1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
  
     | 
    
      # Release 2.10.0
<INSERT SMALL BLURB ABOUT RELEASE FOCUS AREA AND POTENTIAL TOOLCHAIN CHANGES>
# Breaking Changes
* <DOCUMENT BREAKING CHANGES HERE>
* <THIS SECTION SHOULD CONTAIN API, ABI AND BEHAVIORAL BREAKING CHANGES>
# Known Caveats
* <CAVEATS REGARDING THE RELEASE (BUT NOT BREAKING CHANGES).>
* <ADDING/BUMPING DEPENDENCIES SHOULD GO HERE>
* <KNOWN LACK OF SUPPORT ON SOME PLATFORM, SHOULD GO HERE>
# Major Features and Improvements
* `tf.keras`:
  *   Added `tf.keras.models.experimental.SharpnessAwareMinimization`. This
      class implements the sharpness-aware minimization technique, which boosts
      model performance on various tasks, e.g., ResNet on image classification.
*   `tf.keras`:
    * `EinsumDense` layer moved from experimental to core. Its import path moved
      from `tf.keras.layers.experimental.EinsumDense` to
      `tf.keras.layers.EinsumDense`.
# Bug Fixes and Other Changes
* <SIMILAR TO ABOVE SECTION, BUT FOR OTHER IMPORTANT CHANGES / BUG FIXES>
* <IF A CHANGE CLOSES A GITHUB ISSUE, IT SHOULD BE DOCUMENTED HERE>
* <NOTES SHOULD BE GROUPED PER AREA>
# Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
<INSERT>, <NAME>, <HERE>, <USING>, <GITHUB>, <HANDLE>
# Release 2.9.0
<INSERT SMALL BLURB ABOUT RELEASE FOCUS AREA AND POTENTIAL TOOLCHAIN CHANGES>
# Breaking Changes
*   Build, Compilation and Packaging
    * TensorFlow is now compiled with `_GLIBCXX_USE_CXX11_ABI=1`. Downstream
      projects that encounter `std::__cxx11` or `[abi:cxx11]` linker errors will
      need to adopt this compiler option. See
      [the GNU C++ Library docs on Dual ABI](https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html).
    * TensorFlow Python wheels now specifically conform to
      [manylinux2014](https://peps.python.org/pep-0599/), an upgrade from
      manylinux2010. The minimum Pip version supporting manylinux2014 is Pip
      19.3 (see [pypa/manylinux](https://github.com/pypa/manylinux). This change
      may affect you if you have been using TensorFlow on a very old platform
      equivalent to CentOS 6, as manylinux2014 targets CentOS 7 as a
      compatibility base. Note that TensorFlow does not officially support
      either platform.
    * Discussion for these changes can be found on SIG Build's
      [TensorFlow Community Forum thread](https://discuss.tensorflow.org/t/tensorflow-linux-wheels-are-being-upgraded-to-manylinux2014/8339)
*   The `tf.keras.mixed_precision.experimental` API has been removed. The
    non-experimental symbols under `tf.keras.mixed_precision` have been
    available since TensorFlow 2.4 and should be used instead.
    * The non-experimental API has some minor differences from the experimental
      API. In most cases, you only need to make three minor changes:
      1. Remove the word "experimental" from `tf.keras.mixed_precision` symbols.
         E.g., replace `tf.keras.mixed_precision.experimental.global_policy`
         with `tf.keras.mixed_precision.global_policy`.
      2. Replace `tf.keras.mixed_precision.experimental.set_policy` with
         `tf.keras.mixed_precision.set_global_policy`. The experimental symbol
         `set_policy` was renamed to `set_global_policy` in the non-experimental
         API.
      3. Replace `LossScaleOptimizer(opt, "dynamic")` with
         `LossScaleOptimizer(opt)`. If you pass anything other than `"dynamic"`
         to the second argument, see (1) of the next section.
    * In the following rare cases, you need to make more changes when switching
      to the non-experimental API:
      1. If you passed anything other than `"dynamic"` to the `loss_scale`
         argument (the second argument) of `LossScaleOptimizer`:
          * The LossScaleOptimizer constructor takes in different arguments.
            See the
            [TF 2.7 documentation of tf.keras.mixed_precision.experimental.LossScaleOptimizer](https://www.tensorflow.org/versions/r2.7/api_docs/python/tf/keras/mixed_precision/experimental/LossScaleOptimizer)
            for details on the differences, which has examples on how to convert
            to the non-experimental LossScaleOptimizer.
      2. If you passed a value to the `loss_scale` argument (the second
          argument) of `Policy`:
          * The experimental version of `Policy` optionally took in a
            `tf.compat.v1.mixed_precision.LossScale` in the constructor, which
            defaulted to a dynamic loss scale for the `"mixed_float16"` policy
            and no loss scale for other policies. In `Model.compile`, if the
            model's policy had a loss scale, the optimizer would be wrapped with
            a `LossScaleOptimizer`. With the non-experimental `Policy`, there is
            no loss scale associated with the `Policy`, and `Model.compile`
            wraps the optimizer with a `LossScaleOptimizer` if and only if the
            policy is a `"mixed_float16"` policy. If you previously passed a
            `LossScale` to the experimental `Policy`, consider just removing it,
            as the default loss scaling behavior is usually what you want. If
            you really want to customize the loss scaling behavior, you can wrap
            your optimizer with a `LossScaleOptimizer` before passing it to
            `Model.compile`.
      3. If you use the very rarely-used function
         `tf.keras.mixed_precision.experimental.get_layer_policy`:
          * Replace
            `tf.keras.mixed_precision.experimental.get_layer_policy(layer)` with
            `layer.dtype_policy`.
* `tf.mixed_precision.experimental.LossScale` and its subclasses have been
  removed from the TF2 namespace. This symbols were very rarely used and were
  only useful in TF2 for use in the now-removed
  `tf.keras.mixed_precision.experimental` API. The symbols are still available
  under `tf.compat.v1.mixed_precision`.
* The `experimental_relax_shapes` heuristic for `tf.function` has been
  deprecated and replaced with `reduce_retracing` which encompasses broader
  heuristics to reduce the number of retraces (see below).
# Known Caveats
*   <CAVEATS REGARDING THE RELEASE (BUT NOT BREAKING CHANGES).>
*   <ADDING/BUMPING DEPENDENCIES SHOULD GO HERE>
*   <KNOWN LACK OF SUPPORT ON SOME PLATFORM, SHOULD GO HERE>
# Major Features and Improvements
*   `tf.keras`:
    *   Added `tf.keras.applications.resnet_rs` models.  This includes the
        `ResNetRS50`, `ResNetRS101`, `ResNetRS152`, `ResNetRS200`,
        `ResNetRS270`, `ResNetRS350` and `ResNetRS420` model architectures.
        The ResNetRS models are based on the architecture described in
        [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/pdf/2103.07579.pdf)
    *   Added `tf.keras.optimizers.experimental.Optimizer`. The reworked
        optimizer gives more control over different phases of optimizer calls,
        and is easier to customize. We provide Adam, SGD, Adadelta, AdaGrad and
        RMSprop optimizers based on
        `tf.keras.optimizers.experimental.Optimizer`. Generally the new
        optimizers work in the same way as the old ones, but support new
        constructor arguments. In the future, the symbols
        `tf.keras.optimizers.Optimizer`/`Adam`/etc will point to the new
        optimizers, and the previous generation of optimizers will be moved to
        `tf.keras.optimizers.legacy.Optimizer`/`Adam`/etc.
    *   Added L2 unit normalization layer `tf.keras.layers.UnitNormalization`.
    *   Added `tf.keras.regularizers.OrthogonalRegularizer`, a new regularizer
        that encourages orthogonality between the rows (or columns) or a
        weight matrix.
    *   Added `tf.keras.layers.RandomBrightness` layer for image preprocessing.
    *   Added APIs for switching between interactive logging and absl logging.
        By default, Keras always writes the logs to stdout. However, this is not
        optimal in a non-interactive environment, where you don't have access to
        stdout, but can only view the logs. You can use
        `tf.keras.utils.disable_interactive_logging()` to write the logs to absl
        logging. You can also use `tf.keras.utils.enable_interactive_logging()`
        to change it back to stdout, or
        `tf.keras.utils.is_interactive_logging_enabled()` to check if
        interactive logging is enabled.
    *   Changed default value for the `verbose` argument of `Model.evaluate()`
        and `Model.predict()` to `"auto"`, which defaults to `verbose=1` for
        most cases and defaults to `verbose=2` when used with
        `ParameterServerStrategy` or with interactive logging disabled.
    *   Argument `jit_compile` in `Model.compile()` now applies
        to `Model.evaluate()` and `Model.predict()`.
        Setting `jit_compile=True` in `compile()` compiles the model's
        training, evaluation, and inference steps to
        [XLA](https://www.tensorflow.org/xla).
        Note that `jit_compile=True` may not necessarily work for all models.
    *   Added DTensor-related Keras APIs under `tf.keras.dtensor` namespace.
        The APIs are still classified as experimental. You are welcome to try it
        out. Please check the tutoral and guide on https://www.tensorflow.org/
        for more details about DTensor.
*   `tf.lite`:
    *   Added TFLite builtin op support for the following TF ops:
        *   `tf.math.argmin`/`tf.math.argmax` for input data type `tf.bool` on
            CPU.
        *   `tf.nn.gelu` op for output data type `tf.float32` and quantization
            on CPU.
    *   Add nominal support for unsigned 16-bit integer tensor types. Note that
        very few TFLite kernels support this type natively, so its use in mobile
        ML authoring is generally discouraged.
    *   Add support for unsigned 16-bit integer tensor types in cast op.
    *   Experimental support for lowering `list_ops.tensor_list_set_item` with
        `DynamicUpdateSlice`.
    *   Enabled a new MLIR-based dynamic range quantization backend by default
        *   The new backend is used for post-training int8 dynamic range
            quantization and post-training float16 quantization.
        *   Set `experimental_new_dynamic_range_quantizer` in
            tf.lite.TFLiteConverter to False to disable this change
    *   Native TF Lite variables are now enabled during conversion by default
        on all v2 TfLiteConverter entry points.
        `experimental_enable_resource_variables` on tf.lite.TFLiteConverter
        is now True by default and will be removed in the future.
*   `tf.function`:
    *    Custom classes used as arguments for `tf.function` can now specify
         rules regarding when retracing needs to occur by implementing the
         Tracing Protocol available through
         `tf.types.experimental.SupportsTracingProtocol`.
    *    `TypeSpec` classes (as associated with `ExtensionTypes`) also implement
         the Tracing Protocol which can be overriden if necessary.
    *    The newly introduced `reduce_retracing` option also uses the Tracing
         Protocol to proactively generate generalized traces similar to
         `experimental_relax_shapes` (which has now been deprecated).
*   Unified eager and `tf.function` execution:
    *   Eager mode can now execute each op as a `tf.function`, allowing for more
        consistent feature support in future releases.
    *   It is available for immediate use.
        *   See the `TF_RUN_EAGER_OP_AS_FUNCTION` environment variable in
            [eager context](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/eager/context.py).
        *   Eager performance should be similar with this feature enabled.
            *   A roughly 5us per-op overhead may be observed when running many
                small functions.
            *   Note a
                [known issue](https://github.com/tensorflow/tensorflow/issues/55414)
                with GPU performance.
        *   The behavior of `tf.function` itself is unaffected.
    *   Note: This feature will be enabled by default in an upcoming version of
        TensorFlow.
# Bug Fixes and Other Changes
*   `tf.data`:
    *   Fixed bug in `tf.data.experimental.parse_example_dataset` when
        `tf.io.RaggedFeatures` would specify `value_key` but no `partitions`.
        Before the fix, setting `value_key` but no `partitions` would result in
        the feature key being replaced by the value key, e.g.
        `{'value_key': <RaggedTensor>}` instead of `{'key': <RaggedTensor>}`.
        Now the correct feature key will be used. This aligns the behavior of
        `tf.data.experimental.parse_example_dataset` to match the behavior of
        `tf.io.parse_example`.
    *   Promoting `tf.data.experimental.load` API to `tf.data.Dataset.load`
        (https://www.tensorflow.org/api_docs/python/tf/data/Dataset/load)
        and deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.save` API to `tf.data.Dataset.save`
        (https://www.tensorflow.org/api_docs/python/tf/data/Dataset/save) and
        deprecating the experimental endpoint.
    *   Added a new field, `filter_parallelization`, to
        `tf.data.experimental.OptimizationOptions`. If it is set to `True`,
        tf.data will run `Filter` transformation with multiple threads. Its
        default value is `False` if not specified.
*    `tf.keras`:
    *   Fixed bug in optimizers that prevented them from properly checkpointing
        slot variables when they are `ShardedVariable`s (used for training with
        `tf.distribute.experimental.ParameterServerStrategy`).
* `tf.random`
    * Added `tf.random.experimental.index_shuffle`, for shuffling a sequence
      without materializing the sequence in memory.
*   `tf.RaggedTensor`:
    *   Introduced `tf.experimental.RowPartition`, which encodes how one
        dimension in a RaggedTensor relates to another, into the public API.
    *   Introduced `tf.experimental.DynamicRaggedShape`, which represents the
        shape of a RaggedTensor.
*   <SIMILAR TO ABOVE SECTION, BUT FOR OTHER IMPORTANT CHANGES / BUG FIXES>
*   <IF A CHANGE CLOSES A GITHUB ISSUE, IT SHOULD BE DOCUMENTED HERE>
*   <NOTES SHOULD BE GROUPED PER AREA>
# Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
<INSERT>, <NAME>, <HERE>, <USING>, <GITHUB>, <HANDLE>
# Release 2.8.0
## Major Features and Improvements
*   `tf.lite`:
    *   Added TFLite builtin op support for the following TF ops:
        *   `tf.raw_ops.Bucketize` op on CPU.
        *   `tf.where` op for data types
            `tf.int32`/`tf.uint32`/`tf.int8`/`tf.uint8`/`tf.int64`.
        *   `tf.random.normal` op for output data type `tf.float32` on CPU.
        *   `tf.random.uniform` op for output data type `tf.float32` on CPU.
        *   `tf.random.categorical` op for output data type `tf.int64` on CPU.
*   `tensorflow.experimental.tensorrt`:
    *   `conversion_params` is now deprecated inside `TrtGraphConverterV2` in
        favor of direct arguments: `max_workspace_size_bytes`, `precision_mode`,
        `minimum_segment_size`, `maximum_cached_engines`, `use_calibration` and
        `allow_build_at_runtime`.
    *   Added a new parameter called `save_gpu_specific_engines` to the
        `.save()` function inside `TrtGraphConverterV2`. When `False`, the
        `.save()` function won't save any TRT engines that have been built. When
        `True` (default), the original behavior is preserved.
    *   `TrtGraphConverterV2` provides a new API called `.summary()` which
        outputs a summary of the inference converted by TF-TRT. It namely shows
        each `TRTEngineOp` with their input(s)' and output(s)' shape and dtype.
        A detailed version of the summary is available which prints additionally
        all the TensorFlow OPs included in each of the `TRTEngineOp`s.
*   `tf.tpu.experimental.embedding`:
    *   `tf.tpu.experimental.embedding.FeatureConfig` now takes an additional
        argument `output_shape` which can specify the shape of the output
        activation for the feature.
    *   `tf.tpu.experimental.embedding.TPUEmbedding` now has the same behavior
        as `tf.tpu.experimental.embedding.serving_embedding_lookup` which can
        take arbitrary rank of dense and sparse tensor. For ragged tensor,
        though the input tensor remains to be rank 2, the activations now can be
        rank 2 or above by specifying the output shape in the feature config or
        via the build method.
*   Add
    [`tf.config.experimental.enable_op_determinism`](https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinism),
    which makes TensorFlow ops run deterministically at the cost of performance.
    Replaces the `TF_DETERMINISTIC_OPS` environmental variable, which is now
    deprecated. The "Bug Fixes and Other Changes" section lists more
    determinism-related changes.
*   (Since TF 2.7) Add
    [PluggableDevice](https://blog.tensorflow.org/2021/06/pluggabledevice-device-plugins-for-TensorFlow.html)
    support to
    [TensorFlow Profiler](https://github.com/tensorflow/community/blob/master/rfcs/20210513-pluggable-profiler-for-tensorflow.md).
## Bug Fixes and Other Changes
*   `tf.data`:
    *   Fixed a bug where setting `options.deterministic = False` would only
        modify one transformation to run non-deterministically,
        leaving other transformations deterministic. The option will now
        apply the same across all transformations.
    *   The optimization `parallel_batch` now becomes default if not disabled by
        users, which will parallelize copying of batch elements.
    *   Added the ability for `TensorSliceDataset` to identify and handle inputs
        that are files. This enables creating hermetic SavedModels when using
        datasets created from files.
*   `tf.lite`:
    *   Adds GPU Delegation support for serialization to Java API. This boosts
        initialization time up to 90% when OpenCL is available.
    *   Deprecated `Interpreter::SetNumThreads`, in favor of
        `InterpreterBuilder::SetNumThreads`.
*   `tf.keras`:
    *   Adds `tf.compat.v1.keras.utils.get_or_create_layer` to aid migration to
        TF2 by enabling tracking of nested keras models created in TF1-style,
        when used with the `tf.compat.v1.keras.utils.track_tf1_style_variables`
        decorator.
    *   Added a `tf.keras.layers.experimental.preprocessing.HashedCrossing`
        layer which applies the hashing trick to the concatenation of crossed
        scalar inputs. This provides a stateless way to try adding feature
        crosses of integer or string data to a model.
    *   Removed `keras.layers.experimental.preprocessing.CategoryCrossing`.
        Users should migrate to the `HashedCrossing` layer or use
        `tf.sparse.cross`/`tf.ragged.cross` directly.
    *   Added additional `standardize` and `split` modes to `TextVectorization`:
        *   `standardize="lower"` will lowercase inputs.
        *   `standardize="string_punctuation"` will remove all puncuation.
        *   `split="character"` will split on every unicode character.
    *   Added an `output_mode` argument to the `Discretization` and `Hashing`
        layers with the same semantics as other preprocessing layers. All
        categorical preprocessing layers now support `output_mode`.
    *   All preprocessing layer output will follow the compute dtype of a
        `tf.keras.mixed_precision.Policy`, unless constructed with
        `output_mode="int"` in which case output will be `tf.int64`. The output
        type of any preprocessing layer can be controlled individually by
        passing a `dtype` argument to the layer.
    *   `tf.random.Generator` for keras initializers and all RNG code.
    *   Added 3 new APIs for enable/disable/check the usage of
        `tf.random.Generator` in keras backend, which will be the new backend
        for all the RNG in Keras. We plan to switch on the new code path by
        default in tf 2.8, and the behavior change will likely to cause some
        breakage on user side (eg if the test is checking against some golden
        nubmer). These 3 APIs will allow user to disable and switch back to
        legacy behavior if they prefer. In future (eg TF 2.10), we expect to
        totally remove the legacy code path (stateful random Ops), and these 3
        APIs will be removed as well.
    *   `tf.keras.callbacks.experimental.BackupAndRestore` is now available as
        `tf.keras.callbacks.BackupAndRestore`. The experimental endpoint is
        deprecated and will be removed in a future release.
    *   `tf.keras.experimental.SidecarEvaluator` is now available as
        `tf.keras.utils.SidecarEvaluator`. The experimental endpoint is
        deprecated and will be removed in a future release.
    *   Metrics update and collection logic in default `Model.train_step()` is
        now customizable via overriding `Model.compute_metrics()`.
    *   Losses computation logic in default `Model.train_step()` is now
        customizable via overriding `Model.compute_loss()`.
    *   `jit_compile` added to `Model.compile()` on an opt-in basis to compile
        the model's training step with [XLA](https://www.tensorflow.org/xla).
        Note that `jit_compile=True` may not necessarily work for all models.
*   Deterministic Op Functionality:
    *   Fix regression in deterministic selection of deterministic cuDNN
        convolution algorithms, a regression that was introduced in v2.5. Note
        that nondeterministic out-of-memory events while selecting algorithms
        could still lead to nondeterminism, although this is very unlikely. This
        additional, unlikely source will be eliminated in a later version.
    *   Add determinsitic GPU implementations of:
        *   `tf.function(jit_compile=True)`'s that use `Scatter`.
        *   (since v2.7) Stateful ops used in `tf.data.Dataset`
        *   (since v2.7) `tf.convert_to_tensor` when fed with (sparse)
            `tf.IndexedSlices` (because it uses `tf.math.unsorted_segment_sum`)
        *   (since v2.7) `tf.gather` backprop (because `tf.convert_to_tensor`
            reduces `tf.gather`'s (sparse) `tf.IndexedSlices` gradients into its
            dense `params` input)
        *   (since v2.7) `tf.math.segment_mean`
        *   (since v2.7) `tf.math.segment_prod`
        *   (since v2.7) `tf.math.segment_sum`
        *   (since v2.7) `tf.math.unsorted_segment_mean`
        *   (since v2.7) `tf.math.unsorted_segment_prod`
        *   (since v2.7) `tf.math.unsorted_segment_sum`
        *   (since v2.7) `tf.math.unsorted_segment_sqrt`
        *   (since v2.7) `tf.nn.ctc_loss` (resolved, possibly in prior release,
            and confirmed with tests)
        *   (since v2.7)`tf.nn.sparse_softmax_crossentropy_with_logits`
    *   (since v2.7) Run `tf.scatter_nd` and other related scatter functions,
        such as `tf.tensor_scatter_nd_update`, on CPU (with significant
        performance penalty).
    *   Add determinism-unimplemented exception-throwing to the following ops.
        When op-determinism is expected (i.e. after
        `tf.config.experimental.enable_op_determinism` has been called), an
        attempt to use the specified paths through the following ops on a GPU
        will cause `tf.errors.UnimplementedError` (with an understandable
        message), unless otherwise specified, to be thrown.
        *   `FakeQuantWithMinMaxVarsGradient` and
            `FakeQuantWithMinMaxVarsPerChannelGradient`
        *   (since v2.7) `tf.compat.v1.get_seed` if the global random seed has
            not yet been set (via `tf.random.set_seed`). Throws `RuntimeError`
            from Python or `InvalidArgument` from C++
        *   (since v2.7) `tf.compat.v1.nn.fused_batch_norm` backprop to `offset`
            when `is_training=False`
        *   (since v2.7) `tf.image.adjust_contrast` forward
        *   (since v2.7) `tf.image.resize` with `method=ResizeMethod.NEAREST`
            backprop
        *   (since v2.7) `tf.linalg.svd`
        *   (since v2.7) `tf.math.bincount`
        *   (since v2.7) `tf.nn.depthwise_conv2d` backprop to `filter` when not
            using cuDNN convolution
        *   (since v2.7) `tf.nn.dilation2d` gradient
        *   (since v2.7) `tf.nn.max_pool_with_argmax` gradient
        *   (since v2.7) `tf.raw_ops.DebugNumericSummary` and
            `tf.raw_ops.DebugNumericSummaryV2`
        *   (since v2.7) `tf.timestamp`. Throws `FailedPrecondition`
        *   (since v2.7) `tf.Variable.scatter_add` (and other scatter methods,
            both on ref and resource variables)
        *   (since v2.7) The random-number-generating ops in the `tf.random`
            module when the global random seed has not yet been set (via
            `tf.random.set_seed`). Throws `RuntimeError` from Python or
            `InvalidArgument` from C++
*   TensorFlow-oneDNN no longer supports
    [explicit use of oneDNN blocked tensor format](https://github.com/tensorflow/tensorflow/pull/53288),
    e.g., setting the environment variable `TF_ENABLE_MKL_NATIVE_FORMAT` will
    not have any effect.
*   TensorFlow has been validated on Windows Subsystem for Linux 2 (aka WSL 2)
    for both GPUs and CPUs.
*   Due to security issues (see section below), all boosted trees code has been
    deprecated. Users should switch to
    [TensorFlow Decision Forests](https://github.com/tensorflow/decision-forests).
    TF's boosted trees code will be eliminated before the branch cut for TF 2.9
    and will no longer be present since that release.
