, int& offset, double dxP, double dyP, double dxQ, double dyQ, double dxK, double dyK, int m)
{
#define PIV2  102944     /* fixed point PI/2 */
#define TWOPI 411775     /* fixed point 2*PI */
#define HALF  32768      /* fixed point 1/2 */

    int xP, yP, xQ, yQ, xK, yK;
    xP = int(dxP * 65536.0); yP = int(dyP * 65536.0);
    xQ = int(dxQ * 65536.0); yQ = int(dyQ * 65536.0);
    xK = int(dxK * 65536.0); yK = int(dyK * 65536.0);

    int i;
    int vx, ux, vy, uy, xJ, yJ;

    vx = xK - xQ;                 /* displacements from center */
    ux = xK - xP;
    vy = yK - yQ;
    uy = yK - yP;
    xJ = xP - vx + HALF;          /* center of ellipse J */
    yJ = yP - vy + HALF;

    int r;
    ux -= (r = ux >> (2*m + 3));  /* cancel 2nd-order error */
    ux -= (r >>= (2*m + 4));      /* cancel 4th-order error */
    ux -= r >> (2*m + 3);         /* cancel 6th-order error */
    ux += vx >> (m + 1);          /* cancel 1st-order error */
    uy -= (r = uy >> (2*m + 3));  /* cancel 2nd-order error */
    uy -= (r >>= (2*m + 4));      /* cancel 4th-order error */
    uy -= r >> (2*m + 3);         /* cancel 6th-order error */
    uy += vy >> (m + 1);          /* cancel 1st-order error */

    int n = offset;
    for (i = (PIV2 << m) >> 16; i >= 0; --i) {
        a[n++] = QPoint((xJ + vx) >> 16, (yJ + vy) >> 16);
        ux -= vx >> m;
        vx += ux >> m;
        uy -= vy >> m;
        vy += uy >> m;
    }
    offset = n;

#undef PIV2
#undef TWOPI
#undef HALF
}


/*!
  Sets the points of the array to those describing an arc of an
  ellipse with size \a w by \a h and position (\a x, \a y ), starting
  from angle \a1, spanning \a a2, transformed by the matrix \a xf.
  The resulting array has sufficient resolution for pixel accuracy.

  Angles are specified in 16ths of a degree,
  i.e. a full circle equals 5760 (16*360). Positive values mean
  counter-clockwise while negative values mean clockwise direction.
  Zero degrees is at the 3'o clock position.
*/
void QPointArray::makeArc( int x, int y, int w, int h,
			       int a1, int a2,
			       const QWMatrix& xf )
{
    bool rev = a2 < 0;
    if ( rev ) {
	a1 += a2;
	a2 = -a2;
    }
    a1 = fix_angle( a1 );
    if ( a1 < 0 )
	a1 += 16*360;
    a2 = fix_angle( a2 );

    bool arc = a1 != 0 || a2 != 360*16 || rev;


    double xP, yP, xQ, yQ, xK, yK;

    xf.map(x+w, y+h/2.0, &xP, &yP);
    xf.map(x+w/2.0, y, &xQ, &yQ);
    xf.map(x+w, y, &xK, &yK);

    int m = 2;
    int max;
    int q = int(QMAX(QABS(xP-xQ),QABS(yP-yQ)));
    if ( arc )
	q *= 2;
    do {
	m++;
	max = 4*(1 + int((Q_PI/2)*(1<<m)));
    } while (max < q && m < 16); // 16 limits memory usage on HUGE arcs
    resize(max);

    int n = 0;

    double inc = 1.0/(1<<m);

    int nquad[4];
    nquad[0]=0;

    qtr_elips(*this, n, xP, yP, xQ, yQ, xK, yK, m);
    nquad[1] = n;

    xP = xQ; yP = yQ;
    xf.map(x, y+h/2.0, &xQ, &yQ);
    xf.map(x, y, &xK, &yK);
    qtr_elips(*this, n, xP, yP, xQ, yQ, xK, yK, m);
    nquad[2] = n;

    xP = xQ; yP = yQ;
    xf.map(x+w/2.0, y+h, &xQ, &yQ);
    xf.map(x, y+h, &xK, &yK);
    qtr_elips(*this, n, xP, yP, xQ, yQ, xK, yK, m);
    nquad[3] = n;

    xP = xQ; yP = yQ;
    xf.map(x+w, y+h/2.0, &xQ, &yQ);
    xf.map(x+w, y+h, &xK, &yK);
    qtr_elips(*this, n, xP, yP, xQ, yQ, xK, yK, m);

