File: volumetexturedata.cpp

package info (click to toggle)
qt6-quick3d 6.10.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 143,588 kB
  • sloc: cpp: 395,989; ansic: 41,469; xml: 288; sh: 242; makefile: 32
file content (429 lines) | stat: -rw-r--r-- 12,571 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright (C) 2023 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR BSD-3-Clause

#include "volumetexturedata.h"
#include "qthread.h"
#include <QSize>
#include <QFile>
#include <QElapsedTimer>

QT_BEGIN_NAMESPACE

enum ExampleId { Helix, Box, Colormap };

// Method to convert data from T to uint8_t
template<typename T>
static void convertData(QByteArray &imageData, const QByteArray &imageDataSource)
{
    Q_ASSERT(imageDataSource.size() > 0);
    constexpr auto kScale = sizeof(T) / sizeof(uint8_t);
    auto imageDataSourceData = reinterpret_cast<const T *>(imageDataSource.constData());
    qsizetype imageDataSourceSize = imageDataSource.size() / kScale;
    imageData.resize(imageDataSourceSize);
    auto imageDataPtr = reinterpret_cast<uint8_t *>(imageData.data());

    T min = std::numeric_limits<T>::max();
    T max = std::numeric_limits<T>::min();

#pragma omp parallel for
    for (int i = 0; i < imageDataSourceSize; i++) {
        if (imageDataSourceData[i] > max) {
#pragma omp critical
            max = qMax(max, imageDataSourceData[i]);
        }
    }

#pragma omp parallel for
    for (int i = 0; i < imageDataSourceSize; i++) {
        if (imageDataSourceData[i] < min) {
#pragma omp critical
            min = qMin(min, imageDataSourceData[i]);
        }
    }
    const T range = max - min;
    const double rangeInv = 255.0 / range; // use double for optimal precision

#pragma omp parallel for
    for (int i = 0; i < imageDataSourceSize; i++) {
        imageDataPtr[i] = (imageDataSourceData[i] - min) * rangeInv;
    }
}

static QByteArray createBuiltinVolume(int exampleId)
{
    constexpr int size = 256;

    QByteArray byteArray(size * size * size, 0);
    uint8_t *data = reinterpret_cast<uint8_t *>(byteArray.data());
    const auto cellIndex = [size](int x, int y, int z) {
        Q_UNUSED(size); // MSVC specific
        const int index = x + size * (z + size * y);
        Q_ASSERT(index < size * size * size && index >= 0);
        return index;
    };

    const auto createHelix = [&](float zOffset, uint8_t color) {
        //  x = radius * cos(t)
        //  y = radius * sin(t)
        //  z = climb * t
        //
        // We go through t until z is outside of box

        constexpr float radius = 70.f;
        constexpr float climb = 15.f;
        constexpr float offset = 256 / 2;
        constexpr int thick = 6; // half radius

        int i = -1;
        QVector3D lastCell = QVector3D(0, 0, 0);
        while (true) {
            i++;
            const float t = i * 0.005f;
            const int cellX = offset + radius * qCos(t);
            const int cellY = offset + radius * qSin(t);
            const int cellZ = (climb * t) - zOffset;
            if (cellZ < 0) {
                continue;
            }
            if (cellZ > 255)
                break;

            QVector3D originalCell(cellX, cellY, cellZ);
            if (originalCell == lastCell)
                continue;
            lastCell = originalCell;

#pragma omp parallel for
            for (int z = cellZ - thick; z < cellZ + thick; z++) {
                if (z < 0 || z > 255)
                    continue;
                for (int y = cellY - thick; y < cellY + thick; y++) {
                    if (y < 0 || y > 255)
                        continue;
                    for (int x = cellX - thick; x < cellX + thick; x++) {
                        if (x < 0 || x > 255)
                            continue;
                        QVector3D currCell(x, y, z);
                        float dist = originalCell.distanceToPoint(currCell);
                        if (dist < thick) {
                            data[cellIndex(x, y, z)] = color;
                        }
                    }
                }
            }
        }
    };

    if (exampleId == ExampleId::Helix) {
        // Fill with weird ball and holes
        QVector3D centreCell(size / 2, size / 2, size / 2);
#pragma omp parallel for
        for (int z = 0; z < size; z++) {
            for (int y = 0; y < size; y++) {
                for (int x = 0; x < size; x++) {
                    const float dist = centreCell.distanceToPoint(QVector3D(x, y, z));
                    const float value = dist * 0.5f - 40.f; // Negative value means cell is inside of sphere
                    data[cellIndex(x, y, z)] = value >= 0 ? quint8(qBound(value, 0.f, 80.f)) : 80;
                }
            }
        }
        createHelix(0, 200);
        createHelix(30, 150);
        createHelix(60, 100);