## Security
*   Fixes a floating point division by 0 when executing convolution operators
    ([CVE-2022-21725](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21725))
*   Fixes a heap OOB read in shape inference for `ReverseSequence`
    ([CVE-2022-21728](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21728))
*   Fixes a heap OOB access in `Dequantize`
    ([CVE-2022-21726](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21726))
*   Fixes an integer overflow in shape inference for `Dequantize`
    ([CVE-2022-21727](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21727))
*   Fixes a heap OOB access in `FractionalAvgPoolGrad`
    ([CVE-2022-21730](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21730))
*   Fixes an overflow and divide by zero in `UnravelIndex`
    ([CVE-2022-21729](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21729))
*   Fixes a type confusion in shape inference for `ConcatV2`
    ([CVE-2022-21731](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21731))
*   Fixes an OOM in `ThreadPoolHandle`
    ([CVE-2022-21732](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21732))
*   Fixes an OOM due to integer overflow in `StringNGrams`
    ([CVE-2022-21733](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21733))
*   Fixes more issues caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes an integer overflows in most sparse component-wise ops
    ([CVE-2022-23567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23567))
*   Fixes an integer overflows in `AddManySparseToTensorsMap`
    ([CVE-2022-23568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23568))
*   Fixes a number of `CHECK`-failures in `MapStage`
    ([CVE-2022-21734](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21734))
*   Fixes a division by zero in `FractionalMaxPool`
    ([CVE-2022-21735](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21735))
*   Fixes a number of `CHECK`-fails when building invalid/overflowing tensor
    shapes
    ([CVE-2022-23569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23569))
*   Fixes an undefined behavior in `SparseTensorSliceDataset`
    ([CVE-2022-21736](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21736))
*   Fixes an assertion failure based denial of service via faulty bin count
    operations
    ([CVE-2022-21737](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21737))
*   Fixes a reference binding to null pointer in `QuantizedMaxPool`
    ([CVE-2022-21739](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21739))
*   Fixes an integer overflow leading to crash in `SparseCountSparseOutput`
    ([CVE-2022-21738](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21738))
*   Fixes a heap overflow in `SparseCountSparseOutput`
    ([CVE-2022-21740](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21740))
*   Fixes an FPE in `BiasAndClamp` in TFLite
    ([CVE-2022-23557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23557))
*   Fixes an FPE in depthwise convolutions in TFLite
    ([CVE-2022-21741](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21741))
*   Fixes an integer overflow in TFLite array creation
    ([CVE-2022-23558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23558))
*   Fixes an integer overflow in TFLite
    ([CVE-2022-23559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23559))
*   Fixes a dangerous OOB write in TFLite
    ([CVE-2022-23561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23561))
*   Fixes a vulnerability leading to read and write outside of bounds in TFLite
    ([CVE-2022-23560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23560))
*   Fixes a set of vulnerabilities caused by using insecure temporary files
    ([CVE-2022-23563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23563))
*   Fixes an integer overflow in Range resulting in undefined behavior and OOM
    ([CVE-2022-23562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23562))
*   Fixes a vulnerability where missing validation causes `tf.sparse.split` to
    crash when `axis` is a tuple
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a `CHECK`-fail when decoding resource handles from proto
    ([CVE-2022-23564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23564))
*   Fixes a `CHECK`-fail with repeated `AttrDef`
    ([CVE-2022-23565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23565))
*   Fixes a heap OOB write in Grappler
    ([CVE-2022-23566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23566))
*   Fixes a `CHECK`-fail when decoding invalid tensors from proto
    ([CVE-2022-23571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23571))
*   Fixes a null-dereference when specializing tensor type
    ([CVE-2022-23570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23570))
*   Fixes a crash when type cannot be specialized
    ([CVE-2022-23572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23572))
*   Fixes a heap OOB read/write in `SpecializeType`
    ([CVE-2022-23574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23574))
*   Fixes an unitialized variable access in `AssignOp`
    ([CVE-2022-23573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23573))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateTensorSize`
    ([CVE-2022-23575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23575))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateOutputSize`
    ([CVE-2022-23576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23576))
*   Fixes a null dereference in `GetInitOp`
    ([CVE-2022-23577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23577))
*   Fixes a memory leak when a graph node is invalid
    ([CVE-2022-23578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23578))
*   Fixes an abort caused by allocating a vector that is too large
    ([CVE-2022-23580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23580))
*   Fixes multiple `CHECK`-failures during Grappler's `IsSimplifiableReshape`
    ([CVE-2022-23581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23581))
*   Fixes multiple `CHECK`-failures during Grappler's `SafeToRemoveIdentity`
    ([CVE-2022-23579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23579))
*   Fixes multiple `CHECK`-failures in `TensorByteSize`
    ([CVE-2022-23582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23582))
*   Fixes multiple `CHECK`-failures in binary ops due to type confusion
    ([CVE-2022-23583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23583))
*   Fixes a use after free in `DecodePng` kernel
    ([CVE-2022-23584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23584))
*   Fixes a memory leak in decoding PNG images
    ([CVE-2022-23585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23585))
*   Fixes multiple `CHECK`-fails in `function.cc`
    ([CVE-2022-23586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23586))
*   Fixes multiple `CHECK`-fails due to attempting to build a reference tensor
    ([CVE-2022-23588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23588))
*   Fixes an integer overflow in Grappler cost estimation of crop and resize
    operation
    ([CVE-2022-23587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23587))
*   Fixes a null pointer dereference in Grappler's `IsConstant`
    ([CVE-2022-23589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23589))
*   Fixes a `CHECK` failure in constant folding
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a stack overflow due to self-recursive function in `GraphDef`
    ([CVE-2022-23591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23591))
*   Fixes a heap OOB access in `RunForwardTypeInference`
    ([CVE-2022-23592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23592))
*   Fixes a crash due to erroneous `StatusOr`
    ([CVE-2022-23590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23590))
*   Fixes multiple crashes and heap OOB accesses in TFG dialect (MLIR)
    ([CVE-2022-23594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23594))
*   Fixes a segfault in `simplifyBroadcast` (MLIR)
    ([CVE-2022-23593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23593))
*   Fixes a null pointer dereference in `BuildXlaCompilationCache` (XLA)
    ([CVE-2022-23595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23595))
*   Updates `icu` to `69.1` to handle
    [CVE-2020-10531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10531)
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Adam Lanicek, ag.ramesh, alesapin, Andrew Goodbody, annasuheyla, Ariel
Elkin, Arnab Dutta, Ben Barsdell, bhack, cfRod, Chengji Yao, Christopher Bate,
dan, Dan F-M, David Korczynski, DEKHTIARJonathan, dengzhiyuan, Deven Desai,
Duncan Riach, Eli Osherovich, Ewout Ter Hoeven, ez2take, Faijul Amin, fo40225,
Frederic Bastien, gadagashwini, Gauri1 Deshpande, Georgiy Manuilov, Guilherme De
Lázari, Guozhong Zhuang, H1Gdev, homuler, Hongxu Jia, Jacky_Yin, jayfurmanek,
jgehw, Jhalak Patel, Jinzhe Zeng, Johan Gunnarsson, Jonathan Dekhtiar, Kaixi
Hou, Kanvi Khanna, Kevin Cheng, Koan-Sin Tan, Kruglov-Dmitry, Kun Lu, Lemo,
Lequn Chen, long.chen, Louis Sugy, Mahmoud Abuzaina, Mao, Marius Brehler, Mark
Harfouche, Martin Patz, Maxiwell S. Garcia, Meenakshi Venkataraman, Michael
Melesse, Mrinal Tyagi, Måns Nilsson, Nathan John Sircombe, Nathan Luehr, Nilesh
Agarwalla, Oktay Ozturk, Patrice Vignola, Pawel-Polyai, Rama Ketineni, Ramesh
Sampath, Reza Rahimi, Rob Suderman, Robert Kalmar, Rohit Santhanam, Sachin
Muradi, Saduf2019, Samuel Marks, Shi,Guangyong, Sidong-Wei, Srinivasan
Narayanamoorthy, Srishti Srivastava, Steven I Reeves, stevenireeves, Supernovae,
Tamas Bela Feher, Tao Xu, Thibaut Goetghebuer-Planchon, Thomas Schmeyer,
tilakrayal, Valery Mironov, Victor Guo, Vignesh Kothapalli, Vishnuvardhan
Janapati, wamuir, Wang,Quintin, William Muir, William Raveane, Yash Goel, Yimei
Sun, Yong Tang, Yuduo Wu
# Release 2.7.1
This releases introduces several vulnerability fixes:
*   Fixes a floating point division by 0 when executing convolution operators
    ([CVE-2022-21725](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21725))
*   Fixes a heap OOB read in shape inference for `ReverseSequence`
    ([CVE-2022-21728](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21728))
*   Fixes a heap OOB access in `Dequantize`
    ([CVE-2022-21726](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21726))
*   Fixes an integer overflow in shape inference for `Dequantize`
    ([CVE-2022-21727](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21727))
*   Fixes a heap OOB access in `FractionalAvgPoolGrad`
    ([CVE-2022-21730](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21730))
*   Fixes an overflow and divide by zero in `UnravelIndex`
    ([CVE-2022-21729](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21729))
*   Fixes a type confusion in shape inference for `ConcatV2`
    ([CVE-2022-21731](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21731))
*   Fixes an OOM in `ThreadPoolHandle`
    ([CVE-2022-21732](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21732))
*   Fixes an OOM due to integer overflow in `StringNGrams`
    ([CVE-2022-21733](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21733))
*   Fixes more issues caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes an integer overflows in most sparse component-wise ops
    ([CVE-2022-23567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23567))
*   Fixes an integer overflows in `AddManySparseToTensorsMap`
    ([CVE-2022-23568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23568))
*   Fixes a number of `CHECK`-failures in `MapStage`
    ([CVE-2022-21734](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21734))
*   Fixes a division by zero in `FractionalMaxPool`
    ([CVE-2022-21735](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21735))
*   Fixes a number of `CHECK`-fails when building invalid/overflowing tensor
    shapes
    ([CVE-2022-23569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23569))
*   Fixes an undefined behavior in `SparseTensorSliceDataset`
    ([CVE-2022-21736](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21736))
*   Fixes an assertion failure based denial of service via faulty bin count
    operations
    ([CVE-2022-21737](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21737))
*   Fixes a reference binding to null pointer in `QuantizedMaxPool`
    ([CVE-2022-21739](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21739))
*   Fixes an integer overflow leading to crash in `SparseCountSparseOutput`
    ([CVE-2022-21738](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21738))
*   Fixes a heap overflow in `SparseCountSparseOutput`
    ([CVE-2022-21740](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21740))
*   Fixes an FPE in `BiasAndClamp` in TFLite
    ([CVE-2022-23557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23557))
*   Fixes an FPE in depthwise convolutions in TFLite
    ([CVE-2022-21741](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21741))
*   Fixes an integer overflow in TFLite array creation
    ([CVE-2022-23558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23558))
*   Fixes an integer overflow in TFLite
    ([CVE-2022-23559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23559))
*   Fixes a dangerous OOB write in TFLite
    ([CVE-2022-23561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23561))
*   Fixes a vulnerability leading to read and write outside of bounds in TFLite
    ([CVE-2022-23560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23560))
*   Fixes a set of vulnerabilities caused by using insecure temporary files
    ([CVE-2022-23563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23563))
*   Fixes an integer overflow in Range resulting in undefined behavior and OOM
    ([CVE-2022-23562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23562))
*   Fixes a vulnerability where missing validation causes `tf.sparse.split` to
    crash when `axis` is a tuple
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a `CHECK`-fail when decoding resource handles from proto
    ([CVE-2022-23564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23564))
*   Fixes a `CHECK`-fail with repeated `AttrDef`
    ([CVE-2022-23565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23565))
*   Fixes a heap OOB write in Grappler
    ([CVE-2022-23566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23566))
*   Fixes a `CHECK`-fail when decoding invalid tensors from proto
    ([CVE-2022-23571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23571))
*   Fixes a null-dereference when specializing tensor type
    ([CVE-2022-23570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23570))
*   Fixes a crash when type cannot be specialized
    ([CVE-2022-23572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23572))
*   Fixes a heap OOB read/write in `SpecializeType`
    ([CVE-2022-23574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23574))
*   Fixes an unitialized variable access in `AssignOp`
    ([CVE-2022-23573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23573))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateTensorSize`
    ([CVE-2022-23575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23575))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateOutputSize`
    ([CVE-2022-23576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23576))
*   Fixes a null dereference in `GetInitOp`
    ([CVE-2022-23577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23577))
*   Fixes a memory leak when a graph node is invalid
    ([CVE-2022-23578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23578))
*   Fixes an abort caused by allocating a vector that is too large
    ([CVE-2022-23580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23580))
*   Fixes multiple `CHECK`-failures during Grappler's `IsSimplifiableReshape`
    ([CVE-2022-23581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23581))
*   Fixes multiple `CHECK`-failures during Grappler's `SafeToRemoveIdentity`
    ([CVE-2022-23579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23579))
*   Fixes multiple `CHECK`-failures in `TensorByteSize`
    ([CVE-2022-23582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23582))
*   Fixes multiple `CHECK`-failures in binary ops due to type confusion
    ([CVE-2022-23583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23583))
*   Fixes a use after free in `DecodePng` kernel
    ([CVE-2022-23584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23584))
*   Fixes a memory leak in decoding PNG images
    ([CVE-2022-23585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23585))
*   Fixes multiple `CHECK`-fails in `function.cc`
    ([CVE-2022-23586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23586))
*   Fixes multiple `CHECK`-fails due to attempting to build a reference tensor
    ([CVE-2022-23588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23588))
*   Fixes an integer overflow in Grappler cost estimation of crop and resize
    operation
    ([CVE-2022-23587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23587))
*   Fixes a null pointer dereference in Grappler's `IsConstant`
    ([CVE-2022-23589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23589))
*   Fixes a `CHECK` failure in constant folding
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a stack overflow due to self-recursive function in `GraphDef`
    ([CVE-2022-23591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23591))
*   Fixes a crash due to erroneous `StatusOr`
    ([CVE-2022-23590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23590))
*   Fixes multiple crashes and heap OOB accesses in TFG dialect (MLIR)
    ([CVE-2022-23594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23594))
*   Fixes a null pointer dereference in `BuildXlaCompilationCache` (XLA)
    ([CVE-2022-23595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23595))
*   Updates `icu` to `69.1` to handle
    [CVE-2020-10531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10531)
# Release 2.6.3
This releases introduces several vulnerability fixes:
*   Fixes a floating point division by 0 when executing convolution operators
    ([CVE-2022-21725](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21725))
*   Fixes a heap OOB read in shape inference for `ReverseSequence`
    ([CVE-2022-21728](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21728))
*   Fixes a heap OOB access in `Dequantize`
    ([CVE-2022-21726](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21726))
*   Fixes an integer overflow in shape inference for `Dequantize`
    ([CVE-2022-21727](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21727))
*   Fixes a heap OOB access in `FractionalAvgPoolGrad`
    ([CVE-2022-21730](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21730))
*   Fixes an overflow and divide by zero in `UnravelIndex`
    ([CVE-2022-21729](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21729))
*   Fixes a type confusion in shape inference for `ConcatV2`
    ([CVE-2022-21731](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21731))
*   Fixes an OOM in `ThreadPoolHandle`
    ([CVE-2022-21732](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21732))
*   Fixes an OOM due to integer overflow in `StringNGrams`
    ([CVE-2022-21733](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21733))
*   Fixes more issues caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes an integer overflows in most sparse component-wise ops
    ([CVE-2022-23567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23567))
*   Fixes an integer overflows in `AddManySparseToTensorsMap`
    ([CVE-2022-23568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23568))
*   Fixes a number of `CHECK`-failures in `MapStage`
    ([CVE-2022-21734](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21734))
*   Fixes a division by zero in `FractionalMaxPool`
    ([CVE-2022-21735](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21735))
*   Fixes a number of `CHECK`-fails when building invalid/overflowing tensor
    shapes
    ([CVE-2022-23569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23569))
*   Fixes an undefined behavior in `SparseTensorSliceDataset`
    ([CVE-2022-21736](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21736))
*   Fixes an assertion failure based denial of service via faulty bin count
    operations
    ([CVE-2022-21737](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21737))
*   Fixes a reference binding to null pointer in `QuantizedMaxPool`
    ([CVE-2022-21739](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21739))
*   Fixes an integer overflow leading to crash in `SparseCountSparseOutput`
    ([CVE-2022-21738](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21738))
*   Fixes a heap overflow in `SparseCountSparseOutput`
    ([CVE-2022-21740](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21740))
*   Fixes an FPE in `BiasAndClamp` in TFLite
    ([CVE-2022-23557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23557))
*   Fixes an FPE in depthwise convolutions in TFLite
    ([CVE-2022-21741](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21741))
*   Fixes an integer overflow in TFLite array creation
    ([CVE-2022-23558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23558))
*   Fixes an integer overflow in TFLite
    ([CVE-2022-23559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23559))
*   Fixes a dangerous OOB write in TFLite
    ([CVE-2022-23561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23561))
*   Fixes a vulnerability leading to read and write outside of bounds in TFLite
    ([CVE-2022-23560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23560))
*   Fixes a set of vulnerabilities caused by using insecure temporary files
    ([CVE-2022-23563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23563))
*   Fixes an integer overflow in Range resulting in undefined behavior and OOM
    ([CVE-2022-23562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23562))
*   Fixes a vulnerability where missing validation causes `tf.sparse.split` to
    crash when `axis` is a tuple
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a `CHECK`-fail when decoding resource handles from proto
    ([CVE-2022-23564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23564))
*   Fixes a `CHECK`-fail with repeated `AttrDef`
    ([CVE-2022-23565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23565))
*   Fixes a heap OOB write in Grappler
    ([CVE-2022-23566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23566))
*   Fixes a `CHECK`-fail when decoding invalid tensors from proto
    ([CVE-2022-23571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23571))
*   Fixes a null-dereference when specializing tensor type
    ([CVE-2022-23570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23570))
*   Fixes a crash when type cannot be specialized
    ([CVE-2022-23572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23572))
*   Fixes a heap OOB read/write in `SpecializeType`
    ([CVE-2022-23574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23574))
*   Fixes an unitialized variable access in `AssignOp`
    ([CVE-2022-23573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23573))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateTensorSize`
    ([CVE-2022-23575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23575))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateOutputSize`
    ([CVE-2022-23576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23576))
*   Fixes a null dereference in `GetInitOp`
    ([CVE-2022-23577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23577))
*   Fixes a memory leak when a graph node is invalid
    ([CVE-2022-23578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23578))
*   Fixes an abort caused by allocating a vector that is too large
    ([CVE-2022-23580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23580))
*   Fixes multiple `CHECK`-failures during Grappler's `IsSimplifiableReshape`
    ([CVE-2022-23581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23581))
*   Fixes multiple `CHECK`-failures during Grappler's `SafeToRemoveIdentity`
    ([CVE-2022-23579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23579))
*   Fixes multiple `CHECK`-failures in `TensorByteSize`
    ([CVE-2022-23582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23582))
*   Fixes multiple `CHECK`-failures in binary ops due to type confusion
    ([CVE-2022-23583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23583))
*   Fixes a use after free in `DecodePng` kernel
    ([CVE-2022-23584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23584))
*   Fixes a memory leak in decoding PNG images
    ([CVE-2022-23585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23585))
*   Fixes multiple `CHECK`-fails in `function.cc`
    ([CVE-2022-23586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23586))
*   Fixes multiple `CHECK`-fails due to attempting to build a reference tensor
    ([CVE-2022-23588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23588))
*   Fixes an integer overflow in Grappler cost estimation of crop and resize
    operation
    ([CVE-2022-23587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23587))
*   Fixes a null pointer dereference in Grappler's `IsConstant`
    ([CVE-2022-23589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23589))
*   Fixes a `CHECK` failure in constant folding
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a stack overflow due to self-recursive function in `GraphDef`
    ([CVE-2022-23591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23591))
*   Fixes a null pointer dereference in `BuildXlaCompilationCache` (XLA)
    ([CVE-2022-23595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23595))
*   Updates `icu` to `69.1` to handle
    [CVE-2020-10531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10531)
# Release 2.5.3
This releases introduces several vulnerability fixes:
*   Fixes a floating point division by 0 when executing convolution operators
    ([CVE-2022-21725](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21725))
*   Fixes a heap OOB read in shape inference for `ReverseSequence`
    ([CVE-2022-21728](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21728))
*   Fixes a heap OOB access in `Dequantize`
    ([CVE-2022-21726](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21726))
*   Fixes an integer overflow in shape inference for `Dequantize`
    ([CVE-2022-21727](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21727))
*   Fixes a heap OOB access in `FractionalAvgPoolGrad`
    ([CVE-2022-21730](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21730))
*   Fixes an overflow and divide by zero in `UnravelIndex`
    ([CVE-2022-21729](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21729))
*   Fixes a type confusion in shape inference for `ConcatV2`
    ([CVE-2022-21731](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21731))
*   Fixes an OOM in `ThreadPoolHandle`
    ([CVE-2022-21732](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21732))
*   Fixes an OOM due to integer overflow in `StringNGrams`
    ([CVE-2022-21733](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21733))
*   Fixes more issues caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes an integer overflows in most sparse component-wise ops
    ([CVE-2022-23567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23567))
*   Fixes an integer overflows in `AddManySparseToTensorsMap`
    ([CVE-2022-23568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23568))
*   Fixes a number of `CHECK`-failures in `MapStage`
    ([CVE-2022-21734](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21734))
*   Fixes a division by zero in `FractionalMaxPool`
    ([CVE-2022-21735](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21735))
*   Fixes a number of `CHECK`-fails when building invalid/overflowing tensor
    shapes
    ([CVE-2022-23569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23569))
*   Fixes an undefined behavior in `SparseTensorSliceDataset`
    ([CVE-2022-21736](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21736))
*   Fixes an assertion failure based denial of service via faulty bin count
    operations
    ([CVE-2022-21737](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21737))
*   Fixes a reference binding to null pointer in `QuantizedMaxPool`
    ([CVE-2022-21739](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21739))
*   Fixes an integer overflow leading to crash in `SparseCountSparseOutput`
    ([CVE-2022-21738](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21738))
*   Fixes a heap overflow in `SparseCountSparseOutput`
    ([CVE-2022-21740](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21740))
*   Fixes an FPE in `BiasAndClamp` in TFLite
    ([CVE-2022-23557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23557))
*   Fixes an FPE in depthwise convolutions in TFLite
    ([CVE-2022-21741](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21741))
*   Fixes an integer overflow in TFLite array creation
    ([CVE-2022-23558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23558))
*   Fixes an integer overflow in TFLite
    ([CVE-2022-23559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23559))
*   Fixes a dangerous OOB write in TFLite
    ([CVE-2022-23561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23561))
*   Fixes a vulnerability leading to read and write outside of bounds in TFLite
    ([CVE-2022-23560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23560))
*   Fixes a set of vulnerabilities caused by using insecure temporary files
    ([CVE-2022-23563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23563))
*   Fixes an integer overflow in Range resulting in undefined behavior and OOM
    ([CVE-2022-23562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23562))
*   Fixes a vulnerability where missing validation causes `tf.sparse.split` to
    crash when `axis` is a tuple
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a `CHECK`-fail when decoding resource handles from proto
    ([CVE-2022-23564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23564))
*   Fixes a `CHECK`-fail with repeated `AttrDef`
    ([CVE-2022-23565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23565))
*   Fixes a heap OOB write in Grappler
    ([CVE-2022-23566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23566))
*   Fixes a `CHECK`-fail when decoding invalid tensors from proto
    ([CVE-2022-23571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23571))
*   Fixes an unitialized variable access in `AssignOp`
    ([CVE-2022-23573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23573))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateTensorSize`
    ([CVE-2022-23575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23575))
*   Fixes an integer overflow in `OpLevelCostEstimator::CalculateOutputSize`
    ([CVE-2022-23576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23576))
*   Fixes a null dereference in `GetInitOp`
    ([CVE-2022-23577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23577))
*   Fixes a memory leak when a graph node is invalid
    ([CVE-2022-23578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23578))
*   Fixes an abort caused by allocating a vector that is too large
    ([CVE-2022-23580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23580))
*   Fixes multiple `CHECK`-failures during Grappler's `IsSimplifiableReshape`
    ([CVE-2022-23581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23581))
*   Fixes multiple `CHECK`-failures during Grappler's `SafeToRemoveIdentity`
    ([CVE-2022-23579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23579))
*   Fixes multiple `CHECK`-failures in `TensorByteSize`
    ([CVE-2022-23582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23582))
*   Fixes multiple `CHECK`-failures in binary ops due to type confusion
    ([CVE-2022-23583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23583))
*   Fixes a use after free in `DecodePng` kernel
    ([CVE-2022-23584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23584))
*   Fixes a memory leak in decoding PNG images
    ([CVE-2022-23585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23585))
*   Fixes multiple `CHECK`-fails in `function.cc`
    ([CVE-2022-23586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23586))
*   Fixes multiple `CHECK`-fails due to attempting to build a reference tensor
    ([CVE-2022-23588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23588))
*   Fixes an integer overflow in Grappler cost estimation of crop and resize
    operation
    ([CVE-2022-23587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23587))
*   Fixes a null pointer dereference in Grappler's `IsConstant`
    ([CVE-2022-23589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23589))
*   Fixes a `CHECK` failure in constant folding
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a stack overflow due to self-recursive function in `GraphDef`
    ([CVE-2022-23591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23591))
*   Updates `icu` to `69.1` to handle
    [CVE-2020-10531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10531)
# Release 2.7.0
## Breaking Changes
*   `tf.keras`:
    *   The methods `Model.fit()`, `Model.predict()`, and `Model.evaluate()`
        will no longer uprank input data of shape `(batch_size,)` to become
        `(batch_size, 1)`. This enables `Model` subclasses to process scalar
        data in their `train_step()`/`test_step()`/`predict_step()` methods. \
        Note that this change may break certain subclassed models. You can
        revert back to the previous behavior by adding upranking yourself in the
        `train_step()`/`test_step()`/`predict_step()` methods, e.g. `if
        x.shape.rank == 1: x = tf.expand_dims(x, axis=-1)`. Functional models as
        well as Sequential models built with an explicit input shape are not
        affected.