    if ( arc ) {
	// We could merge the sub-ellipse extraction into the above so
	// that we didn't generate points we don't need, but this is
	// clearer, and optimizes for the common case.
	double da1 = double(a1)*Q_PI / (360*8);
	double da2 = double(a2)*Q_PI / (360*8);
	int t = 0;
	while ( da1 > Q_PI/2 ) {
	    da1 -= Q_PI/2;
	    t++;
	}
	int i = nquad[t]+int(da1/inc+0.5);
	int k = int(da2/inc+0.5);
	if ( rev ) {
	    QPointArray r(k);
	    int j = 0;
	    while (k--)
		r[j++] = at((i+k)%n);
	    *this = r;
	} else {
	    int j = 0;
	    while (j < k) {
		setPoint(j,at((k+j)%n));
		j++;
	    }
	    resize(j);
	}
    } else {
	resize(n);
    }
}

/*!
  Sets the points of the array to those describing an ellipse with
  size \a w by \a h and position (\a x, \a y ).

  The returned array has sufficient
  resolution for use as pixels (see the overloaded function which
  takes an additional QWMatrix parameter).
*/
void QPointArray::makeEllipse( int xx, int yy, int w, int h )
{						// midpoint, 1/4 ellipse
    QWMatrix unit;
    makeArc(xx,yy,w,h,0,360*16,unit);
    return;

#if QT_OLD_MAKEELLIPSE // ### WWA says discard this.
    if ( w <= 0 || h <= 0 ) {
	if ( w == 0 || h == 0 ) {
	    resize( 0 );
	    return;
	}
	if ( w < 0 ) {				// negative width
	    w = -w;
	    xx -= w;
	}
	if ( h < 0 ) {				// negative height
	    h = -h;
	    yy -= h;
	}
    }
    int s = (w+h+2)/2;				// max size of x,y array
    int *px = new int[s];			// 1/4th of ellipse
    int *py = new int[s];
    int x, y, i=0;
    double d1, d2;
    double a2=(w/2)*(w/2),  b2=(h/2)*(h/2);
    x = 0;
    y = int(h/2);
    d1 = b2 - a2*(h/2) + 0.25*a2;
    px[i] = x;
    py[i] = y;
    i++;
    while ( a2*(y-0.5) > b2*(x+0.5) ) {		// region 1
	if ( d1 < 0 ) {
	    d1 = d1 + b2*(3.0+2*x);
	    x++;
	} else {
	    d1 = d1 + b2*(3.0+2*x) + 2.0*a2*(1-y);
	    x++;
	    y--;
	}
	px[i] = x;
	py[i] = y;
	i++;
    }
    d2 = b2*(x+0.5)*(x+0.5) + a2*(y-1)*(y-1) - a2*b2;
    while ( y > 0 ) {				// region 2
	if ( d2 < 0 ) {
	    d2 = d2 + 2.0*b2*(x+1) + a2*(3-2*y);
	    x++;
	    y--;
	} else {
	    d2 = d2 + a2*(3-2*y);
	    y--;
	}
	px[i] = x;
	py[i] = y;
	i++;
    }
    s = i;
    resize( 4*s );				// make full point array
    xx += w/2;
    yy += h/2;
    for ( i=0; i<s; i++ ) {			// mirror
	x = px[i];
	y = py[i];
	setPoint( s-i-1, xx+x, yy-y );
	setPoint( s+i, xx-x, yy-y );
	setPoint( 3*s-i-1, xx-x, yy+y );
	setPoint( 3*s+i, xx+x, yy+y );
    }
    delete[] px;
    delete[] py;
#endif
}


// Work functions for QPointArray::quadBezier()
static
void split(const double *p, double *l, double *r)
{
    double tmpx;
    double tmpy;

    l[0] =  p[0];
    l[1] =  p[1];
    r[6] =  p[6];
    r[7] =  p[7];

    l[2] = (p[0]+ p[2])/2;
    l[3] = (p[1]+ p[3])/2;
    tmpx = (p[2]+ p[4])/2;
    tmpy = (p[3]+ p[5])/2;
    r[4] = (p[4]+ p[6])/2;
    r[5] = (p[5]+ p[7])/2;

    l[4] = (l[2]+ tmpx)/2;
    l[5] = (l[3]+ tmpy)/2;
    r[2] = (tmpx + r[4])/2;
    r[3] = (tmpy + r[5])/2;