    } else if (exampleId == ExampleId::Colormap) {
#pragma omp parallel for
        for (int z = 0; z < 256; z++) {
            for (int y = 0; y < 256; y++) {
                for (int x = 0; x < 256; x++) {
                    data[cellIndex(x, y, z)] = x;
                }
            }
        }
    } else if (exampleId == ExampleId::Box) {
        std::array<int, 6> colors = { 50, 100, 255, 200, 150, 10 };
        constexpr int width = 10;
#pragma omp parallel for
        for (int i = 0; i < width; i++) {
            int x0 = i;
            int x1 = 255 - i;
            for (int z = 0; z < 256; z++) {
                for (int y = 0; y < 256; y++) {
                    data[cellIndex(x0, y, z)] = colors[0];
                    data[cellIndex(x1, y, z)] = colors[1];
                }
            }
        }
#pragma omp parallel for
        for (int i = 0; i < width; i++) {
            int y0 = i;
            int y1 = 255 - i;
            for (int z = 0; z < 256; z++) {
                for (int x = 0; x < 256; x++) {
                    data[cellIndex(x, y0, z)] = colors[2];
                    data[cellIndex(x, y1, z)] = colors[3];
                }
            }
        }
#pragma omp parallel for
        for (int i = 0; i < width; i++) {
            int z0 = i;
            int z1 = 255 - i;
            for (int y = 0; y < 256; y++) {
                for (int x = 0; x < 256; x++) {
                    data[cellIndex(x, y, z0)] = colors[4];
                    data[cellIndex(x, y, z1)] = colors[5];
                }
            }
        }
    }

    return byteArray;
}

static VolumeTextureData::AsyncLoaderData loadVolume(const VolumeTextureData::AsyncLoaderData &input)
{
    QByteArray imageDataSource;

    if (input.source == QUrl("file:///default_helix")) {
        imageDataSource = createBuiltinVolume(ExampleId::Helix);
    } else if (input.source == QUrl("file:///default_box")) {
        imageDataSource = createBuiltinVolume(ExampleId::Box);
    } else if (input.source == QUrl("file:///default_colormap")) {
        imageDataSource = createBuiltinVolume(ExampleId::Colormap);
    } else {
        // NOTE: we always assume a local file is opened
        QFile file(input.source.toLocalFile());
        if (!file.open(QIODevice::ReadOnly)) {
            qWarning() << "Could not open file: " << file.fileName();
            auto result = input;
            result.success = false;
            return result;
        }

        imageDataSource = file.readAll();
        file.close();
    }

    QByteArray imageData;

    // We scale the values to uint8_t data size
    if (input.dataType == "uint8") {
        imageData = imageDataSource;
    } else if (input.dataType == "uint16") {
        convertData<uint16_t>(imageData, imageDataSource);
    } else if (input.dataType == "int16") {
        convertData<int16_t>(imageData, imageDataSource);
    } else if (input.dataType == "float32") {
        convertData<float>(imageData, imageDataSource);
    } else if (input.dataType == "float64") {
        convertData<double>(imageData, imageDataSource);
    } else {
        qWarning() << "Unknown data type, assuming uint8";
        imageData = imageDataSource;
    }

    // If our source data is smaller than expected we need to expand the texture
    // and fill with something
    qsizetype dataSize = input.depth * input.width * input.height;
    if (imageData.size() < dataSize) {
        imageData.resize(dataSize, '0');
    }

    auto result = input;
    result.volumeData = imageData;
    result.success = true;
    return result;
}

class Worker : public QThread
{
    Q_OBJECT
public:
    Worker(VolumeTextureData *parent, const VolumeTextureData::AsyncLoaderData &loaderData)
        : QThread(parent), m_loaderData(loaderData)
    {
    }
    void run() override { emit resultReady(loadVolume(m_loaderData)); }

signals:
    void resultReady(const VolumeTextureData::AsyncLoaderData result);

private:
    VolumeTextureData::AsyncLoaderData m_loaderData;
};