    *   The methods `Model.to_yaml()` and `keras.models.model_from_yaml` have
        been replaced to raise a `RuntimeError` as they can be abused to cause
        arbitrary code execution. It is recommended to use JSON serialization
        instead of YAML, or, a better alternative, serialize to H5.
    *   `LinearModel` and `WideDeepModel` are moved to the
        `tf.compat.v1.keras.models.` namespace
        (`tf.compat.v1.keras.models.LinearModel` and
        `tf.compat.v1.keras.models.WideDeepModel`), and their `experimental`
        endpoints (`tf.keras.experimental.models.LinearModel` and
        `tf.keras.experimental.models.WideDeepModel`) are being deprecated.
    *   RNG behavior change for all `tf.keras.initializers` classes. For any
        class constructed with a fixed seed, it will no longer generate same
        value when invoked multiple times. Instead, it will return different
        value, but a determinisitic sequence. This change will make the
        initialize behavior align between v1 and v2.
*   `tf.lite`:
    *   Rename fields `SignatureDef` table in schema to maximize the parity with
        TF SavedModel's Signature concept.
    *   Deprecate Makefile builds. Makefile users need to migrate their builds
        to CMake or Bazel. Please refer to the
        [Build TensorFlow Lite with CMake](https://www.tensorflow.org/lite/guide/build_cmake)
        and
        [Build TensorFlow Lite for ARM boards](https://www.tensorflow.org/lite/guide/build_arm)
        for the migration.
    *   Deprecate `tflite::OpResolver::GetDelegates`. The list returned by
        TfLite's `BuiltinOpResolver::GetDelegates` is now always empty. Instead,
        recommend using new method `tflite::OpResolver::GetDelegateCreators` in
        order to achieve lazy initialization on TfLite delegate instances.
*   TF Core:
    *   `tf.Graph.get_name_scope()` now always returns a string, as documented.
        Previously, when called within `name_scope("")` or `name_scope(None)`
        contexts, it returned `None`; now it returns the empty string.
    *   `tensorflow/core/ir/` contains a new MLIR-based Graph dialect that is
        isomorphic to GraphDef and will be used to replace GraphDef-based (e.g.,
        Grappler) optimizations.
    *   Deprecated and removed `attrs()` function in shape inference. All
        attributes should be queried by name now (rather than range returned) to
        enable changing the underlying storage there.
    *   The following Python symbols were accidentally added in earlier versions
        of TensorFlow and now are removed. Each symbol has a replacement that
        should be used instead, but note the replacement's argument names are
        different.
        *   `tf.quantize_and_dequantize_v4` (accidentally introduced in
            TensorFlow 2.4): Use `tf.quantization.quantize_and_dequantize_v2`
            instead.
        *   `tf.batch_mat_mul_v3` (accidentally introduced in TensorFlow 2.6):
            Use `tf.linalg.matmul` instead.
        *   `tf.sparse_segment_sum_grad` (accidentally introduced in TensorFlow
            2.6): Use `tf.raw_ops.SparseSegmentSumGrad` instead. Directly
            calling this op is typically not necessary, as it is automatically
            used when computing the gradient of `tf.sparse.segment_sum`.
    *   Renaming of tensorflow::int64 to int_64_t in numerous places (the former
        is an alias for the latter) which could result in needing to regenerate
        selective op registration headers else execution would fail with
        unregistered kernels error.
*   Modular File System Migration:
    *   Support for S3 and HDFS file systems has been migrated to a modular file
        systems based approach and is now available in
        https://github.com/tensorflow/io. The `tensorflow-io` python package
        should be installed for S3 and HDFS support with tensorflow.
## Major Features and Improvements
*   Improvements to the TensorFlow debugging experience:
    *   Previously, TensorFlow error stack traces involved many internal frames,
        which could be challenging to read through, while not being actionable
        for end users. As of TF 2.7, TensorFlow filters internal frames in most
        errors that it raises, to keep stack traces short, readable, and focused
        on what's actionable for end users (their own code).
    This behavior can be disabled by calling
    `tf.debugging.disable_traceback_filtering()`, and can be re-enabled via
    `tf.debugging.enable_traceback_filtering()`. If you are debugging a
    TensorFlow-internal issue (e.g. to prepare a TensorFlow PR), make sure to
    disable traceback filtering. You can check whether this feature is currently
    enabled by calling `tf.debugging.is_traceback_filtering_enabled()`.
    Note that this feature is only available with Python 3.7 or higher.
    *   Improve the informativeness of error messages raised by Keras
        `Layer.__call__()`, by adding the full list of argument values passed to
        the layer in every exception.
*   Introduce the `tf.compat.v1.keras.utils.track_tf1_style_variables`
    decorator, which enables using large classes of tf1-style variable_scope,
    `get_variable`, and `compat.v1.layer`-based components from within TF2
    models running with TF2 behavior enabled.
*   `tf.data`:
    *   tf.data service now supports auto-sharding. Users specify the sharding
        policy with `tf.data.experimental.service.ShardingPolicy` enum. It can
        be one of `OFF` (equivalent to today's `"parallel_epochs"` mode),
        `DYNAMIC` (equivalent to today's `"distributed_epoch"` mode), or one of
        the static sharding policies: `FILE`, `DATA`, `FILE_OR_DATA`, or `HINT`
        (corresponding to values of `tf.data.experimental.AutoShardPolicy`).
        Static sharding (auto-sharding) requires the number of tf.data service
        workers be fixed. Users need to specify the worker addresses in
        `tensorflow.data.experimental.DispatcherConfig`.
    *   `tf.data.experimental.service.register_dataset` now accepts optional
        `compression` argument.
*   Keras:
    *   `tf.keras.layers.Conv` now includes a public `convolution_op` method.
        This method can be used to simplify the implementation of Conv
        subclasses. There are two primary ways to use this new method. The first
        is to use the method directly in your own `call` method: `python class
        StandardizedConv2D(tf.keras.layers.Conv2D): def call(self, inputs):
        mean, var = tf.nn.moments(self.kernel, axes=[0, 1, 2], keepdims=True)
        return self.convolution_op(inputs, (self.kernel - mean) / tf.sqrt(var +
        1e-10))` Alternatively, you can override `convolution_op`: `python class
        StandardizedConv2D(tf.keras.Layer): def convolution_op(self, inputs,
        kernel): mean, var = tf.nn.moments(kernel, axes=[0, 1, 2],
        keepdims=True) # Author code uses std + 1e-5 return
        super().convolution_op(inputs, (kernel - mean) / tf.sqrt(var + 1e-10))`
    *   Added `merge_state()` method to `tf.keras.metrics.Metric` for use in
        distributed computations.
    *   Added `sparse` and `ragged` options to
        `tf.keras.layers.TextVectorization` to allow for `SparseTensor` and
        `RaggedTensor` outputs from the layer.
*   distribute.experimental.rpc package:
    *   distribute.experimental.rpc package introduces APIs to create a GRPC
        based server to register tf.function methods and a GRPC client to invoke
        remote registered methods. RPC APIs are intended for multi-client setups
        i.e. server and clients are started in separate binaries independently.
    *   Example usage to create server: ```python server =
        tf.distribute.experimental.rpc.Server.create("grpc", "127.0.0.1:1234")
        @tf.function(input_signature=[ tf.TensorSpec([], tf.int32),
        tf.TensorSpec([], dtypes.int32) ]) def _remote_multiply(a, b): return
        tf.math.multiply(a, b)
        server.register("multiply", _remote_multiply) ```
    *   Example usage to create client: `python client =
        tf.distribute.experimental.rpc.Client.create("grpc", address) a =
        tf.constant(2, dtype=tf.int32) b = tf.constant(3, dtype=tf.int32)
        result = client.multiply(a, b)`
*   `tf.lite`:
    *   Add experimental API `experimental_from_jax` to support conversion from
        Jax models to TensorFlow Lite.
    *   Support uint32 data type for cast op.
    *   Support int8 data type for cast op.
    *   Add experimental quantization debugger `tf.lite.QuantizationDebugger`
    *   Add lite.experimental.authoring.compatible API
        *   A Python decorator to provide a way to check TFLite compatibility
            issue of `tf.function`. This returns a callable object which
            validates TFLite compatibility. If an incompatible operation is
            encountered during execution, an exception will be raised with
            information about the incompatible ops.
    *   Add lite.experimental.Analyzer API
        *   An experimental tool to analyze TFLite flatbuffer models. This API
            can be used to investigate TFLite model structure and check
            compatibility with GPU delegate.
*   Extension Types
    *   Add experimental API to define new Python classes that can be handled by
        TensorFlow APIs. To create an extension type, simply define a Python
        class with `tf.experimental.ExtensionType` as its base, and use type
        annotations to specify the type for each field. E.g.: `python class
        MaskedTensor(tf.experimental.ExtensionType): values: tf.Tensor mask:
        tf.Tensor` The `tf.ExtensionType` base class works similarly to
        [`typing.NamedTuple`](https://docs.python.org/3/library/typing.html#typing.NamedTuple)
        and
        [`@dataclasses.dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass)
        from the standard Python library.
    *   Extension types are supported by Keras, tf.data, TF-hub, SavedModel,
        tf.function, control flow ops, py_function, and distribution strategy.
    *   Add "dispatch decorators" that can be used to override the default
        behavior of TensorFlow ops (such as `tf.add` or `tf.concat`) when they
        are applied to ExtensionType values.
    *   The `BatchableExtensionType` API can be used to define extension types
        that support APIs that make use of batching, such as `tf.data.Dataset`
        and `tf.map_fn`.
    *   For more information, see the
        [Extension types guide](https://www.tensorflow.org/guide/extension_type).
## Bug Fixes and Other Changes
*   TF Core:
    *   Random number generation (RNG) system
        *   Add argument `alg` to `tf.random.stateless_*` functions to
            explicitly select the RNG algorithm.
        *   Add `tf.nn.experimental.stateless_dropout`, a stateless version of
            `tf.nn.dropout`.
        *   `tf.random.Generator` now can be created inside the scope of
            `tf.distribute.experimental.ParameterServerStrategy` and
            `tf.distribute.experimental.CentralStorageStrategy`.
    *   Add an experimental session config
        `tf.experimental.disable_functional_ops_lowering` which disables
        functional control flow op lowering optimization. This is useful when
        executing within a portable runtime where control flow op kernels may
        not be loaded due to selective registration.
    *   Add a new experimental argument `experimental_is_anonymous` to
        `tf.lookup.StaticHashTable.__init__` to create the table in anonymous
        mode. In this mode, the table resource can only be accessed via resource
        handles (not resource names) and will be deleted automatically when all
        resource handles pointing to it are gone.
*   `tf.data`:
    *   Introduce the `tf.data.experimental.at` API which provides random access
        for input pipelines that consist of transformations that support random
        access. The initial set of transformations that support random access
        includes:
        `tf.data.Dataset.from_tensor_slices`,`tf.data.Dataset.shuffle`,
        `tf.data.Dataset.batch`, `tf.data.Dataset.shard`, `tf.data.Dataset.map`,
        and `tf.data.Dataset.range`.
    *   Promote `tf.data.Options.experimental_deterministic` API to
        `tf.data.Options.deterministic` and deprecate the experimental endpoint.
    *   Move autotuning options
        from`tf.data.Options.experimental_optimization.autotune*` to a newly
        created `tf.data.Options.autotune.*` and remove support for
        `tf.data.Options.experimental_optimization.autotune_buffers`.
    *   Add support for user-defined names of tf.data core Python API, which can
        be used to disambiguate tf.data events in TF Profiler Trace Viewer.
    *   Promote `tf.data.experimental.sample_from_datasets` API to
        `tf.data.Dataset.sample_from_datasets` and deprecate the experimental
        endpoint.
    *   Added `TF_GPU_ALLOCATOR=cuda_malloc_async` that use cudaMallocAsync from
        CUDA 11.2. This could become the default in the future.
*   TF SavedModel:
    *   Custom gradients are now saved by default. See
        `tf.saved_model.SaveOptions` to disable this.
    *   The saved_model_cli's `--input_examples` inputs are now restricted to
        python literals to avoid code injection.
*   XLA:
    *   Add a new API that allows custom call functions to signal errors. The
        old API will be deprecated in a future release. See
        https://www.tensorflow.org/xla/custom_call for details.
    *   XLA:GPU reductions are deterministic by default (reductions within
        `jit_compile=True` are now deterministic).
    *   XLA:GPU works with Horovod (OSS contribution by Trent Lo from NVidia)
    *   XLA:CPU and XLA:GPU can compile tf.unique and tf.where when shapes are
        provably correct at compile time.
*   `tf.saved_model.save`:
    *   When saving a model, not specifying a namespace whitelist for custom ops
        with a namespace will now default to allowing rather than rejecting them
        all.
*   Deterministic Op Functionality (enabled by setting the environment variable
    `TF_DETERMINISTIC_OPS` to `"true"` or `"1"`):
    *   Add determinsitic GPU implementations of:
        *   `tf.math.segment_sum`
        *   `tf.math.segment_prod`
        *   `tf.math.segment_mean`
        *   `tf.math.unsorted_segment_sum`
        *   `tf.math.unsorted_segment_prod`
        *   `tf.math.unsorted_segment_sqrt`
        *   `tf.math.unsorted_segment_mean`
        *   `tf.gather` backprop
        *   `tf.convert_to_tensor` when fed with (sparse) `tf.IndexedSlices`
        *   `tf.nn.sparse_softmax_crossentropy_with_logits`
        *   `tf.nn.ctc_loss` (resolved, possibly in prior release, and confirmed
            with tests)
        *   stateful ops used in `tf.data.Dataset`
    *   Run the following ops on CPU (with significant performance penalty):
        *   `tf.scatter_nd` and other related scatter functions, such as
            `tf.tensor_scatter_nd_update`
    *   Add determinism-unimplemented exception-throwing to the following ops.
        When op-determinism is expected (i.e. when the environment variable
        `TF_DETERMINISTIC_OPS` is set to `"true"` or `"1"`), an attempt to use
        the specified paths through the following ops on a GPU will cause
        `tf.errors.UnimplementedError` (with an understandable message), unless
        otherwise specified, to be thrown.
        *   `tf.compat.v1.nn.fused_batch_norm` backprop to `offset` when
            `is_training=False`
        *   `tf.image.adjust_contrast` forward
        *   `tf.nn.depthwise_conv2d` backprop to `filter` when not using cuDNN
            convolution
        *   `tf.image.resize` with `method=ResizeMethod.NEAREST` backprop
        *   `tf.math.bincount` - TODO: confirm exception added
        *   `tf.raw_ops.DebugNumericSummary` and
            `tf.raw_ops.DebugNumericSummaryV2`
        *   `tf.Variable.scatter_add` (and other scatter methods, both on ref
            and resource variables)
        *   `tf.linalg.svd`
        *   `tf.nn.dilation2d` gradient
        *   `tf.nn.max_pool_with_argmax` gradient
        *   `tf.timestamp`. Throws `FailedPrecondition`
        *   The random-number-generating ops in the `tf.random` module when the
            global random seed has not yet been set (via `tf.random.set_seed`).
            Throws `RuntimeError` from Python or `InvalidArgument` from C++
        *   `tf.compat.v1.get_seed` if the global random seed has not yet been
            set (via `tf.random.set_seed`). Throws `RuntimeError` from Python or
            `InvalidArgument` from C++
## Security
*   Fixes a code injection issue in `saved_model_cli`
    ([CVE-2021-41228](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41228))
*   Fixes a vulnerability due to use of uninitialized value in Tensorflow
    ([CVE-2021-41225](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41225))
*   Fixes a heap OOB in `FusedBatchNorm` kernels
    ([CVE-2021-41223](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41223))
*   Fixes an arbitrary memory read in `ImmutableConst`
    ([CVE-2021-41227](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41227))
*   Fixes a heap OOB in `SparseBinCount`
    ([CVE-2021-41226](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41226))
*   Fixes a heap OOB in `SparseFillEmptyRows`
    ([CVE-2021-41224](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41224))
*   Fixes a segfault due to negative splits in `SplitV`
    ([CVE-2021-41222](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41222))
*   Fixes segfaults and vulnerabilities caused by accesses to invalid memory
    during shape inference in `Cudnn*` ops
    ([CVE-2021-41221](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41221))
*   Fixes a null pointer exception when `Exit` node is not preceded by `Enter`
    op
    ([CVE-2021-41217](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41217))
*   Fixes an integer division by 0 in `tf.raw_ops.AllToAll`
    ([CVE-2021-41218](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41218))
*   Fixes a use after free and a memory leak in `CollectiveReduceV2`
    ([CVE-2021-41220](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41220))
*   Fixes an undefined behavior via `nullptr` reference binding in sparse matrix
    multiplication
    ([CVE-2021-41219](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41219))
*   Fixes a heap buffer overflow in `Transpose`
    ([CVE-2021-41216](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41216))
*   Prevents deadlocks arising from mutually recursive `tf.function` objects
    ([CVE-2021-41213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41213))
*   Fixes a null pointer exception in `DeserializeSparse`
    ([CVE-2021-41215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41215))
*   Fixes an undefined behavior arising from reference binding to `nullptr` in
    `tf.ragged.cross`
    ([CVE-2021-41214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41214))
*   Fixes a heap OOB read in `tf.ragged.cross`
    ([CVE-2021-41212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41212))
*   Fixes a heap OOB in shape inference for `QuantizeV2`
    ([CVE-2021-41211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41211))
*   Fixes a heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops
    ([CVE-2021-41205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41205))
*   Fixes an FPE in `ParallelConcat`
    ([CVE-2021-41207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41207))
*   Fixes FPE issues in convolutions with zero size filters
    ([CVE-2021-41209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41209))
*   Fixes a heap OOB read in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-41210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41210))
*   Fixes vulnerabilities caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes vulnerabilities caused by incomplete validation of shapes in multiple
    TF ops
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a segfault produced while copying constant resource tensor
    ([CVE-2021-41204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41204))
*   Fixes a vulnerability caused by unitialized access in
    `EinsumHelper::ParseEquation`
    ([CVE-2021-41201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41201))
*   Fixes several vulnerabilities and segfaults caused by missing validation
    during checkpoint loading
    ([CVE-2021-41203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41203))
*   Fixes an overflow producing a crash in `tf.range`
    ([CVE-2021-41202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41202))
*   Fixes an overflow producing a crash in `tf.image.resize` when size is large
    ([CVE-2021-41199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41199))
*   Fixes an overflow producing a crash in `tf.tile` when tiling tensor is large
    ([CVE-2021-41198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41198))
*   Fixes a vulnerability produced due to incomplete validation in
    `tf.summary.create_file_writer`
    ([CVE-2021-41200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41200))
*   Fixes multiple crashes due to overflow and `CHECK`-fail in ops with large
    tensor shapes
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a crash in `max_pool3d` when size argument is 0 or negative
    ([CVE-2021-41196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41196))
*   Fixes a crash in `tf.math.segment_*` operations
    ([CVE-2021-41195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41195))
*   Updates `curl` to `7.78.0` to handle
    [CVE-2021-22922](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22922),
    [CVE-2021-22923](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22923),
    [CVE-2021-22924](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22924),
    [CVE-2021-22925](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22925),
    and
    [CVE-2021-22926](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22926).
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Abhilash Majumder, abhilash1910, AdeshChoudhar, Adrian Garcia
Badaracco, Adrian Ratiu, ag.ramesh, Aleksandr Nikolaev, Alexander Bosch,
Alexander Grund, Annie Tallund, Anush Elangovan, Artem Sokolovskii, azazhu,
Balint Cristian, Bas Aarts, Ben Barsdell, bhack, cfRod, Cheney-Wang, Cheng Ren,
Christopher Bate, collin, Danila Bespalov, David Datascientist, Deven Desai,
Duncan Riach, Ehsan Kia, Ellie, Fan Du, fo40225, Frederic Bastien, fsx950223,
Gauri1 Deshpande, geetachavan1, Guillaume Klein, guozhong.zhuang, helen, Håkon
Sandsmark, japm48, jgehw, Jinzhe Zeng, Jonathan Dekhtiar, Kai Zhu, Kaixi Hou,
Kanvi Khanna, Koan-Sin Tan, Koki Ibukuro, Kulin Seth, KumaTea, Kun-Lu, Lemo,
lipracer, liuyuanqiang, Mahmoud Abuzaina, Marius Brehler, Maxiwell S. Garcia,
mdfaijul, metarutaiga, Michal Szutenberg, nammbash, Neil Girdhar, Nishidha
Panpaliya, Nyadla-Sys, Patrice Vignola, Peter Kasting, Philipp Hack, PINTO0309,
Prateek Gupta, puneeshkhanna, Rahul Butani, Rajeshwar Reddy T, Reza Rahimi,
RinozaJiffry, rmothukuru, Rohit Santhanam, Saduf2019, Samuel Marks, sclarkson,
Sergii Khomenko, Sheng, Yang, Sidong-Wei, slowy07, Srinivasan Narayanamoorthy,
Srishti Srivastava, stanley, Stella Alice Schlotter, Steven I Reeves,
stevenireeves, svobora, Takayoshi Koizumi, Tamas Bela Feher, Thibaut
Goetghebuer-Planchon, Trent Lo, Twice, Varghese, Jojimon, Vishnuvardhan
Janapati, Wang Yanzhang, Wang,Quintin, William Muir, William Raveane, Yasir
Modak, Yasuhiro Matsumoto, Yi Li, Yong Tang, zhaozheng09, Zhoulong Jiang,
zzpmiracle
# Release 2.6.2
Fixes an issue where `keras`, `tensorflow_estimator` and `tensorboard` were
missing proper upper bounds and resulted in broken installs after TF 2.7 release
# Release 2.6.1
This release introduces several vulnerability fixes:
*   Fixes a code injection issue in `saved_model_cli`
    ([CVE-2021-41228](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41228))
*   Fixes a vulnerability due to use of uninitialized value in Tensorflow
    ([CVE-2021-41225](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41225))
*   Fixes a heap OOB in `FusedBatchNorm` kernels
    ([CVE-2021-41223](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41223))
*   Fixes an arbitrary memory read in `ImmutableConst`
    ([CVE-2021-41227](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41227))
*   Fixes a heap OOB in `SparseBinCount`
    ([CVE-2021-41226](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41226))
*   Fixes a heap OOB in `SparseFillEmptyRows`
    ([CVE-2021-41224](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41224))
*   Fixes a segfault due to negative splits in `SplitV`
    ([CVE-2021-41222](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41222))
*   Fixes segfaults and vulnerabilities caused by accesses to invalid memory
    during shape inference in `Cudnn*` ops
    ([CVE-2021-41221](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41221))
*   Fixes a null pointer exception when `Exit` node is not preceded by `Enter`
    op
    ([CVE-2021-41217](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41217))
*   Fixes an integer division by 0 in `tf.raw_ops.AllToAll`
    ([CVE-2021-41218](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41218))
*   Fixes a use after free and a memory leak in `CollectiveReduceV2`
    ([CVE-2021-41220](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41220))
*   Fixes an undefined behavior via `nullptr` reference binding in sparse matrix
    multiplication
    ([CVE-2021-41219](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41219))
*   Fixes a heap buffer overflow in `Transpose`
    ([CVE-2021-41216](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41216))
*   Prevents deadlocks arising from mutually recursive `tf.function` objects
    ([CVE-2021-41213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41213))
*   Fixes a null pointer exception in `DeserializeSparse`
    ([CVE-2021-41215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41215))
*   Fixes an undefined behavior arising from reference binding to `nullptr` in
    `tf.ragged.cross`
    ([CVE-2021-41214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41214))
*   Fixes a heap OOB read in `tf.ragged.cross`
    ([CVE-2021-41212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41212))
*   Fixes a heap OOB in shape inference for `QuantizeV2`
    ([CVE-2021-41211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41211))
*   Fixes a heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops
    ([CVE-2021-41205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41205))
*   Fixes an FPE in `ParallelConcat`
    ([CVE-2021-41207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41207))
*   Fixes FPE issues in convolutions with zero size filters
    ([CVE-2021-41209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41209))
*   Fixes a heap OOB read in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-41210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41210))
*   Fixes vulnerabilities caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes vulnerabilities caused by incomplete validation of shapes in multiple
    TF ops
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a segfault produced while copying constant resource tensor
    ([CVE-2021-41204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41204))
*   Fixes a vulnerability caused by unitialized access in
    `EinsumHelper::ParseEquation`
    ([CVE-2021-41201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41201))
*   Fixes several vulnerabilities and segfaults caused by missing validation
    during checkpoint loading
    ([CVE-2021-41203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41203))
*   Fixes an overflow producing a crash in `tf.range`
    ([CVE-2021-41202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41202))
*   Fixes an overflow producing a crash in `tf.image.resize` when size is large
    ([CVE-2021-41199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41199))
*   Fixes an overflow producing a crash in `tf.tile` when tiling tensor is large
    ([CVE-2021-41198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41198))
*   Fixes a vulnerability produced due to incomplete validation in
    `tf.summary.create_file_writer`
    ([CVE-2021-41200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41200))
*   Fixes multiple crashes due to overflow and `CHECK`-fail in ops with large
    tensor shapes
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a crash in `max_pool3d` when size argument is 0 or negative
    ([CVE-2021-41196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41196))
*   Fixes a crash in `tf.math.segment_*` operations
    ([CVE-2021-41195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41195))
*   Updates `curl` to `7.78.0` to handle
    [CVE-2021-22922](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22922),
    [CVE-2021-22923](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22923),
    [CVE-2021-22924](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22924),
    [CVE-2021-22925](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22925),
    and
    [CVE-2021-22926](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22926).