    l[6] = (l[4]+ r[2])/2;
    l[7] = (l[5]+ r[3])/2;
    r[0] = l[6];
    r[1] = l[7];
}
// Based on:
//
//   A Fast 2D Point-On-Line Test
//   by Alan Paeth
//   from "Graphics Gems", Academic Press, 1990
static
int pnt_on_line( const double* p, const double* q, const double* t )
{
/*
 * given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
 * return 0 if T is not on the line through      <--P--Q-->
 *        1 if T is on the open ray ending at P: <--P
 *        2 if T is on the closed interior along:   P--Q
 *        3 if T is on the open ray beginning at Q:    Q-->
 *
 * Example: consider the line P = (3,2), Q = (17,7). A plot
 * of the test points T(x,y) (with 0 mapped onto '.') yields:
 *
 *     8| . . . . . . . . . . . . . . . . . 3 3
 *  Y  7| . . . . . . . . . . . . . . 2 2 Q 3 3    Q = 2
 *     6| . . . . . . . . . . . 2 2 2 2 2 . . .
 *  a  5| . . . . . . . . 2 2 2 2 2 2 . . . . .
 *  x  4| . . . . . 2 2 2 2 2 2 . . . . . . . .
 *  i  3| . . . 2 2 2 2 2 . . . . . . . . . . .
 *  s  2| 1 1 P 2 2 . . . . . . . . . . . . . .    P = 2
 *     1| 1 1 . . . . . . . . . . . . . . . . .
 *      +--------------------------------------
 *        1 2 3 4 5 X-axis 10        15      19
 *
 * Point-Line distance is normalized with the Infinity Norm
 * avoiding square-root code and tightening the test vs the
 * Manhattan Norm. All math is done on the field of integers.
 * The latter replaces the initial ">= MAX(...)" test with
 * "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
 * and norm, yielding a broader target line for selection.
 * The tightest test is employed here for best discrimination
 * in merging collinear (to grid coordinates) vertex chains
 * into a larger, spanning vectors within the Lemming editor.
 */

    if ( QABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
        (QMAX(QABS(q[0]-p[0]), QABS(q[1]-p[1])))) return 0;

    if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
	return 1 ;
    if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
	return 1 ;
    if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
	return 3 ;
    if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
	return 3 ;

    return 2 ;
}
static
void polygonizeQBezier( double* acc, int& accsize, const double ctrl[],
			int maxsize )
{
    if ( accsize > maxsize / 2 )
    {
	// This never happens in practice.

	if ( accsize >= maxsize-4 )
	    return;
	// Running out of space - approximate by a line.
        acc[accsize++] = ctrl[0];
	acc[accsize++] = ctrl[1];
	acc[accsize++] = ctrl[6];
	acc[accsize++] = ctrl[7];
	return;
    }

    //intersects:
    double l[8];
    double r[8];
    split( ctrl, l, r);

    if ( pnt_on_line( &ctrl[0], &ctrl[6], &ctrl[2] ) == 2
      && pnt_on_line( &ctrl[0], &ctrl[6], &ctrl[4] ) == 2 )
    {
	// Approximate by 2 lines.
	acc[accsize++] = l[0];
	acc[accsize++] = l[1];
	acc[accsize++] = l[6];
	acc[accsize++] = l[7];
	acc[accsize++] = r[6];
	acc[accsize++] = r[7];
	return;
    }

    // Too big and too curved - recusively subdivide.
    polygonizeQBezier( acc, accsize, l, maxsize );
    polygonizeQBezier( acc, accsize, r, maxsize );
}

/*!
  Returns the Bezier points for the four control points in this array.
*/

QPointArray QPointArray::quadBezier() const
{
#ifdef USE_SIMPLE_QBEZIER_CODE
    if ( size() != 4 ) {
#if defined(CHECK_RANGE)
	qWarning( "QPointArray::bezier: The array must have 4 control points" );
#endif
	QPointArray p;
	return p;
    }

    int v;
    const int n = 3;				// n + 1 control points
    float xvec[4];
    float yvec[4];
    for ( v=0; v<=n; v++ ) {			// store all x,y in xvec,yvec
	int x, y;
	point( v, &x, &y );
	xvec[v] = (float)x;
	yvec[v] = (float)y;
    }

