1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// Copyright (C) 2021 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only
// Security note: This file reads and cooks meshes but since it is a tool it is safe
#include "cooking/PxCooking.h"
#include <QtQuick3DUtils/private/qssgmesh_p.h>
#include <QtQuick3DPhysics/private/qcacheutils_p.h>
#include <QtCore/QFile>
#include <QtCore/QFileInfo>
#include <QtGui/QImage>
#include <QCommandLineParser>
#include <QScopeGuard>
#include "PxPhysicsAPI.h"
#include "cooking/PxCooking.h"
#include <iostream>
bool tryReadMesh(QFile *file, QSSGMesh::Mesh &mesh)
{
auto device = QSharedPointer<QIODevice>(file);
const quint32 id = 1;
mesh = QSSGMesh::Mesh::loadMesh(device.data(), id);
return mesh.isValid();
}
bool tryReadImage(const QString &inputPath, QImage &image)
{
image = QImage(inputPath);
return image.format() != QImage::Format_Invalid;
}
bool cookMeshes(const QString &inputPath, QSSGMesh::Mesh &mesh, physx::PxCooking *cooking)
{
Q_ASSERT(cooking);
const int vStride = mesh.vertexBuffer().stride;
const int vCount = mesh.vertexBuffer().data.size() / vStride;
const auto *vd = mesh.vertexBuffer().data.constData();
const int iStride = mesh.indexBuffer().componentType == QSSGMesh::Mesh::ComponentType::UnsignedInt16 ? 2 : 4;
const int iCount = mesh.indexBuffer().data.size() / iStride;
int m_posOffset = 0;
for (auto &v : mesh.vertexBuffer().entries) {
Q_ASSERT(v.componentType == QSSGMesh::Mesh::ComponentType::Float32);
if (v.name == "attr_pos")
m_posOffset = v.offset;
}
{ // Triangle mesh
physx::PxTriangleMeshCookingResult::Enum result;
physx::PxTriangleMeshDesc triangleDesc;
triangleDesc.points.count = vCount;
triangleDesc.points.stride = vStride;
triangleDesc.points.data = vd + m_posOffset;
triangleDesc.flags = {}; //??? physx::PxMeshFlag::eFLIPNORMALS or
// physx::PxMeshFlag::e16_BIT_INDICES
triangleDesc.triangles.count = iCount / 3;
triangleDesc.triangles.stride = iStride * 3;
triangleDesc.triangles.data = mesh.indexBuffer().data.constData();
physx::PxDefaultMemoryOutputStream buf;
if (!cooking->cookTriangleMesh(triangleDesc, buf, &result)) {
std::cerr << "Error: could not cook triangle mesh '" << inputPath.toStdString() << "'." << std::endl;
return false;
}
auto size = buf.getSize();
auto *data = buf.getData();
physx::PxDefaultMemoryInputData input(data, size);
QString output = QFileInfo(inputPath).baseName() + QString(".cooked.tri");
auto outputFile = QFile(output);
if (!outputFile.open(QIODevice::WriteOnly)) {
std::cerr << "Error: could not open '" << output.toStdString() << "' for writing." << std::endl;
return false;
}
outputFile.write(reinterpret_cast<char *>(buf.getData()), buf.getSize());
outputFile.close();
std::cout << "Success: wrote triangle mesh '" << output.toStdString() << "'." << std::endl;
}
{ // Convex mesh
physx::PxConvexMeshCookingResult::Enum result;
QVector<physx::PxVec3> verts;
for (int i = 0; i < vCount; ++i) {
auto *vp = reinterpret_cast<const QVector3D *>(vd + vStride * i + m_posOffset);
verts << physx::PxVec3 { vp->x(), vp->y(), vp->z() };
}
const auto *convexVerts = verts.constData();
physx::PxConvexMeshDesc convexDesc;
convexDesc.points.count = vCount;
convexDesc.points.stride = sizeof(physx::PxVec3);
convexDesc.points.data = convexVerts;
convexDesc.flags = physx::PxConvexFlag::eCOMPUTE_CONVEX;
physx::PxDefaultMemoryOutputStream buf;
if (!cooking->cookConvexMesh(convexDesc, buf, &result)) {
std::cerr << "Error: could not cook convex mesh '" << inputPath.toStdString() << "'." << std::endl;
return false;
}
auto size = buf.getSize();
auto *data = buf.getData();
physx::PxDefaultMemoryInputData input(data, size);