# Release 2.6.0
## Breaking Changes
*   `tf.train.experimental.enable_mixed_precision_graph_rewrite` is removed, as
    the API only works in graph mode and is not customizable. The function is
    still accessible under
    `tf.compat.v1.mixed_precision.enable_mixed_precision_graph_rewrite`, but it
    is recommended to use the
    [Keras mixed precision API](https://www.tensorflow.org/guide/mixed_precision)
    instead.
*   `tf.lite`:
    *   Remove `experimental.nn.dynamic_rnn`, `experimental.nn.TfLiteRNNCell`
        and `experimental.nn.TfLiteLSTMCell` since they're no longer supported.
        It's recommended to just use
        [keras lstm](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
        instead.
*   `tf.keras`:
    *   Keras been split into a separate PIP package (`keras`), and its code has
        been moved to the GitHub
        repository[keras-team/keras](http://github.com/keras-team/keras). The
        API endpoints for `tf.keras` stay unchanged, but are now backed by the
        `keras` PIP package. The existing code in tensorflow/python/keras is a
        staled copy and will be removed in future release (2.7). Please remove
        any imports to `tensorflow.python.keras` and replace them with public
        tf.keras API instead.
    *   The methods `Model.to_yaml()` and `keras.models.model_from_yaml` have
        been replaced to raise a `RuntimeError` as they can be abused to cause
        arbitrary code execution. It is recommended to use JSON serialization
        instead of YAML, or, a better alternative, serialize to H5.
## Known Caveats
*   TF Core:
    *   A longstanding bug in `tf.while_loop`, which caused it to execute
        sequentially, even when `parallel_iterations>1`, has now been fixed.
        However, the increased parallelism may result in increased memory use.
        Users who experience unwanted regressions should reset their
        `while_loop`'s `parallel_iterations` value to 1, which is consistent
        with prior behavior.
## Major Features and Improvements
*   `tf.keras`:
    *   Keras has been split into a separate PIP package (`keras`), and its code
        has been moved to the GitHub repository
        [keras-team/keras](http://github.com/keras-team/keras). The API
        endpoints for `tf.keras` stay unchanged, but are now backed by the
        `keras` PIP package. All Keras-related PRs and issues should now be
        directed to the GitHub repository.
        [keras-team/keras](http://github.com/keras-team/keras).
    *   `tf.keras.utils.experimental.DatasetCreator` now takes an optional
        `tf.distribute.InputOptions` for specific options when used with
        distribution.
    *   `tf.keras.experimental.SidecarEvaluator` is now available for a program
        intended to be run on an evaluator task, which is commonly used to
        supplement a training cluster running with
        `tf.distribute.experimental.ParameterServerStrategy` (see
        `https://www.tensorflow.org/tutorials/distribute/parameter_server_training).
        It can also be used with single-worker training or other strategies. See
        docstring for more info.
    *   Preprocessing layers moved from experimental to core.
        *   Import paths moved from `tf.keras.layers.preprocessing.experimental`
            to `tf.keras.layers`.
    *   Updates to Preprocessing layers API for consistency and clarity:
        *   `StringLookup` and `IntegerLookup` default for `mask_token` changed
            to `None`. This matches the default masking behavior of `Hashing`
            and `Embedding` layers. To keep existing behavior, pass
            `mask_token=""` during layer creation.
        *   Renamed `"binary"` output mode to `"multi_hot"` for
            `CategoryEncoding`, `StringLookup`, `IntegerLookup`, and
            `TextVectorization`. Multi-hot encoding will no longer automatically
            uprank rank 1 inputs, so these layers can now multi-hot encode
            unbatched multi-dimensional samples.
        *   Added a new output mode `"one_hot"` for `CategoryEncoding`,
            `StringLookup`, `IntegerLookup`, which will encode each element in
            an input batch individually, and automatically append a new output
            dimension if necessary. Use this mode on rank 1 inputs for the old
            `"binary"` behavior of one-hot encoding a batch of scalars.
        *   `Normalization` will no longer automatically uprank rank 1 inputs,
            allowing normalization of unbatched multi-dimensional samples.
*   `tf.lite`:
    *   The recommended Android NDK version for building TensorFlow Lite has
        been changed from r18b to r19c.
    *   Supports int64 for mul.
    *   Supports native variable builtin ops - ReadVariable, AssignVariable.
    *   Converter:
        *   Experimental support for variables in TFLite. To enable through
            conversion, users need to set
            `experimental_enable_resource_variables` on tf.lite.TFLiteConverter
            to True. Note: mutable variables is only available using
            `from_saved_model` in this release, support for other methods is
            coming soon.
        *   Old Converter (TOCO) is getting removed from next release. It's been
            deprecated for few releases already.
*   `tf.saved_model`:
    *   SavedModels can now save custom gradients. Use the option
        `tf.saved_model.SaveOption(experimental_custom_gradients=True)` to
        enable this feature. The documentation in
        [Advanced autodiff](https://www.tensorflow.org/guide/advanced_autodiff#custom_gradients)
        has been updated.
    *   Object metadata has now been deprecated and no longer saved to the
        SavedModel.
*   TF Core:
    *   Added `tf.config.experimental.reset_memory_stats` to reset the tracked
        peak memory returned by `tf.config.experimental.get_memory_info`.
*   `tf.data`:
    *   Added `target_workers` param to `data_service_ops.from_dataset_id` and
        `data_service_ops.distribute`. Users can specify `"AUTO"`, `"ANY"`, or
        `"LOCAL"` (case insensitive). If `"AUTO"`, tf.data service runtime
        decides which workers to read from. If `"ANY"`, TF workers read from any
        tf.data service workers. If `"LOCAL"`, TF workers will only read from
        local in-processs tf.data service workers. `"AUTO"` works well for most
        cases, while users can specify other targets. For example, `"LOCAL"`
        would help avoid RPCs and data copy if every TF worker colocates with a
        tf.data service worker. Currently, `"AUTO"` reads from any tf.data
        service workers to preserve existing behavior. The default value is
        `"AUTO"`.
## Bug Fixes and Other Changes
*   TF Core:
    *   Added `tf.lookup.experimental.MutableHashTable`, which provides a
        generic mutable hash table implementation.
        *   Compared to `tf.lookup.experimental.DenseHashTable` this offers
            lower overall memory usage, and a cleaner API. It does not require
            specifying a `delete_key` and `empty_key` that cannot be inserted
            into the table.
    *   Added support for specifying number of subdivisions in all reduce host
        collective. This parallelizes work on CPU and speeds up the collective
        performance. Default behavior is unchanged.
    *   Add an option `perturb_singular` to `tf.linalg.tridiagonal_solve` that
        allows solving linear systems with a numerically singular tridiagonal
        matrix, e.g. for use in inverse iteration.
    *   Added `tf.linalg.eigh_tridiagonal` that computes the eigenvalues of a
        Hermitian tridiagonal matrix.
    *   `tf.constant` now places its output on the current default device.
    *   SavedModel
        *   Added `tf.saved_model.experimental.TrackableResource`, which allows
            the creation of custom wrapper objects for resource tensors.
        *   Added a SavedModel load option to allow restoring partial
            checkpoints into the SavedModel. See
            [`tf.saved_model.LoadOptions`](https://www.tensorflow.org/api_docs/python/tf/saved_model/LoadOptions)
            for details.
    *   Added a new op `SparseSegmentSumGrad` to match the other sparse segment
        gradient ops and avoid an extra gather operation that was in the
        previous gradient implementation.
    *   Added a new session config setting `internal_fragmentation_fraction`,
        which controls when the BFC Allocator needs to split an oversized chunk
        to satisfy an allocation request.
    *   Added `tf.get_current_name_scope()` which returns the current full name
        scope string that will be prepended to op names.
*   `tf.data`:
    *   Promoting `tf.data.experimental.bucket_by_sequence_length` API to
        `tf.data.Dataset.bucket_by_sequence_length` and deprecating the
        experimental endpoint.
    *   Promoting `tf.data.experimental.get_single_element` API to
        `tf.data.Dataset.get_single_element` and deprecating the experimental
        endpoint.
    *   Promoting `tf.data.experimental.group_by_window` API to
        `tf.data.Dataset.group_by_window` and deprecating the experimental
        endpoint.
    *   Promoting `tf.data.experimental.RandomDataset` API to
        `tf.data.Dataset.random` and deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.scan` API to `tf.data.Dataset.scan` and
        deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.snapshot` API to
        `tf.data.Dataset.shapshot` and deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.take_while` API to
        `tf.data.Dataset.take_while` and deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.ThreadingOptions` API to
        `tf.data.ThreadingOptions` and deprecating the experimental endpoint.
    *   Promoting `tf.data.experimental.unique` API to `tf.data.Dataset.unique`
        and deprecating the experimental endpoint.
    *   Added `stop_on_empty_dataset` parameter to `sample_from_datasets` and
        `choose_from_datasets`. Setting `stop_on_empty_dataset=True` will stop
        sampling if it encounters an empty dataset. This preserves the sampling
        ratio throughout training. The prior behavior was to continue sampling,
        skipping over exhausted datasets, until all datasets are exhausted. By
        default, the original behavior (`stop_on_empty_dataset=False`) is
        preserved.
    *   Removed previously deprecated tf.data statistics related APIs:
        *   `tf.data.Options.experimental_stats`
        *   `tf.data.experimental.StatsAggregator`
        *   `tf.data.experimental.StatsOptions.*`
        *   `tf.data.experimental.bytes_produced_stats`
        *   `tf.data.experimental.latency_stats`
    *   Removed the following experimental tf.data optimization APIs:
        *   `tf.data.experimental.MapVectorizationOptions.*`
        *   `tf.data.experimental.OptimizationOptions.filter_with_random_uniform_fusion`
        *   `tf.data.experimental.OptimizationOptions.hoist_random_uniform`
        *   `tf.data.experimental.OptimizationOptions.map_vectorization` *
            `tf.data.experimental.OptimizationOptions.reorder_data_discarding_ops`
*   `tf.keras`:
    *   Fix usage of `__getitem__` slicing in Keras Functional APIs when the
        inputs are `RaggedTensor` objects.
    *   Add `keepdims` argument to all `GlobalPooling` layers.
    *   Add `include_preprocessing` argument to `MobileNetV3` architectures to
        control the inclusion of `Rescaling` layer in the model.
    *   Add optional argument (`force`) to `make_(train|test|predict)_funtion`
        methods to skip the cached function and generate a new one. This is
        useful to regenerate in a single call the compiled training function
        when any `.trainable` attribute of any model's layer has changed.
    *   Models now have a `save_spec` property which contains the `TensorSpec`
        specs for calling the model. This spec is automatically saved when the
        model is called for the first time.
*   `tf.linalg`:
    *   Add `CompositeTensor` as a base class to `LinearOperator`.
*   `tf.lite`:
    *   Fix mean op reference quantization rounding issue.
    *   Added `framework_stable` BUILD target, which links in only the
        non-experimental TF Lite APIs.
    *   Remove deprecated Java `Interpreter` methods:
        *   `modifyGraphWithDelegate` - Use `Interpreter.Options.addDelegate`
        *   `setNumThreads` - Use `Interpreter.Options.setNumThreads`
    *   Add Conv3DTranspose as a builtin op.
*   `tf.summary`:
    *   Fix `tf.summary.should_record_summaries()` so it correctly reflects when
        summaries will be written, even when `tf.summary.record_if()` is not n
        effect, by returning True tensor if default writer is present.
*   Grappler:
    *   Disable default Grappler optimization timeout to make the optimization
        pipeline deterministic. This may lead to increased model loading time,
        because time spent in graph optimizations is now unbounded (was 20
        minutes).
*   Deterministic Op Functionality (enabled by setting `TF_DETERMINISTIC_OPS` to
    `"true"` or `"1"`):
    *   Add a deterministic GPU implementation of
        `tf.nn.softmax_cross_entropy_with_logits`. See PR
        [49178](https://github.com/tensorflow/tensorflow/pull/49178).
    *   Add a deterministic CPU implementation of `tf.image.crop_and_resize`.
        See PR [48905](https://github.com/tensorflow/tensorflow/pull/48905).
    *   Add determinism-unimplemented exception-throwing to the following ops.
        When op-determinism is expected, an attempt to use the specified paths
        through the following ops on a GPU will cause
        `tf.errors.UnimplementedError` (with an understandable message) to be
        thrown.
        *   `tf.nn.sparse_softmax_cross_entropy_with_logits` forwards and/or
            backwards. See PR
            [47925](https://github.com/tensorflow/tensorflow/pull/47925).
        *   `tf.image.crop_and_resize` gradient w.r.t. either `image` or
            `boxes`. See PR
            [48905](https://github.com/tensorflow/tensorflow/pull/48905).
        *   `tf.sparse.sparse_dense_matmul` forwards. See PR
            [50355](https://github.com/tensorflow/tensorflow/pull/50355).
## Security
*   Fixes a heap out of bounds access in sparse reduction operations
    ([CVE-2021-37635](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37635))
*   Fixes a floating point exception in `SparseDenseCwiseDiv`
    ([CVE-2021-37636](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37636))
*   Fixes a null pointer dereference in `CompressElement`
    ([CVE-2021-37637](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37637))
*   Fixes a null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-37638](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37638))
*   Fixes a null pointer dereference and a heap OOB read arising from operations
    restoring tensors
    ([CVE-2021-37639](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37639))
*   Fixes an integer division by 0 in sparse reshaping
    ([CVE-2021-37640](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37640))
*   Fixes a division by 0 in `ResourceScatterDiv`
    ([CVE-2021-37642](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37642))
*   Fixes a heap OOB in `RaggedGather`
    ([CVE-2021-37641](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37641))
*   Fixes a `std::abort` raised from `TensorListReserve`
    ([CVE-2021-37644](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37644))
*   Fixes a null pointer dereference in `MatrixDiagPartOp`
    ([CVE-2021-37643](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37643))
*   Fixes an integer overflow due to conversion to unsigned
    ([CVE-2021-37645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37645))
*   Fixes a bad allocation error in `StringNGrams` caused by integer conversion
    ([CVE-2021-37646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37646))
*   Fixes a null pointer dereference in `SparseTensorSliceDataset`
    ([CVE-2021-37647](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37647))
*   Fixes an incorrect validation of `SaveV2` inputs
    ([CVE-2021-37648](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37648))
*   Fixes a null pointer dereference in `UncompressElement`
    ([CVE-2021-37649](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37649))
*   Fixes a segfault and a heap buffer overflow in
    `{Experimental,}DatasetToTFRecord`
    ([CVE-2021-37650](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37650))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-37651](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37651))
*   Fixes a use after free in boosted trees creation
    ([CVE-2021-37652](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37652))
*   Fixes a division by 0 in `ResourceGather`
    ([CVE-2021-37653](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37653))
*   Fixes a heap OOB and a `CHECK` fail in `ResourceGather`
    ([CVE-2021-37654](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37654))
*   Fixes a heap OOB in `ResourceScatterUpdate`
    ([CVE-2021-37655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37655))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToSparse`
    ([CVE-2021-37656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37656))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixDiagV*` ops
    ([CVE-2021-37657](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37657))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixSetDiagV*` ops
    ([CVE-2021-37658](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37658))
*   Fixes an undefined behavior arising from reference binding to nullptr and
    heap OOB in binary cwise ops
    ([CVE-2021-37659](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37659))
*   Fixes a division by 0 in inplace operations
    ([CVE-2021-37660](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37660))
*   Fixes a crash caused by integer conversion to unsigned
    ([CVE-2021-37661](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37661))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    boosted trees
    ([CVE-2021-37662](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37662))
*   Fixes a heap OOB in boosted trees
    ([CVE-2021-37664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37664))
*   Fixes vulnerabilities arising from incomplete validation in `QuantizeV2`
    ([CVE-2021-37663](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37663))
*   Fixes vulnerabilities arising from incomplete validation in MKL
    requantization
    ([CVE-2021-37665](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37665))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToVariant`
    ([CVE-2021-37666](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37666))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    unicode encoding
    ([CVE-2021-37667](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37667))
*   Fixes an FPE in `tf.raw_ops.UnravelIndex`
    ([CVE-2021-37668](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37668))
*   Fixes a crash in NMS ops caused by integer conversion to unsigned
    ([CVE-2021-37669](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37669))
*   Fixes a heap OOB in `UpperBound` and `LowerBound`
    ([CVE-2021-37670](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37670))
*   Fixes an undefined behavior arising from reference binding to nullptr in map
    operations
    ([CVE-2021-37671](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37671))
*   Fixes a heap OOB in `SdcaOptimizerV2`
    ([CVE-2021-37672](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37672))
*   Fixes a `CHECK`-fail in `MapStage`
    ([CVE-2021-37673](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37673))
*   Fixes a vulnerability arising from incomplete validation in `MaxPoolGrad`
    ([CVE-2021-37674](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37674))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    shape inference
    ([CVE-2021-37676](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37676))
*   Fixes a division by 0 in most convolution operators
    ([CVE-2021-37675](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37675))
*   Fixes vulnerabilities arising from missing validation in shape inference for
    `Dequantize`
    ([CVE-2021-37677](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37677))
*   Fixes an arbitrary code execution due to YAML deserialization
    ([CVE-2021-37678](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678))
*   Fixes a heap OOB in nested `tf.map_fn` with `RaggedTensor`s
    ([CVE-2021-37679](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37679))
*   Fixes a division by zero in TFLite
    ([CVE-2021-37680](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37680))
*   Fixes an NPE in TFLite
    ([CVE-2021-37681](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37681))
*   Fixes a vulnerability arising from use of unitialized value in TFLite
    ([CVE-2021-37682](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37682))
*   Fixes an FPE in TFLite division operations
    ([CVE-2021-37683](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37683))
*   Fixes an FPE in TFLite pooling operations
    ([CVE-2021-37684](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37684))
*   Fixes an infinite loop in TFLite
    ([CVE-2021-37686](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37686))
*   Fixes a heap OOB in TFLite
    ([CVE-2021-37685](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37685))
*   Fixes a heap OOB in TFLite's `Gather*` implementations
    ([CVE-2021-37687](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37687))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    ([CVE-2021-37688](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37688))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    MLIR optimizations
    ([CVE-2021-37689](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37689))
*   Fixes a FPE in LSH in TFLite
    ([CVE-2021-37691](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37691))
*   Fixes a segfault on strings tensors with mismatched dimensions, arising in
    Go code
    ([CVE-2021-37692](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37692))
*   Fixes a use after free and a potential segfault in shape inference functions
    ([CVE-2021-37690](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37690))
*   Updates `curl` to `7.77.0` to handle
    [CVE-2021-22876](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22876),
    [CVE-2021-22897](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22897),
    [CVE-2021-22898](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22898),
    and
    [CVE-2021-22901](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22901).
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Aadhitya A, Abhilash Mahendrakar, Abhishek Varma, Abin Shahab, Adam Hillier,
Aditya Kane, AdityaKane2001, ag.ramesh, Amogh Joshi, Armen Poghosov,
armkevincheng, Avrosh K, Ayan Moitra, azazhu, Banikumar Maiti, Bas Aarts, bhack,
Bhanu Prakash Bandaru Venkata, Billy Cao, Bohumir Zamecnik, Bradley Reece,
CyanXu, Daniel Situnayake, David Pal, Ddavis-2015, DEKHTIARJonathan, Deven
Desai, Duncan Riach, Edward, Eli Osherovich, Eugene Kuznetsov, europeanplaice,
evelynmitchell, Evgeniy Polyakov, Felix Vollmer, Florentin Hennecker, François
Chollet, Frederic Bastien, Fredrik Knutsson, Gabriele Macchi, Gaurav Shukla,
Gauri1 Deshpande, geetachavan1, Georgiy Manuilov, H, Hengwen Tong, Henri
Woodcock, Hiran Sarkar, Ilya Arzhannikov, Janghoo Lee, jdematos, Jens Meder,
Jerry Shih, jgehw, Jim Fisher, Jingbei Li, Jiri Podivin, Joachim Gehweiler,
Johannes Lade, Jonas I. Liechti, Jonas Liechti, Jonas Ohlsson, Jonathan
Dekhtiar, Julian Gross, Kaixi Hou, Kevin Cheng, Koan-Sin Tan, Kulin Seth,
linzewen, Liubov Batanina, luisleee, Lukas Geiger, Mahmoud Abuzaina, mathgaming,
Matt Conley, Max H. Gerlach, mdfaijul, Mh Kwon, Michael Martis, Michal
Szutenberg, Måns Nilsson, nammbash, Neil Girdhar, Nicholas Vadivelu, Nick
Kreeger, Nirjas Jakilim, okyanusoz, Patrice Vignola, Patrik Laurell, Pedro
Marques, Philipp Hack, Phillip Cloud, Piergiacomo De Marchi, Prashant Kumar,
puneeshkhanna, pvarouktsis, QQ喵, Rajeshwar Reddy T, Rama Ketineni, Reza Rahimi,
Robert Kalmar, rsun, Ryan Kuester, Saduf2019, Sean Morgan, Sean Moriarity,
Shaochen Shi, Sheng, Yang, Shu Wang, Shuai Zhang, Soojeong, Stanley-Nod, Steven
I Reeves, stevenireeves, Suraj Sudhir, Sven Mayer, Tamas Bela Feher,
tashuang.zk, tcervi, Teng Lu, Thales Elero Cervi, Thibaut Goetghebuer-Planchon,
Thomas Walther, Till Brychcy, Trent Lo, Uday Bondhugula, vishakha.agrawal,
Vishnuvardhan Janapati, wamuir, Wenwen Ouyang, wenwu, Williard Joshua Jose,
xiaohong1031, Xiaoming (Jason) Cui, Xinan Jiang, Yasir Modak, Yi Li, Yong Tang,
zilinzhu, 박상준, 이장
# Release 2.5.2
This release introduces several vulnerability fixes:
*   Fixes a code injection issue in `saved_model_cli`
    ([CVE-2021-41228](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41228))
*   Fixes a vulnerability due to use of uninitialized value in Tensorflow
    ([CVE-2021-41225](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41225))
*   Fixes a heap OOB in `FusedBatchNorm` kernels
    ([CVE-2021-41223](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41223))
*   Fixes an arbitrary memory read in `ImmutableConst`
    ([CVE-2021-41227](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41227))
*   Fixes a heap OOB in `SparseBinCount`
    ([CVE-2021-41226](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41226))
*   Fixes a heap OOB in `SparseFillEmptyRows`
    ([CVE-2021-41224](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41224))
*   Fixes a segfault due to negative splits in `SplitV`
    ([CVE-2021-41222](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41222))
*   Fixes segfaults and vulnerabilities caused by accesses to invalid memory
    during shape inference in `Cudnn*` ops
    ([CVE-2021-41221](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41221))
*   Fixes a null pointer exception when `Exit` node is not preceded by `Enter`
    op
    ([CVE-2021-41217](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41217))
*   Fixes an integer division by 0 in `tf.raw_ops.AllToAll`
    ([CVE-2021-41218](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41218))
*   Fixes an undefined behavior via `nullptr` reference binding in sparse matrix
    multiplication
    ([CVE-2021-41219](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41219))
*   Fixes a heap buffer overflow in `Transpose`
    ([CVE-2021-41216](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41216))
*   Prevents deadlocks arising from mutually recursive `tf.function` objects
    ([CVE-2021-41213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41213))
*   Fixes a null pointer exception in `DeserializeSparse`
    ([CVE-2021-41215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41215))
*   Fixes an undefined behavior arising from reference binding to `nullptr` in
    `tf.ragged.cross`
    ([CVE-2021-41214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41214))
*   Fixes a heap OOB read in `tf.ragged.cross`
    ([CVE-2021-41212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41212))
*   Fixes a heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops
    ([CVE-2021-41205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41205))
*   Fixes an FPE in `ParallelConcat`
    ([CVE-2021-41207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41207))
*   Fixes FPE issues in convolutions with zero size filters
    ([CVE-2021-41209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41209))
*   Fixes a heap OOB read in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-41210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41210))
*   Fixes vulnerabilities caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes vulnerabilities caused by incomplete validation of shapes in multiple
    TF ops
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a segfault produced while copying constant resource tensor
    ([CVE-2021-41204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41204))
*   Fixes a vulnerability caused by unitialized access in
    `EinsumHelper::ParseEquation`
    ([CVE-2021-41201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41201))
*   Fixes several vulnerabilities and segfaults caused by missing validation
    during checkpoint loading
    ([CVE-2021-41203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41203))
*   Fixes an overflow producing a crash in `tf.range`
    ([CVE-2021-41202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41202))
*   Fixes an overflow producing a crash in `tf.image.resize` when size is large
    ([CVE-2021-41199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41199))
*   Fixes an overflow producing a crash in `tf.tile` when tiling tensor is large
    ([CVE-2021-41198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41198))
*   Fixes a vulnerability produced due to incomplete validation in
    `tf.summary.create_file_writer`
    ([CVE-2021-41200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41200))
*   Fixes multiple crashes due to overflow and `CHECK`-fail in ops with large
    tensor shapes
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a crash in `max_pool3d` when size argument is 0 or negative
    ([CVE-2021-41196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41196))
*   Fixes a crash in `tf.math.segment_*` operations
    ([CVE-2021-41195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41195))
*   Updates `curl` to `7.78.0` to handle
    [CVE-2021-22922](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22922),
    [CVE-2021-22923](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22923),
    [CVE-2021-22924](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22924),
    [CVE-2021-22925](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22925),
    and
    [CVE-2021-22926](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22926).