    QRect r = boundingRect();
    int m = QMAX(r.width(),r.height())/2;
    m = QMIN(m,30);				// m = number of result points
    if ( m < 2 )				// at least two points
	m = 2;
    QPointArray p( m );				// p = Bezier point array
    register QPointData *pd = p.data();

    float x0 = xvec[0],	 y0 = yvec[0];
    float dt = 1.0F/m;
    float cx = 3.0F * (xvec[1] - x0);
    float bx = 3.0F * (xvec[2] - xvec[1]) - cx;
    float ax = xvec[3] - (x0 + cx + bx);
    float cy = 3.0F * (yvec[1] - y0);
    float by = 3.0F * (yvec[2] - yvec[1]) - cy;
    float ay = yvec[3] - (y0 + cy + by);
    float t = dt;

    pd->rx() = (QCOORD)xvec[0];
    pd->ry() = (QCOORD)yvec[0];
    pd++;
    m -= 2;

    while ( m-- ) {
	pd->rx() = (QCOORD)qRound( ((ax * t + bx) * t + cx) * t + x0 );
	pd->ry() = (QCOORD)qRound( ((ay * t + by) * t + cy) * t + y0 );
	pd++;
	t += dt;
    }

    pd->rx() = (QCOORD)xvec[3];
    pd->ry() = (QCOORD)yvec[3];

    return p;
#else

    if ( size() != 4 ) {
#if defined(CHECK_RANGE)
	qWarning( "QPointArray::bezier: The array must have 4 control points" );
#endif
	QPointArray pa;
	return pa;
    } else {
	QRect r = boundingRect();
	int m = 4+2*QMAX(r.width(),r.height());
	double *p = new double[m];
	double *ctrl = new double[8];
	int i;
	for (i=0; i<4; i++) {
	    ctrl[i*2] = at(i).x();
	    ctrl[i*2+1] = at(i).y();
	}
	int len=0;
	polygonizeQBezier( p, len, ctrl, m );
	QPointArray pa(len/2);
	int j=0;
	for (i=0; j<len; i++) {
	    // Don't round - it looks terrible
	    int x = int(p[j++]);
	    int y = int(p[j++]);
	    pa[i] = QPoint(x,y);
	}
	delete[] p;
	delete[] ctrl;

	return pa;
    }

#endif
}


/*****************************************************************************
  QPointArray stream functions
 *****************************************************************************/

/*!
  \relates QPointArray
  Writes a point array to the stream and returns a reference to the stream.

  The serialization format is:
  <ol>
  <li> The array size (UINT32)
  <li> The array points (QPoint)
  </ol>
*/

QDataStream &operator<<( QDataStream &s, const QPointArray &a )
{
    register uint i;
    uint len = a.size();
    s << len;					// write size of array
    for ( i=0; i<len; i++ )			// write each point
	s << a.point( i );
    return s;
}

/*!
  \relates QPointArray
  Reads a point array from the stream and returns a reference to the stream.
*/

QDataStream &operator>>( QDataStream &s, QPointArray &a )
{
    register uint i;
    uint len;
    s >> len;					// read size of array
    if ( !a.resize( len ) )			// no memory
	return s;
    QPoint p;
    for ( i=0; i<len; i++ ) {			// read each point
	s >> p;
	a.setPoint( i, p );
    }
    return s;
}




struct QShortPoint {			// Binary compatible with XPoint
    short x, y;
};

uint QPointArray::splen = 0;
void* QPointArray::sp = 0;		// Really a QShortPoint*

/*!
  \internal

  Converts the point coords to short (16bit) size, compatible with
  X11's XPoint structure. The pointer returned points to a static
  array, so its contents will be overwritten the next time this
  function is called.
*/

void* QPointArray::shortPoints( int index, int nPoints ) const
{

    if ( isNull() || !nPoints )
	return 0;
    QPoint* p = data();
    p += index;
    uint i = nPoints < 0 ? size() : nPoints;
    if ( splen < i ) {
	if ( sp )
	    delete[] ((QShortPoint*)sp);
	sp = new QShortPoint[i];
	splen = i;
    }
    QShortPoint* ps = (QShortPoint*)sp;
    while ( i-- ) {
	ps->x = (short)p->x();
	ps->y = (short)p->y();
	p++;
	ps++;
    }
    return sp;
}


/*!
  \internal

  Deallocates the internal buffer used by shortPoints().
*/

void QPointArray::cleanBuffers()
{
    if ( sp )
	delete[] ((QShortPoint*)sp);
    sp = 0;
    splen = 0;
}