QString output = QFileInfo(inputPath).baseName() + QString(".cooked.cvx");
auto outputFile = QFile(output);
if (!outputFile.open(QIODevice::WriteOnly)) {
std::cerr << "Error: could not open '" << output.toStdString() << "' for writing." << std::endl;
return false;
}
outputFile.write(reinterpret_cast<char *>(buf.getData()), buf.getSize());
outputFile.close();
std::cout << "Success: wrote convex mesh '" << output.toStdString() << "'." << std::endl;
}
return true;
}
bool cookHeightfield(const QString &inputPath, QImage &heightMap, physx::PxCooking *cooking)
{
Q_ASSERT(cooking);
int numRows = heightMap.height();
int numCols = heightMap.width();
auto samples = reinterpret_cast<physx::PxHeightFieldSample *>(malloc(sizeof(physx::PxHeightFieldSample) * (numRows * numCols)));
for (int i = 0; i < numCols; i++) {
for (int j = 0; j < numRows; j++) {
float f = heightMap.pixelColor(i, j).valueF() - 0.5;
samples[i * numRows + j] = { qint16(0xffff * f), 0, 0 };
}
}
physx::PxHeightFieldDesc hfDesc;
hfDesc.format = physx::PxHeightFieldFormat::eS16_TM;
hfDesc.nbColumns = numRows;
hfDesc.nbRows = numCols;
hfDesc.samples.data = samples;
hfDesc.samples.stride = sizeof(physx::PxHeightFieldSample);
physx::PxDefaultMemoryOutputStream buf;
if (!(numRows && numCols && cooking->cookHeightField(hfDesc, buf))) {
std::cerr << "Could not create height field from '" << inputPath.toStdString() << "'." << std::endl;
return false;
}
QString output = QFileInfo(inputPath).baseName() + QString(".cooked.hf");
auto outputFile = QFile(output);
if (!outputFile.open(QIODevice::WriteOnly)) {
std::cerr << "Could not open '" << output.toStdString() << "' for writing." << std::endl;
return false;
}
outputFile.write(reinterpret_cast<char *>(buf.getData()), buf.getSize());
outputFile.close();
std::cout << "Success: wrote height field '" << output.toStdString() << "'" << std::endl;
return true;
}
int main(int argc, char *argv[])
{
QCoreApplication app(argc, argv);
QCoreApplication::setApplicationName("cooker");
QCoreApplication::setApplicationVersion("6.5.7");
QCommandLineParser parser;
parser.setApplicationDescription(
"A commandline utility for pre-cooking meshes for use with the QtQuick3DPhysics module.");
parser.addHelpOption();
parser.addVersionOption();
parser.addPositionalArgument("input",
"The input file(s). Accepts either a .mesh created by QtQuick3D's balsam"
" or a Qt compatible image file. The output filename will be of the format"
" input.cooked.{cvx/tri/hf}. The filename suffixes .cvx, .tri, and .hf"
" mean it is a convex mesh, a triangle mesh or a heightfield.");
parser.process(app);
const QStringList args = parser.positionalArguments();
if (args.isEmpty())
parser.showHelp(0);
physx::PxDefaultErrorCallback defaultErrorCallback;
physx::PxDefaultAllocator defaultAllocatorCallback;
auto foundation = PxCreateFoundation(PX_PHYSICS_VERSION, defaultAllocatorCallback, defaultErrorCallback);
auto cooking = PxCreateCooking(PX_PHYSICS_VERSION, *foundation, physx::PxCookingParams(physx::PxTolerancesScale()));
auto cleanup = qScopeGuard([&] {
cooking->release();
foundation->release();
});
for (const QString &inputPath : args) {
QFile *file = new QFile(inputPath);
if (!file->open(QIODevice::ReadOnly)) {
delete file;
std::cerr << "Error: could not open input file '" << inputPath.toStdString() << "'" << std::endl;
return -1;
}
QImage image;
QSSGMesh::Mesh mesh;
if (tryReadImage(inputPath, image)) {
if (!cookHeightfield(inputPath, image, cooking))
return -1;
} else if (tryReadMesh(file, mesh)) {
if (!cookMeshes(inputPath, mesh, cooking))
return -1;
} else {
std::cerr << "Error: failed to read mesh or image from file '" << inputPath.toStdString() << "'" << std::endl;
return -1;
}
}
return 0;
}
|