# Release 2.5.1
This release introduces several vulnerability fixes:
*   Fixes a heap out of bounds access in sparse reduction operations
    ([CVE-2021-37635](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37635))
*   Fixes a floating point exception in `SparseDenseCwiseDiv`
    ([CVE-2021-37636](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37636))
*   Fixes a null pointer dereference in `CompressElement`
    ([CVE-2021-37637](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37637))
*   Fixes a null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-37638](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37638))
*   Fixes a null pointer dereference and a heap OOB read arising from operations
    restoring tensors
    ([CVE-2021-37639](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37639))
*   Fixes an integer division by 0 in sparse reshaping
    ([CVE-2021-37640](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37640))
*   Fixes a division by 0 in `ResourceScatterDiv`
    ([CVE-2021-37642](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37642))
*   Fixes a heap OOB in `RaggedGather`
    ([CVE-2021-37641](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37641))
*   Fixes a `std::abort` raised from `TensorListReserve`
    ([CVE-2021-37644](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37644))
*   Fixes a null pointer dereference in `MatrixDiagPartOp`
    ([CVE-2021-37643](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37643))
*   Fixes an integer overflow due to conversion to unsigned
    ([CVE-2021-37645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37645))
*   Fixes a bad allocation error in `StringNGrams` caused by integer conversion
    ([CVE-2021-37646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37646))
*   Fixes a null pointer dereference in `SparseTensorSliceDataset`
    ([CVE-2021-37647](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37647))
*   Fixes an incorrect validation of `SaveV2` inputs
    ([CVE-2021-37648](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37648))
*   Fixes a null pointer dereference in `UncompressElement`
    ([CVE-2021-37649](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37649))
*   Fixes a segfault and a heap buffer overflow in
    `{Experimental,}DatasetToTFRecord`
    ([CVE-2021-37650](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37650))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-37651](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37651))
*   Fixes a use after free in boosted trees creation
    ([CVE-2021-37652](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37652))
*   Fixes a division by 0 in `ResourceGather`
    ([CVE-2021-37653](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37653))
*   Fixes a heap OOB and a `CHECK` fail in `ResourceGather`
    ([CVE-2021-37654](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37654))
*   Fixes a heap OOB in `ResourceScatterUpdate`
    ([CVE-2021-37655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37655))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToSparse`
    ([CVE-2021-37656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37656))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixDiagV*` ops
    ([CVE-2021-37657](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37657))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixSetDiagV*` ops
    ([CVE-2021-37658](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37658))
*   Fixes an undefined behavior arising from reference binding to nullptr and
    heap OOB in binary cwise ops
    ([CVE-2021-37659](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37659))
*   Fixes a division by 0 in inplace operations
    ([CVE-2021-37660](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37660))
*   Fixes a crash caused by integer conversion to unsigned
    ([CVE-2021-37661](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37661))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    boosted trees
    ([CVE-2021-37662](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37662))
*   Fixes a heap OOB in boosted trees
    ([CVE-2021-37664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37664))
*   Fixes vulnerabilities arising from incomplete validation in `QuantizeV2`
    ([CVE-2021-37663](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37663))
*   Fixes vulnerabilities arising from incomplete validation in MKL
    requantization
    ([CVE-2021-37665](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37665))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToVariant`
    ([CVE-2021-37666](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37666))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    unicode encoding
    ([CVE-2021-37667](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37667))
*   Fixes an FPE in `tf.raw_ops.UnravelIndex`
    ([CVE-2021-37668](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37668))
*   Fixes a crash in NMS ops caused by integer conversion to unsigned
    ([CVE-2021-37669](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37669))
*   Fixes a heap OOB in `UpperBound` and `LowerBound`
    ([CVE-2021-37670](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37670))
*   Fixes an undefined behavior arising from reference binding to nullptr in map
    operations
    ([CVE-2021-37671](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37671))
*   Fixes a heap OOB in `SdcaOptimizerV2`
    ([CVE-2021-37672](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37672))
*   Fixes a `CHECK`-fail in `MapStage`
    ([CVE-2021-37673](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37673))
*   Fixes a vulnerability arising from incomplete validation in `MaxPoolGrad`
    ([CVE-2021-37674](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37674))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    shape inference
    ([CVE-2021-37676](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37676))
*   Fixes a division by 0 in most convolution operators
    ([CVE-2021-37675](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37675))
*   Fixes vulnerabilities arising from missing validation in shape inference for
    `Dequantize`
    ([CVE-2021-37677](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37677))
*   Fixes an arbitrary code execution due to YAML deserialization
    ([CVE-2021-37678](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678))
*   Fixes a heap OOB in nested `tf.map_fn` with `RaggedTensor`s
    ([CVE-2021-37679](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37679))
*   Fixes a division by zero in TFLite
    ([CVE-2021-37680](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37680))
*   Fixes an NPE in TFLite
    ([CVE-2021-37681](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37681))
*   Fixes a vulnerability arising from use of unitialized value in TFLite
    ([CVE-2021-37682](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37682))
*   Fixes an FPE in TFLite division operations
    ([CVE-2021-37683](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37683))
*   Fixes an FPE in TFLite pooling operations
    ([CVE-2021-37684](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37684))
*   Fixes an infinite loop in TFLite
    ([CVE-2021-37686](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37686))
*   Fixes a heap OOB in TFLite
    ([CVE-2021-37685](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37685))
*   Fixes a heap OOB in TFLite's `Gather*` implementations
    ([CVE-2021-37687](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37687))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    ([CVE-2021-37688](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37688))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    MLIR optimizations
    ([CVE-2021-37689](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37689))
*   Fixes a FPE in LSH in TFLite
    ([CVE-2021-37691](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37691))
*   Fixes a segfault on strings tensors with mismatched dimensions, arising in
    Go code
    ([CVE-2021-37692](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37692))
*   Fixes a use after free and a potential segfault in shape inference functions
    ([CVE-2021-37690](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37690))
*   Updates `curl` to `7.77.0` to handle
    [CVE-2021-22876](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22876),
    [CVE-2021-22897](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22897),
    [CVE-2021-22898](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22898),
    and
    [CVE-2021-22901](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22901).
# Release 2.4.4
This release introduces several vulnerability fixes:
*   Fixes a code injection issue in `saved_model_cli`
    ([CVE-2021-41228](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41228))
*   Fixes a vulnerability due to use of uninitialized value in Tensorflow
    ([CVE-2021-41225](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41225))
*   Fixes a heap OOB in `FusedBatchNorm` kernels
    ([CVE-2021-41223](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41223))
*   Fixes an arbitrary memory read in `ImmutableConst`
    ([CVE-2021-41227](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41227))
*   Fixes a heap OOB in `SparseBinCount`
    ([CVE-2021-41226](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41226))
*   Fixes a heap OOB in `SparseFillEmptyRows`
    ([CVE-2021-41224](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41224))
*   Fixes a segfault due to negative splits in `SplitV`
    ([CVE-2021-41222](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41222))
*   Fixes segfaults and vulnerabilities caused by accesses to invalid memory
    during shape inference in `Cudnn*` ops
    ([CVE-2021-41221](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41221))
*   Fixes a null pointer exception when `Exit` node is not preceded by `Enter`
    op
    ([CVE-2021-41217](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41217))
*   Fixes an integer division by 0 in `tf.raw_ops.AllToAll`
    ([CVE-2021-41218](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41218))
*   Fixes an undefined behavior via `nullptr` reference binding in sparse matrix
    multiplication
    ([CVE-2021-41219](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41219))
*   Fixes a heap buffer overflow in `Transpose`
    ([CVE-2021-41216](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41216))
*   Prevents deadlocks arising from mutually recursive `tf.function` objects
    ([CVE-2021-41213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41213))
*   Fixes a null pointer exception in `DeserializeSparse`
    ([CVE-2021-41215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41215))
*   Fixes an undefined behavior arising from reference binding to `nullptr` in
    `tf.ragged.cross`
    ([CVE-2021-41214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41214))
*   Fixes a heap OOB read in `tf.ragged.cross`
    ([CVE-2021-41212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41212))
*   Fixes a heap OOB read in all `tf.raw_ops.QuantizeAndDequantizeV*` ops
    ([CVE-2021-41205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41205))
*   Fixes an FPE in `ParallelConcat`
    ([CVE-2021-41207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41207))
*   Fixes FPE issues in convolutions with zero size filters
    ([CVE-2021-41209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41209))
*   Fixes a heap OOB read in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-41210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41210))
*   Fixes vulnerabilities caused by incomplete validation in boosted trees code
    ([CVE-2021-41208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41208))
*   Fixes vulnerabilities caused by incomplete validation of shapes in multiple
    TF ops
    ([CVE-2021-41206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41206))
*   Fixes a segfault produced while copying constant resource tensor
    ([CVE-2021-41204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41204))
*   Fixes a vulnerability caused by unitialized access in
    `EinsumHelper::ParseEquation`
    ([CVE-2021-41201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41201))
*   Fixes several vulnerabilities and segfaults caused by missing validation
    during checkpoint loading
    ([CVE-2021-41203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41203))
*   Fixes an overflow producing a crash in `tf.range`
    ([CVE-2021-41202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41202))
*   Fixes an overflow producing a crash in `tf.image.resize` when size is large
    ([CVE-2021-41199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41199))
*   Fixes an overflow producing a crash in `tf.tile` when tiling tensor is large
    ([CVE-2021-41198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41198))
*   Fixes a vulnerability produced due to incomplete validation in
    `tf.summary.create_file_writer`
    ([CVE-2021-41200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41200))
*   Fixes multiple crashes due to overflow and `CHECK`-fail in ops with large
    tensor shapes
    ([CVE-2021-41197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41197))
*   Fixes a crash in `max_pool3d` when size argument is 0 or negative
    ([CVE-2021-41196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41196))
*   Fixes a crash in `tf.math.segment_*` operations
    ([CVE-2021-41195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41195))
*   Updates `curl` to `7.78.0` to handle
    [CVE-2021-22922](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22922),
    [CVE-2021-22923](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22923),
    [CVE-2021-22924](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22924),
    [CVE-2021-22925](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22925),
    and
    [CVE-2021-22926](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22926).
# Release 2.4.3
This release introduces several vulnerability fixes:
*   Fixes a heap out of bounds access in sparse reduction operations
    ([CVE-2021-37635](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37635))
*   Fixes a floating point exception in `SparseDenseCwiseDiv`
    ([CVE-2021-37636](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37636))
*   Fixes a null pointer dereference in `CompressElement`
    ([CVE-2021-37637](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37637))
*   Fixes a null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-37638](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37638))
*   Fixes a null pointer dereference and a heap OOB read arising from operations
    restoring tensors
    ([CVE-2021-37639](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37639))
*   Fixes an integer division by 0 in sparse reshaping
    ([CVE-2021-37640](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37640))
*   Fixes a division by 0 in `ResourceScatterDiv`
    ([CVE-2021-37642](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37642))
*   Fixes a heap OOB in `RaggedGather`
    ([CVE-2021-37641](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37641))
*   Fixes a `std::abort` raised from `TensorListReserve`
    ([CVE-2021-37644](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37644))
*   Fixes a null pointer dereference in `MatrixDiagPartOp`
    ([CVE-2021-37643](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37643))
*   Fixes an integer overflow due to conversion to unsigned
    ([CVE-2021-37645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37645))
*   Fixes a bad allocation error in `StringNGrams` caused by integer conversion
    ([CVE-2021-37646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37646))
*   Fixes a null pointer dereference in `SparseTensorSliceDataset`
    ([CVE-2021-37647](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37647))
*   Fixes an incorrect validation of `SaveV2` inputs
    ([CVE-2021-37648](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37648))
*   Fixes a null pointer dereference in `UncompressElement`
    ([CVE-2021-37649](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37649))
*   Fixes a segfault and a heap buffer overflow in
    `{Experimental,}DatasetToTFRecord`
    ([CVE-2021-37650](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37650))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-37651](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37651))
*   Fixes a use after free in boosted trees creation
    ([CVE-2021-37652](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37652))
*   Fixes a division by 0 in `ResourceGather`
    ([CVE-2021-37653](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37653))
*   Fixes a heap OOB and a `CHECK` fail in `ResourceGather`
    ([CVE-2021-37654](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37654))
*   Fixes a heap OOB in `ResourceScatterUpdate`
    ([CVE-2021-37655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37655))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToSparse`
    ([CVE-2021-37656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37656))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixDiagV*` ops
    ([CVE-2021-37657](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37657))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixSetDiagV*` ops
    ([CVE-2021-37658](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37658))
*   Fixes an undefined behavior arising from reference binding to nullptr and
    heap OOB in binary cwise ops
    ([CVE-2021-37659](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37659))
*   Fixes a division by 0 in inplace operations
    ([CVE-2021-37660](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37660))
*   Fixes a crash caused by integer conversion to unsigned
    ([CVE-2021-37661](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37661))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    boosted trees
    ([CVE-2021-37662](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37662))
*   Fixes a heap OOB in boosted trees
    ([CVE-2021-37664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37664))
*   Fixes vulnerabilities arising from incomplete validation in `QuantizeV2`
    ([CVE-2021-37663](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37663))
*   Fixes vulnerabilities arising from incomplete validation in MKL
    requantization
    ([CVE-2021-37665](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37665))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToVariant`
    ([CVE-2021-37666](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37666))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    unicode encoding
    ([CVE-2021-37667](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37667))
*   Fixes an FPE in `tf.raw_ops.UnravelIndex`
    ([CVE-2021-37668](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37668))
*   Fixes a crash in NMS ops caused by integer conversion to unsigned
    ([CVE-2021-37669](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37669))
*   Fixes a heap OOB in `UpperBound` and `LowerBound`
    ([CVE-2021-37670](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37670))
*   Fixes an undefined behavior arising from reference binding to nullptr in map
    operations
    ([CVE-2021-37671](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37671))
*   Fixes a heap OOB in `SdcaOptimizerV2`
    ([CVE-2021-37672](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37672))
*   Fixes a `CHECK`-fail in `MapStage`
    ([CVE-2021-37673](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37673))
*   Fixes a vulnerability arising from incomplete validation in `MaxPoolGrad`
    ([CVE-2021-37674](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37674))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    shape inference
    ([CVE-2021-37676](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37676))
*   Fixes a division by 0 in most convolution operators
    ([CVE-2021-37675](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37675))
*   Fixes vulnerabilities arising from missing validation in shape inference for
    `Dequantize`
    ([CVE-2021-37677](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37677))
*   Fixes an arbitrary code execution due to YAML deserialization
    ([CVE-2021-37678](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678))
*   Fixes a heap OOB in nested `tf.map_fn` with `RaggedTensor`s
    ([CVE-2021-37679](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37679))
*   Fixes a division by zero in TFLite
    ([CVE-2021-37680](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37680))
*   Fixes an NPE in TFLite
    ([CVE-2021-37681](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37681))
*   Fixes a vulnerability arising from use of unitialized value in TFLite
    ([CVE-2021-37682](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37682))
*   Fixes an FPE in TFLite division operations
    ([CVE-2021-37683](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37683))
*   Fixes an FPE in TFLite pooling operations
    ([CVE-2021-37684](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37684))
*   Fixes an infinite loop in TFLite
    ([CVE-2021-37686](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37686))
*   Fixes a heap OOB in TFLite
    ([CVE-2021-37685](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37685))
*   Fixes a heap OOB in TFLite's `Gather*` implementations
    ([CVE-2021-37687](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37687))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    ([CVE-2021-37688](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37688))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    MLIR optimizations
    ([CVE-2021-37689](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37689))
*   Fixes a FPE in LSH in TFLite
    ([CVE-2021-37691](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37691))
*   Fixes a segfault on strings tensors with mismatched dimensions, arising in
    Go code
    ([CVE-2021-37692](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37692))
*   Fixes a use after free and a potential segfault in shape inference functions
    ([CVE-2021-37690](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37690))
*   Updates `curl` to `7.77.0` to handle
    [CVE-2021-22876](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22876),
    [CVE-2021-22897](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22897),
    [CVE-2021-22898](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22898),
    and
    [CVE-2021-22901](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22901).
# Release 2.3.4
This release introduces several vulnerability fixes:
*   Fixes a heap out of bounds access in sparse reduction operations
    ([CVE-2021-37635](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37635))
*   Fixes a floating point exception in `SparseDenseCwiseDiv`
    ([CVE-2021-37636](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37636))
*   Fixes a null pointer dereference in `CompressElement`
    ([CVE-2021-37637](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37637))
*   Fixes a null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-37638](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37638))
*   Fixes a null pointer dereference and a heap OOB read arising from operations
    restoring tensors
    ([CVE-2021-37639](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37639))
*   Fixes an integer division by 0 in sparse reshaping
    ([CVE-2021-37640](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37640))
*   Fixes a division by 0 in `ResourceScatterDiv`
    ([CVE-2021-37642](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37642))
*   Fixes a heap OOB in `RaggedGather`
    ([CVE-2021-37641](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37641))
*   Fixes a `std::abort` raised from `TensorListReserve`
    ([CVE-2021-37644](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37644))
*   Fixes a null pointer dereference in `MatrixDiagPartOp`
    ([CVE-2021-37643](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37643))
*   Fixes an integer overflow due to conversion to unsigned
    ([CVE-2021-37645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37645))
*   Fixes a bad allocation error in `StringNGrams` caused by integer conversion
    ([CVE-2021-37646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37646))
*   Fixes a null pointer dereference in `SparseTensorSliceDataset`
    ([CVE-2021-37647](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37647))
*   Fixes an incorrect validation of `SaveV2` inputs
    ([CVE-2021-37648](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37648))
*   Fixes a null pointer dereference in `UncompressElement`
    ([CVE-2021-37649](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37649))
*   Fixes a segfault and a heap buffer overflow in
    `{Experimental,}DatasetToTFRecord`
    ([CVE-2021-37650](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37650))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-37651](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37651))
*   Fixes a use after free in boosted trees creation
    ([CVE-2021-37652](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37652))
*   Fixes a division by 0 in `ResourceGather`
    ([CVE-2021-37653](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37653))
*   Fixes a heap OOB and a `CHECK` fail in `ResourceGather`
    ([CVE-2021-37654](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37654))
*   Fixes a heap OOB in `ResourceScatterUpdate`
    ([CVE-2021-37655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37655))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToSparse`
    ([CVE-2021-37656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37656))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixDiagV*` ops
    ([CVE-2021-37657](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37657))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `MatrixSetDiagV*` ops
    ([CVE-2021-37658](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37658))
*   Fixes an undefined behavior arising from reference binding to nullptr and
    heap OOB in binary cwise ops
    ([CVE-2021-37659](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37659))
*   Fixes a division by 0 in inplace operations
    ([CVE-2021-37660](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37660))
*   Fixes a crash caused by integer conversion to unsigned
    ([CVE-2021-37661](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37661))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    boosted trees
    ([CVE-2021-37662](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37662))
*   Fixes a heap OOB in boosted trees
    ([CVE-2021-37664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37664))
*   Fixes vulnerabilities arising from incomplete validation in `QuantizeV2`
    ([CVE-2021-37663](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37663))
*   Fixes vulnerabilities arising from incomplete validation in MKL
    requantization
    ([CVE-2021-37665](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37665))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    `RaggedTensorToVariant`
    ([CVE-2021-37666](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37666))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    unicode encoding
    ([CVE-2021-37667](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37667))
*   Fixes an FPE in `tf.raw_ops.UnravelIndex`
    ([CVE-2021-37668](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37668))
*   Fixes a crash in NMS ops caused by integer conversion to unsigned
    ([CVE-2021-37669](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37669))
*   Fixes a heap OOB in `UpperBound` and `LowerBound`
    ([CVE-2021-37670](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37670))
*   Fixes an undefined behavior arising from reference binding to nullptr in map
    operations
    ([CVE-2021-37671](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37671))
*   Fixes a heap OOB in `SdcaOptimizerV2`
    ([CVE-2021-37672](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37672))
*   Fixes a `CHECK`-fail in `MapStage`
    ([CVE-2021-37673](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37673))
*   Fixes a vulnerability arising from incomplete validation in `MaxPoolGrad`
    ([CVE-2021-37674](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37674))
*   Fixes an undefined behavior arising from reference binding to nullptr in
    shape inference
    ([CVE-2021-37676](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37676))
*   Fixes a division by 0 in most convolution operators
    ([CVE-2021-37675](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37675))
*   Fixes vulnerabilities arising from missing validation in shape inference for
    `Dequantize`
    ([CVE-2021-37677](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37677))
*   Fixes an arbitrary code execution due to YAML deserialization
    ([CVE-2021-37678](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678))
*   Fixes a heap OOB in nested `tf.map_fn` with `RaggedTensor`s
    ([CVE-2021-37679](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37679))
*   Fixes a division by zero in TFLite
    ([CVE-2021-37680](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37680))
*   Fixes an NPE in TFLite
    ([CVE-2021-37681](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37681))
*   Fixes a vulnerability arising from use of unitialized value in TFLite
    ([CVE-2021-37682](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37682))
*   Fixes an FPE in TFLite division operations
    ([CVE-2021-37683](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37683))
*   Fixes an FPE in TFLite pooling operations
    ([CVE-2021-37684](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37684))
*   Fixes an infinite loop in TFLite
    ([CVE-2021-37686](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37686))
*   Fixes a heap OOB in TFLite
    ([CVE-2021-37685](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37685))
*   Fixes a heap OOB in TFLite's `Gather*` implementations
    ([CVE-2021-37687](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37687))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    ([CVE-2021-37688](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37688))
*   Fixes an undefined behavior arising from null pointer dereference in TFLite
    MLIR optimizations
    ([CVE-2021-37689](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37689))
*   Fixes a FPE in LSH in TFLite
    ([CVE-2021-37691](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37691))
*   Fixes a segfault on strings tensors with mismatched dimensions, arising in
    Go code
    ([CVE-2021-37692](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37692))
*   Fixes a use after free and a potential segfault in shape inference functions
    ([CVE-2021-37690](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37690))
*   Updates `curl` to `7.77.0` to handle
    [CVE-2021-22876](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22876),
    [CVE-2021-22897](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22897),
    [CVE-2021-22898](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22898),
    and
    [CVE-2021-22901](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22901).