///////////////////////////////////////////////////////////////////////

VolumeTextureData::VolumeTextureData()
{
    // Load a volume by default so we have something to render to avoid crashes
    m_source = QUrl("file:///default_colormap");
    m_width = 256;
    m_height = 256;
    m_depth = 256;
    m_dataType = "uint8";
    auto result = loadVolume(AsyncLoaderData { m_source, m_width, m_height, m_depth, m_dataType });
    setFormat(Format::R8);
    setTextureData(result.volumeData);
    setSize(QSize(m_width, m_height));
    QQuick3DTextureData::setDepth(m_depth);
}

VolumeTextureData::~VolumeTextureData()
{
    if (m_worker) {
        m_worker->quit();
        m_worker->wait();
        delete m_worker;
    }
}

QUrl VolumeTextureData::source() const
{
    return m_source;
}

void VolumeTextureData::setSource(const QUrl &newSource)
{
    if (m_source == newSource)
        return;

    m_source = newSource;
    if (!m_isLoading && !m_source.isEmpty())
        loadAsync(m_source, m_width, m_height, m_depth, m_dataType);
    emit sourceChanged();
}

qsizetype VolumeTextureData::width() const
{
    return m_width;
}

void VolumeTextureData::setWidth(qsizetype newWidth)
{
    if (m_width == newWidth)
        return;

    m_width = newWidth;
    updateTextureDimensions();
    emit widthChanged();
}

qsizetype VolumeTextureData::height() const
{
    return m_height;
}

void VolumeTextureData::setHeight(qsizetype newHeight)
{
    if (m_height == newHeight)
        return;

    m_height = newHeight;
    updateTextureDimensions();
    emit heightChanged();
}

qsizetype VolumeTextureData::depth() const
{
    return m_depth;
}

void VolumeTextureData::setDepth(qsizetype newDepth)
{
    if (m_depth == newDepth)
        return;

    m_depth = newDepth;
    updateTextureDimensions();
    emit depthChanged();
}

QString VolumeTextureData::dataType() const
{
    return m_dataType;
}

void VolumeTextureData::setDataType(const QString &newDataType)
{
    if (m_dataType == newDataType)
        return;
    m_dataType = newDataType;
    if (!m_isLoading && !m_source.isEmpty())
        loadAsync(m_source, m_width, m_height, m_depth, m_dataType);
    emit dataTypeChanged();
}

void VolumeTextureData::updateTextureDimensions()
{
    if (m_width * m_height * m_depth > m_currentDataSize)
        return;

    setSize(QSize(m_width, m_height));
    QQuick3DTextureData::setDepth(m_depth);
}

void VolumeTextureData::loadAsync(QUrl source, qsizetype width, qsizetype height, qsizetype depth, QString dataType)
{
    loaderData.source = source;
    loaderData.width = width;
    loaderData.height = height;
    loaderData.depth = depth;
    loaderData.dataType = dataType;

    if (m_isLoading) {
        m_isAborting = true;
        return;
    }

    m_isLoading = true;
    initWorker();
}

void VolumeTextureData::initWorker()
{
    Q_ASSERT(!m_worker || !m_worker->isRunning());
    delete m_worker;
    m_worker = new Worker(this, loaderData);
    connect(m_worker, &Worker::resultReady, this, &VolumeTextureData::handleResults);
    m_worker->start();
    Q_ASSERT(m_worker->isRunning());
}

void VolumeTextureData::handleResults(AsyncLoaderData result)
{
    m_worker->quit();
    m_worker->wait();

    if (m_isAborting) {
        m_isAborting = false;
        initWorker();
        return;
    }

    if (!result.success) {
        emit loadFailed(result.source, result.width, result.height, result.depth, result.dataType);
    }

    m_currentDataSize = result.volumeData.size();

    setSize(QSize(m_width, m_height));
    QQuick3DTextureData::setDepth(m_depth);
    setFormat(Format::R8);
    setTextureData(result.volumeData);
    updateTextureDimensions();

    setWidth(result.width);
    setHeight(result.height);
    setDepth(result.depth);
    setDataType(result.dataType);
    setSource(result.source);

    emit loadSucceeded(result.source, result.width, result.height, result.depth, result.dataType);
    m_isLoading = false;
}

QT_END_NAMESPACE

#include "volumetexturedata.moc"