# Release 2.4.2
This release introduces several vulnerability fixes:
*   Fixes a heap buffer overflow in `RaggedBinCount`
    ([CVE-2021-29512](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29512))
*   Fixes a heap out of bounds write in `RaggedBinCount`
    ([CVE-2021-29514](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29514))
*   Fixes a type confusion during tensor casts which leads to dereferencing null
    pointers
    ([CVE-2021-29513](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29513))
*   Fixes a reference binding to null pointer in `MatrixDiag*` ops
    ([CVE-2021-29515](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29515))
*   Fixes a null pointer dereference via invalid Ragged Tensors
    ([CVE-2021-29516](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29516))
*   Fixes a division by zero in `Conv3D`
    ([CVE-2021-29517](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29517))
*   Fixes vulnerabilities where session operations in eager mode lead to null
    pointer dereferences
    ([CVE-2021-29518](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29518))
*   Fixes a `CHECK`-fail in `SparseCross` caused by type confusion
    ([CVE-2021-29519](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29519))
*   Fixes a segfault in `SparseCountSparseOutput`
    ([CVE-2021-29521](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29521))
*   Fixes a heap buffer overflow in `Conv3DBackprop*`
    ([CVE-2021-29520](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29520))
*   Fixes a division by 0 in `Conv3DBackprop*`
    ([CVE-2021-29522](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29522))
*   Fixes a `CHECK`-fail in `AddManySparseToTensorsMap`
    ([CVE-2021-29523](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29523))
*   Fixes a division by 0 in `Conv2DBackpropFilter`
    ([CVE-2021-29524](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29524))
*   Fixes a division by 0 in `Conv2DBackpropInput`
    ([CVE-2021-29525](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29525))
*   Fixes a division by 0 in `Conv2D`
    ([CVE-2021-29526](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29526))
*   Fixes a division by 0 in `QuantizedConv2D`
    ([CVE-2021-29527](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29527))
*   Fixes a division by 0 in `QuantizedMul`
    ([CVE-2021-29528](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29528))
*   Fixes vulnerabilities caused by invalid validation in
    `SparseMatrixSparseCholesky`
    ([CVE-2021-29530](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29530))
*   Fixes a heap buffer overflow caused by rounding
    ([CVE-2021-29529](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529))
*   Fixes a `CHECK`-fail in `tf.raw_ops.EncodePng`
    ([CVE-2021-29531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29531))
*   Fixes a heap out of bounds read in `RaggedCross`
    ([CVE-2021-29532](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29532))
*   Fixes a `CHECK`-fail in `DrawBoundingBoxes`
    ([CVE-2021-29533](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29533))
*   Fixes a heap buffer overflow in `QuantizedMul`
    ([CVE-2021-29535](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29535))
*   Fixes a `CHECK`-fail in `SparseConcat`
    ([CVE-2021-29534](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29534))
*   Fixes a heap buffer overflow in `QuantizedResizeBilinear`
    ([CVE-2021-29537](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29537))
*   Fixes a heap buffer overflow in `QuantizedReshape`
    ([CVE-2021-29536](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29536))
*   Fixes a division by zero in `Conv2DBackpropFilter`
    ([CVE-2021-29538](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29538))
*   Fixes a heap buffer overflow in `Conv2DBackpropFilter`
    ([CVE-2021-29540](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29540))
*   Fixes a heap buffer overflow in `StringNGrams`
    ([CVE-2021-29542](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29542))
*   Fixes a null pointer dereference in `StringNGrams`
    ([CVE-2021-29541](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29541))
*   Fixes a `CHECK`-fail in `QuantizeAndDequantizeV4Grad`
    ([CVE-2021-29544](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29544))
*   Fixes a `CHECK`-fail in `CTCGreedyDecoder`
    ([CVE-2021-29543](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29543))
*   Fixes a heap buffer overflow in `SparseTensorToCSRSparseMatrix`
    ([CVE-2021-29545](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29545))
*   Fixes a division by 0 in `QuantizedBiasAdd`
    ([CVE-2021-29546](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29546))
*   Fixes a heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29547](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29547))
*   Fixes a division by 0 in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29548](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29548))
*   Fixes a division by 0 in `QuantizedAdd`
    ([CVE-2021-29549](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29549))
*   Fixes a division by 0 in `FractionalAvgPool`
    ([CVE-2021-29550](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29550))
*   Fixes an OOB read in `MatrixTriangularSolve`
    ([CVE-2021-29551](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29551))
*   Fixes a heap OOB in `QuantizeAndDequantizeV3`
    ([CVE-2021-29553](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29553))
*   Fixes a `CHECK`-failure in `UnsortedSegmentJoin`
    ([CVE-2021-29552](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29552))
*   Fixes a division by 0 in `DenseCountSparseOutput`
    ([CVE-2021-29554](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29554))
*   Fixes a division by 0 in `FusedBatchNorm`
    ([CVE-2021-29555](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29555))
*   Fixes a division by 0 in `SparseMatMul`
    ([CVE-2021-29557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29557))
*   Fixes a division by 0 in `Reverse`
    ([CVE-2021-29556](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29556))
*   Fixes a heap buffer overflow in `SparseSplit`
    ([CVE-2021-29558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29558))
*   Fixes a heap OOB access in unicode ops
    ([CVE-2021-29559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29559))
*   Fixes a heap buffer overflow in `RaggedTensorToTensor`
    ([CVE-2021-29560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29560))
*   Fixes a `CHECK`-fail in `LoadAndRemapMatrix`
    ([CVE-2021-29561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29561))
*   Fixes a `CHECK`-fail in `tf.raw_ops.IRFFT`
    ([CVE-2021-29562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29562))
*   Fixes a `CHECK`-fail in `tf.raw_ops.RFFT`
    ([CVE-2021-29563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29563))
*   Fixes a null pointer dereference in `EditDistance`
    ([CVE-2021-29564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29564))
*   Fixes a null pointer dereference in `SparseFillEmptyRows`
    ([CVE-2021-29565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29565))
*   Fixes a heap OOB access in `Dilation2DBackpropInput`
    ([CVE-2021-29566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29566))
*   Fixes a reference binding to null in `ParameterizedTruncatedNormal`
    ([CVE-2021-29568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29568))
*   Fixes a set of vulnerabilities caused by lack of validation in
    `SparseDenseCwiseMul`
    ([CVE-2021-29567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29567))
*   Fixes a heap out of bounds read in `MaxPoolGradWithArgmax`
    ([CVE-2021-29570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29570))
*   Fixes a heap out of bounds read in `RequantizationRange`
    ([CVE-2021-29569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29569))
*   Fixes a memory corruption in `DrawBoundingBoxesV2`
    ([CVE-2021-29571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29571))
*   Fixes a reference binding to nullptr in `SdcaOptimizer`
    ([CVE-2021-29572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29572))
*   Fixes an overflow and a denial of service in `tf.raw_ops.ReverseSequence`
    ([CVE-2021-29575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29575))
*   Fixes a division by 0 in `MaxPoolGradWithArgmax`
    ([CVE-2021-29573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29573))
*   Fixes an undefined behavior in `MaxPool3DGradGrad`
    ([CVE-2021-29574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29574))
*   Fixes a heap buffer overflow in `MaxPool3DGradGrad`
    ([CVE-2021-29576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29576))
*   Fixes a heap buffer overflow in `AvgPool3DGrad`
    ([CVE-2021-29577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29577))
*   Fixes an undefined behavior and a `CHECK`-fail in `FractionalMaxPoolGrad`
    ([CVE-2021-29580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29580))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-29578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29578))
*   Fixes a heap buffer overflow in `MaxPoolGrad`
    ([CVE-2021-29579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29579))
*   Fixes a segfault in `CTCBeamSearchDecoder`
    ([CVE-2021-29581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29581))
*   Fixes a heap OOB read in `tf.raw_ops.Dequantize`
    ([CVE-2021-29582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29582))
*   Fixes a `CHECK`-fail due to integer overflow
    ([CVE-2021-29584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29584))
*   Fixes a heap buffer overflow and undefined behavior in `FusedBatchNorm`
    ([CVE-2021-29583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29583))
*   Fixes a division by zero in padding computation in TFLite
    ([CVE-2021-29585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29585))
*   Fixes a division by zero in optimized pooling implementations in TFLite
    ([CVE-2021-29586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29586))
*   Fixes a division by zero in TFLite's implementation of `SpaceToDepth`
    ([CVE-2021-29587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29587))
*   Fixes a division by zero in TFLite's implementation of `GatherNd`
    ([CVE-2021-29589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29589))
*   Fixes a division by zero in TFLite's implementation of `TransposeConv`
    ([CVE-2021-29588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29588))
*   Fixes a heap OOB read in TFLite's implementation of `Minimum` or `Maximum`
    ([CVE-2021-29590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29590))
*   Fixes a null pointer dereference in TFLite's `Reshape` operator
    ([CVE-2021-29592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29592))
*   Fixes a stack overflow due to looping TFLite subgraph
    ([CVE-2021-29591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29591))
*   Fixes a division by zero in TFLite's implementation of `DepthToSpace`
    ([CVE-2021-29595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29595))
*   Fixes a division by zero in TFLite's convolution code
    ([CVE-2021-29594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29594))
*   Fixes a division by zero in TFLite's implementation of `EmbeddingLookup`
    ([CVE-2021-29596](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29596))
*   Fixes a division by zero in TFLite's implementation of `BatchToSpaceNd`
    ([CVE-2021-29593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29593))
*   Fixes a division by zero in TFLite's implementation of `SpaceToBatchNd`
    ([CVE-2021-29597](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29597))
*   Fixes a division by zero in TFLite's implementation of `SVDF`
    ([CVE-2021-29598](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29598))
*   Fixes a division by zero in TFLite's implementation of `Split`
    ([CVE-2021-29599](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29599))
*   Fixes a division by zero in TFLite's implementation of `OneHot`
    ([CVE-2021-29600](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29600))
*   Fixes a division by zero in TFLite's implementation of `DepthwiseConv`
    ([CVE-2021-29602](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29602))
*   Fixes a division by zero in TFLite's implementation of hashtable lookup
    ([CVE-2021-29604](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29604))
*   Fixes a integer overflow in TFLite concatentation
    ([CVE-2021-29601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29601))
*   Fixes a integer overflow in TFLite memory allocation
    ([CVE-2021-29605](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29605))
*   Fixes a heap OOB write in TFLite
    ([CVE-2021-29603](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29603))
*   Fixes a heap OOB read in TFLite
    ([CVE-2021-29606](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29606))
*   Fixes a heap OOB and null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-29608](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29608))
*   Fixes vulnerabilities caused by incomplete validation in `SparseAdd`
    ([CVE-2021-29609](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29609))
*   Fixes vulnerabilities caused by incomplete validation in
    `SparseSparseMinimum`
    ([CVE-2021-29607](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29607))
*   Fixes vulnerabilities caused by incomplete validation in `SparseReshape`
    ([CVE-2021-29611](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29611))
*   Fixes vulnerabilities caused by invalid validation in
    `QuantizeAndDequantizeV2`
    ([CVE-2021-29610](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29610))
*   Fixes a heap buffer overflow in `BandedTriangularSolve`
    ([CVE-2021-29612](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29612))
*   Fixes vulnerabilities caused by incomplete validation in
    `tf.raw_ops.CTCLoss`
    ([CVE-2021-29613](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29613))
*   Fixes an interpreter crash from vulnerabilities in `tf.io.decode_raw`
    ([CVE-2021-29614](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29614))
*   Fixes a stack overflow in `ParseAttrValue` with nested tensors
    ([CVE-2021-29615](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29615))
*   Fixes a null dereference in Grappler's `TrySimplify`
    ([CVE-2021-29616](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29616))
*   Fixes a crash in `tf.transpose` with complex inputs
    ([CVE-2021-29618](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29618))
*   Fixes a crash in `tf.strings.substr` due to `CHECK`-fail
    ([CVE-2021-29617](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29617))
*   Fixes a segfault in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-29619](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29619))
*   Fixes a segfault in `tf.raw_ops.ImmutableConst`
    ([CVE-2021-29539](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29539))
*   Updates `curl` to `7.76.0` to handle
    [CVE-2020-8169](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8169),
    [CVE-2020-8177](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8177),
    [CVE-2020-8231](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8231),
    [CVE-2020-8284](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8284),
    [CVE-2020-8285](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8285)
    and
    [CVE-2020-8286](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8286).
# Release 2.3.3
This release introduces several vulnerability fixes:
*   Fixes a heap buffer overflow in `RaggedBinCount`
    ([CVE-2021-29512](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29512))
*   Fixes a heap out of bounds write in `RaggedBinCount`
    ([CVE-2021-29514](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29514))
*   Fixes a type confusion during tensor casts which leads to dereferencing null
    pointers
    ([CVE-2021-29513](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29513))
*   Fixes a reference binding to null pointer in `MatrixDiag*` ops
    ([CVE-2021-29515](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29515))
*   Fixes a null pointer dereference via invalid Ragged Tensors
    ([CVE-2021-29516](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29516))
*   Fixes a division by zero in `Conv3D`
    ([CVE-2021-29517](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29517))
*   Fixes vulnerabilities where session operations in eager mode lead to null
    pointer dereferences
    ([CVE-2021-29518](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29518))
*   Fixes a `CHECK`-fail in `SparseCross` caused by type confusion
    ([CVE-2021-29519](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29519))
*   Fixes a segfault in `SparseCountSparseOutput`
    ([CVE-2021-29521](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29521))
*   Fixes a heap buffer overflow in `Conv3DBackprop*`
    ([CVE-2021-29520](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29520))
*   Fixes a division by 0 in `Conv3DBackprop*`
    ([CVE-2021-29522](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29522))
*   Fixes a `CHECK`-fail in `AddManySparseToTensorsMap`
    ([CVE-2021-29523](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29523))
*   Fixes a division by 0 in `Conv2DBackpropFilter`
    ([CVE-2021-29524](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29524))
*   Fixes a division by 0 in `Conv2DBackpropInput`
    ([CVE-2021-29525](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29525))
*   Fixes a division by 0 in `Conv2D`
    ([CVE-2021-29526](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29526))
*   Fixes a division by 0 in `QuantizedConv2D`
    ([CVE-2021-29527](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29527))
*   Fixes a division by 0 in `QuantizedMul`
    ([CVE-2021-29528](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29528))
*   Fixes vulnerabilities caused by invalid validation in
    `SparseMatrixSparseCholesky`
    ([CVE-2021-29530](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29530))
*   Fixes a heap buffer overflow caused by rounding
    ([CVE-2021-29529](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529))
*   Fixes a `CHECK`-fail in `tf.raw_ops.EncodePng`
    ([CVE-2021-29531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29531))
*   Fixes a heap out of bounds read in `RaggedCross`
    ([CVE-2021-29532](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29532))
*   Fixes a `CHECK`-fail in `DrawBoundingBoxes`
    ([CVE-2021-29533](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29533))
*   Fixes a heap buffer overflow in `QuantizedMul`
    ([CVE-2021-29535](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29535))
*   Fixes a `CHECK`-fail in `SparseConcat`
    ([CVE-2021-29534](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29534))
*   Fixes a heap buffer overflow in `QuantizedResizeBilinear`
    ([CVE-2021-29537](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29537))
*   Fixes a heap buffer overflow in `QuantizedReshape`
    ([CVE-2021-29536](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29536))
*   Fixes a division by zero in `Conv2DBackpropFilter`
    ([CVE-2021-29538](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29538))
*   Fixes a heap buffer overflow in `Conv2DBackpropFilter`
    ([CVE-2021-29540](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29540))
*   Fixes a heap buffer overflow in `StringNGrams`
    ([CVE-2021-29542](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29542))
*   Fixes a null pointer dereference in `StringNGrams`
    ([CVE-2021-29541](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29541))
*   Fixes a `CHECK`-fail in `QuantizeAndDequantizeV4Grad`
    ([CVE-2021-29544](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29544))
*   Fixes a `CHECK`-fail in `CTCGreedyDecoder`
    ([CVE-2021-29543](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29543))
*   Fixes a heap buffer overflow in `SparseTensorToCSRSparseMatrix`
    ([CVE-2021-29545](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29545))
*   Fixes a division by 0 in `QuantizedBiasAdd`
    ([CVE-2021-29546](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29546))
*   Fixes a heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29547](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29547))
*   Fixes a division by 0 in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29548](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29548))
*   Fixes a division by 0 in `QuantizedAdd`
    ([CVE-2021-29549](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29549))
*   Fixes a division by 0 in `FractionalAvgPool`
    ([CVE-2021-29550](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29550))
*   Fixes an OOB read in `MatrixTriangularSolve`
    ([CVE-2021-29551](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29551))
*   Fixes a heap OOB in `QuantizeAndDequantizeV3`
    ([CVE-2021-29553](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29553))
*   Fixes a `CHECK`-failure in `UnsortedSegmentJoin`
    ([CVE-2021-29552](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29552))
*   Fixes a division by 0 in `DenseCountSparseOutput`
    ([CVE-2021-29554](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29554))
*   Fixes a division by 0 in `FusedBatchNorm`
    ([CVE-2021-29555](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29555))
*   Fixes a division by 0 in `SparseMatMul`
    ([CVE-2021-29557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29557))
*   Fixes a division by 0 in `Reverse`
    ([CVE-2021-29556](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29556))
*   Fixes a heap buffer overflow in `SparseSplit`
    ([CVE-2021-29558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29558))
*   Fixes a heap OOB access in unicode ops
    ([CVE-2021-29559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29559))
*   Fixes a heap buffer overflow in `RaggedTensorToTensor`
    ([CVE-2021-29560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29560))
*   Fixes a `CHECK`-fail in `LoadAndRemapMatrix`
    ([CVE-2021-29561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29561))
*   Fixes a `CHECK`-fail in `tf.raw_ops.IRFFT`
    ([CVE-2021-29562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29562))
*   Fixes a `CHECK`-fail in `tf.raw_ops.RFFT`
    ([CVE-2021-29563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29563))
*   Fixes a null pointer dereference in `EditDistance`
    ([CVE-2021-29564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29564))
*   Fixes a null pointer dereference in `SparseFillEmptyRows`
    ([CVE-2021-29565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29565))
*   Fixes a heap OOB access in `Dilation2DBackpropInput`
    ([CVE-2021-29566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29566))
*   Fixes a reference binding to null in `ParameterizedTruncatedNormal`
    ([CVE-2021-29568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29568))
*   Fixes a set of vulnerabilities caused by lack of validation in
    `SparseDenseCwiseMul`
    ([CVE-2021-29567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29567))
*   Fixes a heap out of bounds read in `MaxPoolGradWithArgmax`
    ([CVE-2021-29570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29570))
*   Fixes a heap out of bounds read in `RequantizationRange`
    ([CVE-2021-29569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29569))
*   Fixes a memory corruption in `DrawBoundingBoxesV2`
    ([CVE-2021-29571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29571))
*   Fixes a reference binding to nullptr in `SdcaOptimizer`
    ([CVE-2021-29572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29572))
*   Fixes an overflow and a denial of service in `tf.raw_ops.ReverseSequence`
    ([CVE-2021-29575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29575))
*   Fixes a division by 0 in `MaxPoolGradWithArgmax`
    ([CVE-2021-29573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29573))
*   Fixes an undefined behavior in `MaxPool3DGradGrad`
    ([CVE-2021-29574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29574))
*   Fixes a heap buffer overflow in `MaxPool3DGradGrad`
    ([CVE-2021-29576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29576))
*   Fixes a heap buffer overflow in `AvgPool3DGrad`
    ([CVE-2021-29577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29577))
*   Fixes an undefined behavior and a `CHECK`-fail in `FractionalMaxPoolGrad`
    ([CVE-2021-29580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29580))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-29578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29578))
*   Fixes a heap buffer overflow in `MaxPoolGrad`
    ([CVE-2021-29579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29579))
*   Fixes a segfault in `CTCBeamSearchDecoder`
    ([CVE-2021-29581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29581))
*   Fixes a heap OOB read in `tf.raw_ops.Dequantize`
    ([CVE-2021-29582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29582))
*   Fixes a `CHECK`-fail due to integer overflow
    ([CVE-2021-29584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29584))
*   Fixes a heap buffer overflow and undefined behavior in `FusedBatchNorm`
    ([CVE-2021-29583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29583))
*   Fixes a division by zero in padding computation in TFLite
    ([CVE-2021-29585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29585))
*   Fixes a division by zero in optimized pooling implementations in TFLite
    ([CVE-2021-29586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29586))
*   Fixes a division by zero in TFLite's implementation of `SpaceToDepth`
    ([CVE-2021-29587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29587))
*   Fixes a division by zero in TFLite's implementation of `GatherNd`
    ([CVE-2021-29589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29589))
*   Fixes a division by zero in TFLite's implementation of `TransposeConv`
    ([CVE-2021-29588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29588))
*   Fixes a heap OOB read in TFLite's implementation of `Minimum` or `Maximum`
    ([CVE-2021-29590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29590))
*   Fixes a null pointer dereference in TFLite's `Reshape` operator
    ([CVE-2021-29592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29592))
*   Fixes a stack overflow due to looping TFLite subgraph
    ([CVE-2021-29591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29591))
*   Fixes a division by zero in TFLite's implementation of `DepthToSpace`
    ([CVE-2021-29595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29595))
*   Fixes a division by zero in TFLite's convolution code
    ([CVE-2021-29594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29594))
*   Fixes a division by zero in TFLite's implementation of `EmbeddingLookup`
    ([CVE-2021-29596](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29596))
*   Fixes a division by zero in TFLite's implementation of `BatchToSpaceNd`
    ([CVE-2021-29593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29593))
*   Fixes a division by zero in TFLite's implementation of `SpaceToBatchNd`
    ([CVE-2021-29597](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29597))
*   Fixes a division by zero in TFLite's implementation of `SVDF`
    ([CVE-2021-29598](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29598))
*   Fixes a division by zero in TFLite's implementation of `Split`
    ([CVE-2021-29599](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29599))
*   Fixes a division by zero in TFLite's implementation of `OneHot`
    ([CVE-2021-29600](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29600))
*   Fixes a division by zero in TFLite's implementation of `DepthwiseConv`
    ([CVE-2021-29602](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29602))
*   Fixes a division by zero in TFLite's implementation of hashtable lookup
    ([CVE-2021-29604](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29604))
*   Fixes a integer overflow in TFLite concatentation
    ([CVE-2021-29601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29601))
*   Fixes a integer overflow in TFLite memory allocation
    ([CVE-2021-29605](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29605))
*   Fixes a heap OOB write in TFLite
    ([CVE-2021-29603](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29603))
*   Fixes a heap OOB read in TFLite
    ([CVE-2021-29606](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29606))
*   Fixes a heap OOB and null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-29608](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29608))
*   Fixes vulnerabilities caused by incomplete validation in `SparseAdd`
    ([CVE-2021-29609](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29609))
*   Fixes vulnerabilities caused by incomplete validation in
    `SparseSparseMinimum`
    ([CVE-2021-29607](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29607))
*   Fixes vulnerabilities caused by incomplete validation in `SparseReshape`
    ([CVE-2021-29611](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29611))
*   Fixes vulnerabilities caused by invalid validation in
    `QuantizeAndDequantizeV2`
    ([CVE-2021-29610](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29610))
*   Fixes a heap buffer overflow in `BandedTriangularSolve`
    ([CVE-2021-29612](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29612))
*   Fixes vulnerabilities caused by incomplete validation in
    `tf.raw_ops.CTCLoss`
    ([CVE-2021-29613](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29613))
*   Fixes an interpreter crash from vulnerabilities in `tf.io.decode_raw`
    ([CVE-2021-29614](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29614))
*   Fixes a stack overflow in `ParseAttrValue` with nested tensors
    ([CVE-2021-29615](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29615))
*   Fixes a null dereference in Grappler's `TrySimplify`
    ([CVE-2021-29616](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29616))
*   Fixes a crash in `tf.transpose` with complex inputs
    ([CVE-2021-29618](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29618))
*   Fixes a crash in `tf.strings.substr` due to `CHECK`-fail
    ([CVE-2021-29617](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29617))
*   Fixes a segfault in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-29619](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29619))
*   Fixes a segfault in `tf.raw_ops.ImmutableConst`
    ([CVE-2021-29539](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29539))
*   Updates `curl` to `7.76.0` to handle
    [CVE-2020-8169](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8169),
    [CVE-2020-8177](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8177),
    [CVE-2020-8231](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8231),
    [CVE-2020-8284](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8284),
    [CVE-2020-8285](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8285)
    and
    [CVE-2020-8286](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8286).
# Release 2.2.3
This release introduces several vulnerability fixes:
*   Fixes a heap buffer overflow in `RaggedBinCount`
    ([CVE-2021-29512](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29512))
*   Fixes a heap out of bounds write in `RaggedBinCount`
    ([CVE-2021-29514](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29514))
*   Fixes a type confusion during tensor casts which leads to dereferencing null
    pointers
    ([CVE-2021-29513](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29513))
*   Fixes a reference binding to null pointer in `MatrixDiag*` ops
    ([CVE-2021-29515](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29515))
*   Fixes a null pointer dereference via invalid Ragged Tensors
    ([CVE-2021-29516](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29516))
*   Fixes a division by zero in `Conv3D`
    ([CVE-2021-29517](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29517))
*   Fixes vulnerabilities where session operations in eager mode lead to null
    pointer dereferences
    ([CVE-2021-29518](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29518))
*   Fixes a `CHECK`-fail in `SparseCross` caused by type confusion
    ([CVE-2021-29519](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29519))
*   Fixes a segfault in `SparseCountSparseOutput`
    ([CVE-2021-29521](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29521))
*   Fixes a heap buffer overflow in `Conv3DBackprop*`
    ([CVE-2021-29520](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29520))
*   Fixes a division by 0 in `Conv3DBackprop*`
    ([CVE-2021-29522](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29522))
*   Fixes a `CHECK`-fail in `AddManySparseToTensorsMap`
    ([CVE-2021-29523](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29523))
*   Fixes a division by 0 in `Conv2DBackpropFilter`
    ([CVE-2021-29524](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29524))
*   Fixes a division by 0 in `Conv2DBackpropInput`
    ([CVE-2021-29525](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29525))
*   Fixes a division by 0 in `Conv2D`
    ([CVE-2021-29526](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29526))
*   Fixes a division by 0 in `QuantizedConv2D`
    ([CVE-2021-29527](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29527))
*   Fixes a division by 0 in `QuantizedMul`
    ([CVE-2021-29528](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29528))
*   Fixes vulnerabilities caused by invalid validation in
    `SparseMatrixSparseCholesky`
    ([CVE-2021-29530](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29530))
*   Fixes a heap buffer overflow caused by rounding
    ([CVE-2021-29529](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529))
*   Fixes a `CHECK`-fail in `tf.raw_ops.EncodePng`
    ([CVE-2021-29531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29531))
*   Fixes a heap out of bounds read in `RaggedCross`
    ([CVE-2021-29532](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29532))
*   Fixes a `CHECK`-fail in `DrawBoundingBoxes`
    ([CVE-2021-29533](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29533))
*   Fixes a heap buffer overflow in `QuantizedMul`
    ([CVE-2021-29535](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29535))
*   Fixes a `CHECK`-fail in `SparseConcat`
    ([CVE-2021-29534](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29534))
*   Fixes a heap buffer overflow in `QuantizedResizeBilinear`
    ([CVE-2021-29537](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29537))
*   Fixes a heap buffer overflow in `QuantizedReshape`
    ([CVE-2021-29536](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29536))
*   Fixes a division by zero in `Conv2DBackpropFilter`
    ([CVE-2021-29538](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29538))
*   Fixes a heap buffer overflow in `Conv2DBackpropFilter`
    ([CVE-2021-29540](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29540))
*   Fixes a heap buffer overflow in `StringNGrams`
    ([CVE-2021-29542](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29542))
*   Fixes a null pointer dereference in `StringNGrams`
    ([CVE-2021-29541](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29541))
*   Fixes a `CHECK`-fail in `QuantizeAndDequantizeV4Grad`
    ([CVE-2021-29544](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29544))
*   Fixes a `CHECK`-fail in `CTCGreedyDecoder`
    ([CVE-2021-29543](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29543))
*   Fixes a heap buffer overflow in `SparseTensorToCSRSparseMatrix`
    ([CVE-2021-29545](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29545))
*   Fixes a division by 0 in `QuantizedBiasAdd`
    ([CVE-2021-29546](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29546))
*   Fixes a heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29547](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29547))
*   Fixes a division by 0 in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29548](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29548))
*   Fixes a division by 0 in `QuantizedAdd`
    ([CVE-2021-29549](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29549))
*   Fixes a division by 0 in `FractionalAvgPool`
    ([CVE-2021-29550](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29550))
*   Fixes an OOB read in `MatrixTriangularSolve`
    ([CVE-2021-29551](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29551))
*   Fixes a heap OOB in `QuantizeAndDequantizeV3`
    ([CVE-2021-29553](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29553))
*   Fixes a `CHECK`-failure in `UnsortedSegmentJoin`
    ([CVE-2021-29552](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29552))
*   Fixes a division by 0 in `DenseCountSparseOutput`
    ([CVE-2021-29554](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29554))
*   Fixes a division by 0 in `FusedBatchNorm`
    ([CVE-2021-29555](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29555))
*   Fixes a division by 0 in `SparseMatMul`
    ([CVE-2021-29557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29557))
*   Fixes a division by 0 in `Reverse`
    ([CVE-2021-29556](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29556))
*   Fixes a heap buffer overflow in `SparseSplit`
    ([CVE-2021-29558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29558))
*   Fixes a heap OOB access in unicode ops
    ([CVE-2021-29559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29559))
*   Fixes a heap buffer overflow in `RaggedTensorToTensor`
    ([CVE-2021-29560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29560))
*   Fixes a `CHECK`-fail in `LoadAndRemapMatrix`
    ([CVE-2021-29561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29561))
*   Fixes a `CHECK`-fail in `tf.raw_ops.IRFFT`
    ([CVE-2021-29562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29562))
*   Fixes a `CHECK`-fail in `tf.raw_ops.RFFT`
    ([CVE-2021-29563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29563))
*   Fixes a null pointer dereference in `EditDistance`
    ([CVE-2021-29564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29564))
*   Fixes a null pointer dereference in `SparseFillEmptyRows`
    ([CVE-2021-29565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29565))
*   Fixes a heap OOB access in `Dilation2DBackpropInput`
    ([CVE-2021-29566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29566))
*   Fixes a reference binding to null in `ParameterizedTruncatedNormal`
    ([CVE-2021-29568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29568))
*   Fixes a set of vulnerabilities caused by lack of validation in
    `SparseDenseCwiseMul`
    ([CVE-2021-29567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29567))
*   Fixes a heap out of bounds read in `MaxPoolGradWithArgmax`
    ([CVE-2021-29570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29570))
*   Fixes a heap out of bounds read in `RequantizationRange`
    ([CVE-2021-29569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29569))
*   Fixes a memory corruption in `DrawBoundingBoxesV2`
    ([CVE-2021-29571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29571))
*   Fixes a reference binding to nullptr in `SdcaOptimizer`
    ([CVE-2021-29572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29572))
*   Fixes an overflow and a denial of service in `tf.raw_ops.ReverseSequence`
    ([CVE-2021-29575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29575))
*   Fixes a division by 0 in `MaxPoolGradWithArgmax`
    ([CVE-2021-29573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29573))
*   Fixes an undefined behavior in `MaxPool3DGradGrad`
    ([CVE-2021-29574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29574))
*   Fixes a heap buffer overflow in `MaxPool3DGradGrad`
    ([CVE-2021-29576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29576))
*   Fixes a heap buffer overflow in `AvgPool3DGrad`
    ([CVE-2021-29577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29577))
*   Fixes an undefined behavior and a `CHECK`-fail in `FractionalMaxPoolGrad`
    ([CVE-2021-29580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29580))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-29578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29578))
*   Fixes a heap buffer overflow in `MaxPoolGrad`
    ([CVE-2021-29579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29579))
*   Fixes a segfault in `CTCBeamSearchDecoder`
    ([CVE-2021-29581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29581))
*   Fixes a heap OOB read in `tf.raw_ops.Dequantize`
    ([CVE-2021-29582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29582))
*   Fixes a `CHECK`-fail due to integer overflow
    ([CVE-2021-29584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29584))
*   Fixes a heap buffer overflow and undefined behavior in `FusedBatchNorm`
    ([CVE-2021-29583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29583))
*   Fixes a division by zero in padding computation in TFLite
    ([CVE-2021-29585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29585))
*   Fixes a division by zero in optimized pooling implementations in TFLite
    ([CVE-2021-29586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29586))
*   Fixes a division by zero in TFLite's implementation of `SpaceToDepth`
    ([CVE-2021-29587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29587))
*   Fixes a division by zero in TFLite's implementation of `GatherNd`
    ([CVE-2021-29589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29589))
*   Fixes a division by zero in TFLite's implementation of `TransposeConv`
    ([CVE-2021-29588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29588))
*   Fixes a heap OOB read in TFLite's implementation of `Minimum` or `Maximum`
    ([CVE-2021-29590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29590))
*   Fixes a null pointer dereference in TFLite's `Reshape` operator
    ([CVE-2021-29592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29592))
*   Fixes a stack overflow due to looping TFLite subgraph
    ([CVE-2021-29591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29591))
*   Fixes a division by zero in TFLite's implementation of `DepthToSpace`
    ([CVE-2021-29595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29595))
*   Fixes a division by zero in TFLite's convolution code
    ([CVE-2021-29594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29594))
*   Fixes a division by zero in TFLite's implementation of `EmbeddingLookup`
    ([CVE-2021-29596](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29596))
*   Fixes a division by zero in TFLite's implementation of `BatchToSpaceNd`
    ([CVE-2021-29593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29593))
*   Fixes a division by zero in TFLite's implementation of `SpaceToBatchNd`
    ([CVE-2021-29597](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29597))
*   Fixes a division by zero in TFLite's implementation of `SVDF`
    ([CVE-2021-29598](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29598))
*   Fixes a division by zero in TFLite's implementation of `Split`
    ([CVE-2021-29599](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29599))
*   Fixes a division by zero in TFLite's implementation of `OneHot`
    ([CVE-2021-29600](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29600))
*   Fixes a division by zero in TFLite's implementation of `DepthwiseConv`
    ([CVE-2021-29602](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29602))
*   Fixes a division by zero in TFLite's implementation of hashtable lookup
    ([CVE-2021-29604](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29604))
*   Fixes a integer overflow in TFLite concatentation
    ([CVE-2021-29601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29601))
*   Fixes a integer overflow in TFLite memory allocation
    ([CVE-2021-29605](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29605))
*   Fixes a heap OOB write in TFLite
    ([CVE-2021-29603](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29603))
*   Fixes a heap OOB read in TFLite
    ([CVE-2021-29606](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29606))
*   Fixes a heap OOB and null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-29608](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29608))
*   Fixes vulnerabilities caused by incomplete validation in `SparseAdd`
    ([CVE-2021-29609](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29609))
*   Fixes vulnerabilities caused by incomplete validation in
    `SparseSparseMinimum`
    ([CVE-2021-29607](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29607))
*   Fixes vulnerabilities caused by incomplete validation in `SparseReshape`
    ([CVE-2021-29611](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29611))
*   Fixes vulnerabilities caused by invalid validation in
    `QuantizeAndDequantizeV2`
    ([CVE-2021-29610](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29610))
*   Fixes a heap buffer overflow in `BandedTriangularSolve`
    ([CVE-2021-29612](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29612))
*   Fixes vulnerabilities caused by incomplete validation in
    `tf.raw_ops.CTCLoss`
    ([CVE-2021-29613](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29613))
*   Fixes an interpreter crash from vulnerabilities in `tf.io.decode_raw`
    ([CVE-2021-29614](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29614))
*   Fixes a stack overflow in `ParseAttrValue` with nested tensors
    ([CVE-2021-29615](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29615))
*   Fixes a null dereference in Grappler's `TrySimplify`
    ([CVE-2021-29616](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29616))
*   Fixes a crash in `tf.transpose` with complex inputs
    ([CVE-2021-29618](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29618))
*   Fixes a crash in `tf.strings.substr` due to `CHECK`-fail
    ([CVE-2021-29617](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29617))
*   Fixes a segfault in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-29619](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29619))
*   Fixes a segfault in `tf.raw_ops.ImmutableConst`
    ([CVE-2021-29539](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29539))
*   Updates `curl` to `7.76.0` to handle
    [CVE-2020-8169](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8169),
    [CVE-2020-8177](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8177),
    [CVE-2020-8231](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8231),
    [CVE-2020-8284](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8284),
    [CVE-2020-8285](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8285)
    and
    [CVE-2020-8286](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8286).
# Release 2.1.4
This release introduces several vulnerability fixes:
*   Fixes a heap buffer overflow in `RaggedBinCount`
    ([CVE-2021-29512](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29512))
*   Fixes a heap out of bounds write in `RaggedBinCount`
    ([CVE-2021-29514](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29514))
*   Fixes a type confusion during tensor casts which leads to dereferencing null
    pointers
    ([CVE-2021-29513](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29513))
*   Fixes a reference binding to null pointer in `MatrixDiag*` ops
    ([CVE-2021-29515](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29515))
*   Fixes a null pointer dereference via invalid Ragged Tensors
    ([CVE-2021-29516](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29516))
*   Fixes a division by zero in `Conv3D`
    ([CVE-2021-29517](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29517))
*   Fixes vulnerabilities where session operations in eager mode lead to null
    pointer dereferences
    ([CVE-2021-29518](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29518))
*   Fixes a `CHECK`-fail in `SparseCross` caused by type confusion
    ([CVE-2021-29519](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29519))
*   Fixes a segfault in `SparseCountSparseOutput`
    ([CVE-2021-29521](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29521))
*   Fixes a heap buffer overflow in `Conv3DBackprop*`
    ([CVE-2021-29520](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29520))
*   Fixes a division by 0 in `Conv3DBackprop*`
    ([CVE-2021-29522](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29522))
*   Fixes a `CHECK`-fail in `AddManySparseToTensorsMap`
    ([CVE-2021-29523](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29523))
*   Fixes a division by 0 in `Conv2DBackpropFilter`
    ([CVE-2021-29524](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29524))
*   Fixes a division by 0 in `Conv2DBackpropInput`
    ([CVE-2021-29525](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29525))
*   Fixes a division by 0 in `Conv2D`
    ([CVE-2021-29526](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29526))
*   Fixes a division by 0 in `QuantizedConv2D`
    ([CVE-2021-29527](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29527))
*   Fixes a division by 0 in `QuantizedMul`
    ([CVE-2021-29528](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29528))
*   Fixes vulnerabilities caused by invalid validation in
    `SparseMatrixSparseCholesky`
    ([CVE-2021-29530](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29530))
*   Fixes a heap buffer overflow caused by rounding
    ([CVE-2021-29529](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529))
*   Fixes a `CHECK`-fail in `tf.raw_ops.EncodePng`
    ([CVE-2021-29531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29531))
*   Fixes a heap out of bounds read in `RaggedCross`
    ([CVE-2021-29532](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29532))
*   Fixes a `CHECK`-fail in `DrawBoundingBoxes`
    ([CVE-2021-29533](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29533))
*   Fixes a heap buffer overflow in `QuantizedMul`
    ([CVE-2021-29535](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29535))
*   Fixes a `CHECK`-fail in `SparseConcat`
    ([CVE-2021-29534](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29534))
*   Fixes a heap buffer overflow in `QuantizedResizeBilinear`
    ([CVE-2021-29537](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29537))
*   Fixes a heap buffer overflow in `QuantizedReshape`
    ([CVE-2021-29536](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29536))
*   Fixes a division by zero in `Conv2DBackpropFilter`
    ([CVE-2021-29538](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29538))
*   Fixes a heap buffer overflow in `Conv2DBackpropFilter`
    ([CVE-2021-29540](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29540))
*   Fixes a heap buffer overflow in `StringNGrams`
    ([CVE-2021-29542](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29542))
*   Fixes a null pointer dereference in `StringNGrams`
    ([CVE-2021-29541](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29541))
*   Fixes a `CHECK`-fail in `QuantizeAndDequantizeV4Grad`
    ([CVE-2021-29544](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29544))
*   Fixes a `CHECK`-fail in `CTCGreedyDecoder`
    ([CVE-2021-29543](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29543))
*   Fixes a heap buffer overflow in `SparseTensorToCSRSparseMatrix`
    ([CVE-2021-29545](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29545))
*   Fixes a division by 0 in `QuantizedBiasAdd`
    ([CVE-2021-29546](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29546))
*   Fixes a heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29547](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29547))
*   Fixes a division by 0 in `QuantizedBatchNormWithGlobalNormalization`
    ([CVE-2021-29548](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29548))
*   Fixes a division by 0 in `QuantizedAdd`
    ([CVE-2021-29549](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29549))
*   Fixes a division by 0 in `FractionalAvgPool`
    ([CVE-2021-29550](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29550))
*   Fixes an OOB read in `MatrixTriangularSolve`
    ([CVE-2021-29551](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29551))
*   Fixes a heap OOB in `QuantizeAndDequantizeV3`
    ([CVE-2021-29553](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29553))
*   Fixes a `CHECK`-failure in `UnsortedSegmentJoin`
    ([CVE-2021-29552](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29552))
*   Fixes a division by 0 in `DenseCountSparseOutput`
    ([CVE-2021-29554](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29554))
*   Fixes a division by 0 in `FusedBatchNorm`
    ([CVE-2021-29555](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29555))
*   Fixes a division by 0 in `SparseMatMul`
    ([CVE-2021-29557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29557))
*   Fixes a division by 0 in `Reverse`
    ([CVE-2021-29556](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29556))
*   Fixes a heap buffer overflow in `SparseSplit`
    ([CVE-2021-29558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29558))
*   Fixes a heap OOB access in unicode ops
    ([CVE-2021-29559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29559))
*   Fixes a heap buffer overflow in `RaggedTensorToTensor`
    ([CVE-2021-29560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29560))
*   Fixes a `CHECK`-fail in `LoadAndRemapMatrix`
    ([CVE-2021-29561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29561))
*   Fixes a `CHECK`-fail in `tf.raw_ops.IRFFT`
    ([CVE-2021-29562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29562))
*   Fixes a `CHECK`-fail in `tf.raw_ops.RFFT`
    ([CVE-2021-29563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29563))
*   Fixes a null pointer dereference in `EditDistance`
    ([CVE-2021-29564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29564))
*   Fixes a null pointer dereference in `SparseFillEmptyRows`
    ([CVE-2021-29565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29565))
*   Fixes a heap OOB access in `Dilation2DBackpropInput`
    ([CVE-2021-29566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29566))
*   Fixes a reference binding to null in `ParameterizedTruncatedNormal`
    ([CVE-2021-29568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29568))
*   Fixes a set of vulnerabilities caused by lack of validation in
    `SparseDenseCwiseMul`
    ([CVE-2021-29567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29567))
*   Fixes a heap out of bounds read in `MaxPoolGradWithArgmax`
    ([CVE-2021-29570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29570))
*   Fixes a heap out of bounds read in `RequantizationRange`
    ([CVE-2021-29569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29569))
*   Fixes a memory corruption in `DrawBoundingBoxesV2`
    ([CVE-2021-29571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29571))
*   Fixes a reference binding to nullptr in `SdcaOptimizer`
    ([CVE-2021-29572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29572))
*   Fixes an overflow and a denial of service in `tf.raw_ops.ReverseSequence`
    ([CVE-2021-29575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29575))
*   Fixes a division by 0 in `MaxPoolGradWithArgmax`
    ([CVE-2021-29573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29573))
*   Fixes an undefined behavior in `MaxPool3DGradGrad`
    ([CVE-2021-29574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29574))
*   Fixes a heap buffer overflow in `MaxPool3DGradGrad`
    ([CVE-2021-29576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29576))
*   Fixes a heap buffer overflow in `AvgPool3DGrad`
    ([CVE-2021-29577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29577))
*   Fixes an undefined behavior and a `CHECK`-fail in `FractionalMaxPoolGrad`
    ([CVE-2021-29580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29580))
*   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
    ([CVE-2021-29578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29578))
*   Fixes a heap buffer overflow in `MaxPoolGrad`
    ([CVE-2021-29579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29579))
*   Fixes a segfault in `CTCBeamSearchDecoder`
    ([CVE-2021-29581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29581))
*   Fixes a heap OOB read in `tf.raw_ops.Dequantize`
    ([CVE-2021-29582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29582))
*   Fixes a `CHECK`-fail due to integer overflow
    ([CVE-2021-29584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29584))
*   Fixes a heap buffer overflow and undefined behavior in `FusedBatchNorm`
    ([CVE-2021-29583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29583))
*   Fixes a division by zero in padding computation in TFLite
    ([CVE-2021-29585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29585))
*   Fixes a division by zero in optimized pooling implementations in TFLite
    ([CVE-2021-29586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29586))
*   Fixes a division by zero in TFLite's implementation of `SpaceToDepth`
    ([CVE-2021-29587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29587))
*   Fixes a division by zero in TFLite's implementation of `GatherNd`
    ([CVE-2021-29589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29589))
*   Fixes a division by zero in TFLite's implementation of `TransposeConv`
    ([CVE-2021-29588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29588))
*   Fixes a heap OOB read in TFLite's implementation of `Minimum` or `Maximum`
    ([CVE-2021-29590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29590))
*   Fixes a null pointer dereference in TFLite's `Reshape` operator
    ([CVE-2021-29592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29592))
*   Fixes a stack overflow due to looping TFLite subgraph
    ([CVE-2021-29591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29591))
*   Fixes a division by zero in TFLite's implementation of `DepthToSpace`
    ([CVE-2021-29595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29595))
*   Fixes a division by zero in TFLite's convolution code
    ([CVE-2021-29594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29594))
*   Fixes a division by zero in TFLite's implementation of `EmbeddingLookup`
    ([CVE-2021-29596](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29596))
*   Fixes a division by zero in TFLite's implementation of `BatchToSpaceNd`
    ([CVE-2021-29593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29593))
*   Fixes a division by zero in TFLite's implementation of `SpaceToBatchNd`
    ([CVE-2021-29597](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29597))
*   Fixes a division by zero in TFLite's implementation of `SVDF`
    ([CVE-2021-29598](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29598))
*   Fixes a division by zero in TFLite's implementation of `Split`
    ([CVE-2021-29599](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29599))
*   Fixes a division by zero in TFLite's implementation of `OneHot`
    ([CVE-2021-29600](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29600))
*   Fixes a division by zero in TFLite's implementation of `DepthwiseConv`
    ([CVE-2021-29602](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29602))
*   Fixes a division by zero in TFLite's implementation of hashtable lookup
    ([CVE-2021-29604](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29604))
*   Fixes a integer overflow in TFLite concatentation
    ([CVE-2021-29601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29601))
*   Fixes a integer overflow in TFLite memory allocation
    ([CVE-2021-29605](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29605))
*   Fixes a heap OOB write in TFLite
    ([CVE-2021-29603](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29603))
*   Fixes a heap OOB read in TFLite
    ([CVE-2021-29606](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29606))
*   Fixes a heap OOB and null pointer dereference in `RaggedTensorToTensor`
    ([CVE-2021-29608](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29608))
*   Fixes vulnerabilities caused by incomplete validation in `SparseAdd`
    ([CVE-2021-29609](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29609))
*   Fixes vulnerabilities caused by incomplete validation in
    `SparseSparseMinimum`
    ([CVE-2021-29607](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29607))
*   Fixes vulnerabilities caused by incomplete validation in `SparseReshape`
    ([CVE-2021-29611](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29611))
*   Fixes vulnerabilities caused by invalid validation in
    `QuantizeAndDequantizeV2`
    ([CVE-2021-29610](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29610))
*   Fixes a heap buffer overflow in `BandedTriangularSolve`
    ([CVE-2021-29612](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29612))
*   Fixes vulnerabilities caused by incomplete validation in
    `tf.raw_ops.CTCLoss`
    ([CVE-2021-29613](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29613))
*   Fixes an interpreter crash from vulnerabilities in `tf.io.decode_raw`
    ([CVE-2021-29614](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29614))
*   Fixes a stack overflow in `ParseAttrValue` with nested tensors
    ([CVE-2021-29615](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29615))
*   Fixes a null dereference in Grappler's `TrySimplify`
    ([CVE-2021-29616](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29616))
*   Fixes a crash in `tf.transpose` with complex inputs
    ([CVE-2021-29618](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29618))
*   Fixes a crash in `tf.strings.substr` due to `CHECK`-fail
    ([CVE-2021-29617](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29617))
*   Fixes a segfault in `tf.raw_ops.SparseCountSparseOutput`
    ([CVE-2021-29619](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29619))
*   Fixes a segfault in `tf.raw_ops.ImmutableConst`
    ([CVE-2021-29539](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29539))
*   Updates `curl` to `7.76.0` to handle
    [CVE-2020-8169](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8169),
    [CVE-2020-8177](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8177),
    [CVE-2020-8231](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8231),
    [CVE-2020-8284](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8284),
    [CVE-2020-8285](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8285)
    and
    [CVE-2020-8286](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8286).
# Release 2.5.0
## Major Features and Improvements
*   Support for Python3.9 has been added.
*   `tf.data`:
    *   `tf.data` service now supports strict round-robin reads, which is useful
        for synchronous training workloads where example sizes vary. With strict
        round robin reads, users can guarantee that consumers get similar-sized
        examples in the same step.
    *   tf.data service now supports optional compression. Previously data would
        always be compressed, but now you can disable compression by passing
        `compression=None` to `tf.data.experimental.service.distribute(...)`.
    *   `tf.data.Dataset.batch()` now supports `num_parallel_calls` and
        `deterministic` arguments. `num_parallel_calls` is used to indicate that
        multiple input batches should be computed in parallel. With
        `num_parallel_calls` set, `deterministic` is used to indicate that
        outputs can be obtained in the non-deterministic order.
    *   Options returned by `tf.data.Dataset.options()` are no longer mutable.
    *   tf.data input pipelines can now be executed in debug mode, which
        disables any asynchrony, parallelism, or non-determinism and forces
        Python execution (as opposed to trace-compiled graph execution) of
        user-defined functions passed into transformations such as `map`. The
        debug mode can be enabled through
        `tf.data.experimental.enable_debug_mode()`.
*   `tf.lite`
    *   Enabled the new MLIR-based quantization backend by default
        *   The new backend is used for 8 bits full integer post-training
            quantization
        *   The new backend removes the redundant rescales and fixes some bugs
            (shared weight/bias, extremely small scales, etc)
        *   Set `experimental_new_quantizer` in tf.lite.TFLiteConverter to False
            to disable this change
*   `tf.keras`
    *   `tf.keras.metrics.AUC` now support logit predictions.
    *   Enabled a new supported input type in `Model.fit`,
        `tf.keras.utils.experimental.DatasetCreator`, which takes a callable,
        `dataset_fn`. `DatasetCreator` is intended to work across all
        `tf.distribute` strategies, and is the only input type supported for
        Parameter Server strategy.
*   `tf.distribute`
    *   `tf.distribute.experimental.ParameterServerStrategy` now supports
        training with Keras `Model.fit` when used with `DatasetCreator`.
    *   Creating `tf.random.Generator` under `tf.distribute.Strategy` scopes is
        now allowed (except for
        `tf.distribute.experimental.CentralStorageStrategy` and
        `tf.distribute.experimental.ParameterServerStrategy`). Different
        replicas will get different random-number streams.
*   TPU embedding support
    *   Added `profile_data_directory` to `EmbeddingConfigSpec` in
        `_tpu_estimator_embedding.py`. This allows embedding lookup statistics
        gathered at runtime to be used in embedding layer partitioning
        decisions.
*   PluggableDevice
    *   Third-party devices can now connect to TensorFlow as plug-ins through
        [StreamExecutor C API](https://github.com/tensorflow/community/blob/master/rfcs/20200612-stream-executor-c-api.md).
        and
        [PluggableDevice](https://github.com/tensorflow/community/blob/master/rfcs/20200624-pluggable-device-for-tensorflow.md)
        interface.
        *   Add custom ops and kernels through
            [kernel and op registration C API](https://github.com/tensorflow/community/blob/master/rfcs/20190814-kernel-and-op-registration.md).
        *   Register custom graph optimization passes with
            [graph optimization C API](https://github.com/tensorflow/community/blob/master/rfcs/20201027-modular-tensorflow-graph-c-api.md).
*   [oneAPI Deep Neural Network Library (oneDNN)](https://github.com/oneapi-src/oneDNN)
    CPU performance optimizations from
    [Intel-optimized TensorFlow](https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html)
    are now available in the official x86-64 Linux and Windows builds.
    *   They are off by default. Enable them by setting the environment variable
        `TF_ENABLE_ONEDNN_OPTS=1`.
    *   We do not recommend using them in GPU systems, as they have not been
        sufficiently tested with GPUs yet.
*   TensorFlow pip packages are now built with CUDA11.2 and cuDNN 8.1.0
## Breaking Changes
*   The `TF_CPP_MIN_VLOG_LEVEL` environment variable has been renamed to to
    `TF_CPP_MAX_VLOG_LEVEL` which correctly describes its effect.
## Bug Fixes and Other Changes
*   `tf.keras`:
    *   Preprocessing layers API consistency changes:
        *   `StringLookup` added `output_mode`, `sparse`, and
            `pad_to_max_tokens` arguments with same semantics as
            `TextVectorization`.
        *   `IntegerLookup` added `output_mode`, `sparse`, and
            `pad_to_max_tokens` arguments with same semantics as
            `TextVectorization`. Renamed `max_values`, `oov_value` and
            `mask_value` to `max_tokens`, `oov_token` and `mask_token` to align
            with `StringLookup` and `TextVectorization`.
        *   `TextVectorization` default for `pad_to_max_tokens` switched to
            False.
        *   `CategoryEncoding` no longer supports `adapt`, `IntegerLookup` now
            supports equivalent functionality. `max_tokens` argument renamed to
            `num_tokens`.
        *   `Discretization` added `num_bins` argument for learning bins
            boundaries through calling `adapt` on a dataset. Renamed `bins`
            argument to `bin_boundaries` for specifying bins without `adapt`.
    *   Improvements to model saving/loading:
        *   `model.load_weights` now accepts paths to saved models.
    *   Keras inputs can now be created directly from arbitrary `tf.TypeSpecs`.
    *   Two new learning rate schedules added:
        `tf.keras.optimizers.schedules.CosineDecay`
        and`tf.keras.optimizers.schedules.CosineDecayRestarts`.
*   `tf.data`:
    *   Exposing `tf.data.experimental.ExternalStatePolicy`, which can be used
        to control how external state should be handled during dataset
        serialization or iterator checkpointing.
    *   Changing `tf.data.experimental.save` to store the type specification of
        the dataset elements. This avoids the need for explicitly specifying the
        `element_spec` argument of `tf.data.experimental.load` when loading the
        previously saved dataset.
    *   Add `.element_spec` property to `tf.data.DatasetSpec` to access the
        inner spec. This can be used to extract the structure of nested
        datasets.
    *   Add `tf.data.experimental.AutoShardingPolicy.HINT` which can be used to
        provide hints to tf.distribute-based auto-sharding as to where in the
        input pipeline to insert sharding transformations.
    *   Make tf.data.Options persistent across `tf.function` and `GraphDef`
        boundaries.
*   XLA compilation:
    *   `tf.function(experimental_compile=True)` has become a stable API,
        renamed `tf.function(jit_compile=True)`.
    *   XLA can now compile MirroredStrategy: the step function passed
        to`strategy.run` can now be annoted with `jit_compile=True`.
*   `tf.distribute`:
    *   Rename `experimental_prefetch_to_device` in `tf.distribute.InputOptions`
        to `experimental_fetch_to_device` to better reflect the purpose.
*   `tf.lite`:
    *   class `tflite::Subgraph`:
        *   Removed the `tensors()` method and the non-const overload of the
            `nodes_and_registration()` method, both of which were previously
            documented as temporary and to be removed.
            *   Uses of `tensors()` can be replaced by calling the existing
                methods `tensors_size()` and `tensor(int)`.
            *   Uses of the non-const overload of `nodes_and_registration` can
                be replaced by calling the existing methods `nodes_size()` and
                `context()`, and then calling the `GetNodeAndRegistration`
                method in the `TfLiteContext` returned by `context()`.
    *   NNAPI
        *   Removed deprecated `Interpreter::UseNNAPI(bool)` C++ API.
            *   Use `NnApiDelegate()` and related delegate configuration methods
                directly.
        *   Replaced the model cache key for models computation algorithm with
            one guaranteed to be stable across runs.
    *   16 bits quantization
        *   Added int16x8 support for ABS, REDUCE_MAX and REDUCE_MIN operators.
        *   Additional tests and fixes for ADD and SUB operators.
    *   Added support for saved model's session initializer through
        `TFLiteConverter.from_saved_model`.
    *   Added DEPTH_TO_SPACE support in Post training quantization.
    *   Added dynamic range quantization support for the BatchMatMul op.
        *   Both symmetric and asymmetric quantized input tensor are supported.
    *   Add `RFFT2D` as builtin op. (`RFFT2D` also supports `RFFTD`.) Currently
        only supports float32 input.
    *   Add 5D support to `SLICE` op.
    *   TFLite Supports SingatureDef:
        *   TFLiteConverter exports models with SignatureDef
        *   Interpreter supports getting a list of signatures and getting
            callable function for a given signaturedef.
    *   Add int8 support for `ReshapeV2`.
    *   Add experimental support for optimization with sparsity.
    *   Add nominal support for unsigned 32-bit integer tensor types. Note that
        very few TFLite kernels support this type natively, so its use in mobile
        ML authoring is generally discouraged.
    *   Add support for static hash tables through
        `TFLiteConverter.from_saved_model`.
    *   The Python TF Lite Interpreter bindings now has an option
        `experimental_preserve_all_tensors` to aid in debugging conversion.
    *   Quantized x86 execution defaults to Ruy GEMM library for platforms with
        AVX support.
    *   Deprecate
        `tf.compat.v1.lite.experimental.get_potentially_supported_ops`. Use
        `tf.lite.TFLiteConverter` directly to check whether a model is
        convertible.
    *   Add support to select one of three different built-in op resolvers
    *   Enabled post training with calibrations for models that require user
        provided TensorFlow Lite custom op libraries via
        `converter.target_spec._experimental_custom_op_registerers`. used in
        Python Interpreter API.
*   TF Core:
    *   Corrected higher-order gradients of control flow constructs (`tf.cond`,
        `tf.while_loop`, and compositions like `tf.foldl`) computed with
        `tf.GradientTape` inside a `tf.function`.
    *   Changed the default step size in `gradient_checker_v2.compute_gradients`
        to be exactly representable as a binary floating point numbers. This
        avoids poluting gradient approximations needlessly, which is some cases
        leads to false negatives in op gradient tests.
    *   Added `tf.config.experimental.get_memory_info`, returning a dict with
        the current and peak memory usage. Deprecated
        `tf.config.experimental.get_memory_usage` in favor of this new function.
    *   Extended `tf.config.experimental.enable_tensor_float_32_execution` to
        control Tensor-Float-32 evaluation in RNNs.
    *   Added a 'experimental_payloads' field to tf.errors.OpError and its
        subclasses to support more detailed error reporting. This is inspired
        from Abseil Status payloads:
        https://github.com/abseil/abseil-cpp/blob/master/absl/status/status.h
*   `tf.summary`:
    *   New `tf.summary.graph` allows manual write of TensorFlow graph
        (`tf.Graph` or `tf.compat.v1.GraphDef`) as a summary. This is not a
        replacement for the trace-based API.
*   Set `/d2ReducedOptimizeHugeFunctions` by default for Windows builds. This
    provides a big compile-time speedup, and effectively raises the minimum
    supported MSVC version to 16.4 (current: 16.8).
    *   See:
        https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion
*   TensorRT
    *   Removed the deprecated `session_config` parameter for the TF1-TRT
        converter `TrtGraphConverter`. Previously, we issued a warning when the
        value of the parameter is not None.
    *   The TF2-TRT converter `TrtGraphConverterV2` takes an object of class
        TrtConversionParams as a parameter. Removed three deprecated fields from
        this class: `rewriter_config_template`, `is_dynamic_op`, and
        `max_batch_size`. Previously, we issued a warning when the value of
        `rewriter_config_template` is not None. We issued an error when the
        value of `is_dynamic_op` is not True. We didn't use the value for
        `max_batch_size` for building TensorRT engines. Add parameters
        `use_dynamic_shape` to enable dynamic shape support. The default is to
        disable dynamic shape support. Add `dynamic_shape_profile_strategy` for
        selecting a dynamic shape profile strategy. The default is profile
        strategy is `Range`.
    *   Issue a warning when function get_tensorrt_rewriter_config is used.
*   TF XLA
    *   Add new enum value `MLIR_BRIDGE_ROLLOUT_SAFE_MODE_ENABLED` to
        `tf.config.experimental.mlir_bridge_rollout` to enable a \"safe\" mode.
        This runs the MLIR bridge only when an analysis of the graph only when
        an analysis of the graph determines that it is safe to run.
    *   Add new enum value `MLIR_BRIDGE_ROLLOUT_SAFE_MODE_FALLBACK_ENABLED'
        to`tf.config.experimental.mlir_bridge_rollout` to enable a fallback for
        the MLIR bridge in a \"safe\" mode. This runs the MLIR bridge in a
        FallbackEnabled mode when an analysis of the graph determines that the
        graph does not have unsupported features.
*   Deterministic Op Functionality:
    *   Add determinism-unimplemented exception-throwing to the segment-sum ops.
        When the environment variable `TF_DETERMINISTIC_OPS` is set to `"true"`
        or `"1"` (when op-determinism is expected), an attempt to run the
        following ops on a GPU will throw `tf.errors.UnimplementedError` (with
        an understandable message) when `data` is a floating-point type,
        including complex types (if supported): `tf.math.segment_prod`,
        `tf.math.segment_sum`, `tf.math.unsorted_segment_mean`,
        `tf.math.unsorted_segment_sqrt_n`, `tf.math.unsorted_segment_prod`,
        `tf.math.unsorted_segment_sum`, and therefore also
        `tf.convert_to_tensor` when `value` is of type `tf.IndexedSlices` (such
        as in the back prop though `tf.gather` into a dense embedding). See
        issue [39751](https://github.com/tensorflow/tensorflow/issues/39751)
        which this change addresses, but does not solve. This exception-throwing
        behavior can be disabled by setting the environment variable
        `TF_DISABLE_SEGMENT_REDUCTION_OP_DETERMINISM_EXCEPTIONS` to `"true"` or
        `"1"`. For more information about these changes, see the description in
        pull request
        [47772](https://github.com/tensorflow/tensorflow/pull/47772).
    *   In previous versions of TensorFlow, when a GPU was available,
        `tf.sparse.sparse_dense_matmul` introduced truly random noise in the
        forward path for data of type `tf.float32` but not for data of type
        `tf.float64` (for which there was no GPU implementation). In this
        current release, GPU support for other floating-point types
        (`tf.float16`, `tf.float64`, `tf.complex64`, and `tf.complex128`) has
        been added for this op. If you were relying on the determinism of the
        `tf.float64` CPU implementation being automatically selected because of
        the absence of the `tf.float64` GPU implementation, you with either need
        to force the op to run on the CPU or use a different data type.
*   Security
    *   Fixes a heap buffer overflow in `RaggedBinCount`
        ([CVE-2021-29512](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29512))
    *   Fixes a heap out of bounds write in `RaggedBinCount`
        ([CVE-2021-29514](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29514))
    *   Fixes a type confusion during tensor casts which leads to dereferencing
        null pointers
        ([CVE-2021-29513](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29513))
    *   Fixes a reference binding to null pointer in `MatrixDiag*` ops
        ([CVE-2021-29515](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29515))
    *   Fixes a null pointer dereference via invalid Ragged Tensors
        ([CVE-2021-29516](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29516))
    *   Fixes a division by zero in `Conv3D`
        ([CVE-2021-29517](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29517))
    *   Fixes vulnerabilities where session operations in eager mode lead to
        null pointer dereferences
        ([CVE-2021-29518](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29518))
    *   Fixes a `CHECK`-fail in `SparseCross` caused by type confusion
        ([CVE-2021-29519](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29519))
    *   Fixes a segfault in `SparseCountSparseOutput`
        ([CVE-2021-29521](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29521))
    *   Fixes a heap buffer overflow in `Conv3DBackprop*`
        ([CVE-2021-29520](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29520))
    *   Fixes a division by 0 in `Conv3DBackprop*`
        ([CVE-2021-29522](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29522))
    *   Fixes a `CHECK`-fail in `AddManySparseToTensorsMap`
        ([CVE-2021-29523](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29523))
    *   Fixes a division by 0 in `Conv2DBackpropFilter`
        ([CVE-2021-29524](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29524))
    *   Fixes a division by 0 in `Conv2DBackpropInput`
        ([CVE-2021-29525](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29525))
    *   Fixes a division by 0 in `Conv2D`
        ([CVE-2021-29526](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29526))
    *   Fixes a division by 0 in `QuantizedConv2D`
        ([CVE-2021-29527](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29527))
    *   Fixes a division by 0 in `QuantizedMul`
        ([CVE-2021-29528](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29528))
    *   Fixes vulnerabilities caused by invalid validation in
        `SparseMatrixSparseCholesky`
        ([CVE-2021-29530](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29530))
    *   Fixes a heap buffer overflow caused by rounding
        ([CVE-2021-29529](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29529))
    *   Fixes a `CHECK`-fail in `tf.raw_ops.EncodePng`
        ([CVE-2021-29531](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29531))
    *   Fixes a heap out of bounds read in `RaggedCross`
        ([CVE-2021-29532](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29532))
    *   Fixes a `CHECK`-fail in `DrawBoundingBoxes`
        ([CVE-2021-29533](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29533))
    *   Fixes a heap buffer overflow in `QuantizedMul`
        ([CVE-2021-29535](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29535))
    *   Fixes a `CHECK`-fail in `SparseConcat`
        ([CVE-2021-29534](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29534))
    *   Fixes a heap buffer overflow in `QuantizedResizeBilinear`
        ([CVE-2021-29537](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29537))
    *   Fixes a heap buffer overflow in `QuantizedReshape`
        ([CVE-2021-29536](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29536))
    *   Fixes a division by zero in `Conv2DBackpropFilter`
        ([CVE-2021-29538](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29538))
    *   Fixes a heap buffer overflow in `Conv2DBackpropFilter`
        ([CVE-2021-29540](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29540))
    *   Fixes a heap buffer overflow in `StringNGrams`
        ([CVE-2021-29542](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29542))
    *   Fixes a null pointer dereference in `StringNGrams`
        ([CVE-2021-29541](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29541))
    *   Fixes a `CHECK`-fail in `QuantizeAndDequantizeV4Grad`
        ([CVE-2021-29544](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29544))
    *   Fixes a `CHECK`-fail in `CTCGreedyDecoder`
        ([CVE-2021-29543](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29543))
    *   Fixes a heap buffer overflow in `SparseTensorToCSRSparseMatrix`
        ([CVE-2021-29545](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29545))
    *   Fixes a division by 0 in `QuantizedBiasAdd`
        ([CVE-2021-29546](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29546))
    *   Fixes a heap out of bounds in
        `QuantizedBatchNormWithGlobalNormalization`
        ([CVE-2021-29547](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29547))
    *   Fixes a division by 0 in `QuantizedBatchNormWithGlobalNormalization`
        ([CVE-2021-29548](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29548))
    *   Fixes a division by 0 in `QuantizedAdd`
        ([CVE-2021-29549](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29549))
    *   Fixes a division by 0 in `FractionalAvgPool`
        ([CVE-2021-29550](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29550))
    *   Fixes an OOB read in `MatrixTriangularSolve`
        ([CVE-2021-29551](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29551))
    *   Fixes a heap OOB in `QuantizeAndDequantizeV3`
        ([CVE-2021-29553](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29553))
    *   Fixes a `CHECK`-failure in `UnsortedSegmentJoin`
        ([CVE-2021-29552](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29552))
    *   Fixes a division by 0 in `DenseCountSparseOutput`
        ([CVE-2021-29554](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29554))
    *   Fixes a division by 0 in `FusedBatchNorm`
        ([CVE-2021-29555](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29555))
    *   Fixes a division by 0 in `SparseMatMul`
        ([CVE-2021-29557](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29557))
    *   Fixes a division by 0 in `Reverse`
        ([CVE-2021-29556](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29556))
    *   Fixes a heap buffer overflow in `SparseSplit`
        ([CVE-2021-29558](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29558))
    *   Fixes a heap OOB access in unicode ops
        ([CVE-2021-29559](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29559))
    *   Fixes a heap buffer overflow in `RaggedTensorToTensor`
        ([CVE-2021-29560](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29560))
    *   Fixes a `CHECK`-fail in `LoadAndRemapMatrix`
        ([CVE-2021-29561](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29561))
    *   Fixes a `CHECK`-fail in `tf.raw_ops.IRFFT`
        ([CVE-2021-29562](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29562))
    *   Fixes a `CHECK`-fail in `tf.raw_ops.RFFT`
        ([CVE-2021-29563](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29563))
    *   Fixes a null pointer dereference in `EditDistance`
        ([CVE-2021-29564](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29564))
    *   Fixes a null pointer dereference in `SparseFillEmptyRows`
        ([CVE-2021-29565](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29565))
    *   Fixes a heap OOB access in `Dilation2DBackpropInput`
        ([CVE-2021-29566](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29566))
    *   Fixes a reference binding to null in `ParameterizedTruncatedNormal`
        ([CVE-2021-29568](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29568))
    *   Fixes a set of vulnerabilities caused by lack of validation in
        `SparseDenseCwiseMul`
        ([CVE-2021-29567](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29567))
    *   Fixes a heap out of bounds read in `MaxPoolGradWithArgmax`
        ([CVE-2021-29570](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29570))
    *   Fixes a heap out of bounds read in `RequantizationRange`
        ([CVE-2021-29569](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29569))
    *   Fixes a memory corruption in `DrawBoundingBoxesV2`
        ([CVE-2021-29571](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29571))
    *   Fixes a reference binding to nullptr in `SdcaOptimizer`
        ([CVE-2021-29572](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29572))
    *   Fixes an overflow and a denial of service in
        `tf.raw_ops.ReverseSequence`
        ([CVE-2021-29575](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29575))
    *   Fixes a division by 0 in `MaxPoolGradWithArgmax`
        ([CVE-2021-29573](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29573))
    *   Fixes an undefined behavior in `MaxPool3DGradGrad`
        ([CVE-2021-29574](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29574))
    *   Fixes a heap buffer overflow in `MaxPool3DGradGrad`
        ([CVE-2021-29576](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29576))
    *   Fixes a heap buffer overflow in `AvgPool3DGrad`
        ([CVE-2021-29577](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29577))
    *   Fixes an undefined behavior and a `CHECK`-fail in
        `FractionalMaxPoolGrad`
        ([CVE-2021-29580](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29580))
    *   Fixes a heap buffer overflow in `FractionalAvgPoolGrad`
        ([CVE-2021-29578](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29578))
    *   Fixes a heap buffer overflow in `MaxPoolGrad`
        ([CVE-2021-29579](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29579))
    *   Fixes a segfault in `CTCBeamSearchDecoder`
        ([CVE-2021-29581](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29581))
    *   Fixes a heap OOB read in `tf.raw_ops.Dequantize`
        ([CVE-2021-29582](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29582))
    *   Fixes a `CHECK`-fail due to integer overflow
        ([CVE-2021-29584](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29584))
    *   Fixes a heap buffer overflow and undefined behavior in `FusedBatchNorm`
        ([CVE-2021-29583](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29583))
    *   Fixes a division by zero in padding computation in TFLite
        ([CVE-2021-29585](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29585))
    *   Fixes a division by zero in optimized pooling implementations in TFLite
        ([CVE-2021-29586](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29586))
    *   Fixes a division by zero in TFLite's implementation of `SpaceToDepth`
        ([CVE-2021-29587](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29587))
    *   Fixes a division by zero in TFLite's implementation of `GatherNd`
        ([CVE-2021-29589](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29589))
    *   Fixes a division by zero in TFLite's implementation of `TransposeConv`
        ([CVE-2021-29588](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29588))
    *   Fixes a heap OOB read in TFLite's implementation of `Minimum` or
        `Maximum`
        ([CVE-2021-29590](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29590))
    *   Fixes a null pointer dereference in TFLite's `Reshape` operator
        ([CVE-2021-29592](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29592))
    *   Fixes a stack overflow due to looping TFLite subgraph
        ([CVE-2021-29591](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29591))
    *   Fixes a division by zero in TFLite's implementation of `DepthToSpace`
        ([CVE-2021-29595](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29595))
    *   Fixes a division by zero in TFLite's convolution code
        ([CVE-2021-29594](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29594))
    *   Fixes a division by zero in TFLite's implementation of `EmbeddingLookup`
        ([CVE-2021-29596](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29596))
    *   Fixes a division by zero in TFLite's implementation of `BatchToSpaceNd`
        ([CVE-2021-29593](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29593))
    *   Fixes a division by zero in TFLite's implementation of `SpaceToBatchNd`
        ([CVE-2021-29597](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29597))
    *   Fixes a division by zero in TFLite's implementation of `SVDF`
        ([CVE-2021-29598](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29598))
    *   Fixes a division by zero in TFLite's implementation of `Split`
        ([CVE-2021-29599](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29599))
    *   Fixes a division by zero in TFLite's implementation of `OneHot`
        ([CVE-2021-29600](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29600))
    *   Fixes a division by zero in TFLite's implementation of `DepthwiseConv`
        ([CVE-2021-29602](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29602))
    *   Fixes a division by zero in TFLite's implementation of hashtable lookup
        ([CVE-2021-29604](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29604))
    *   Fixes a integer overflow in TFLite concatentation
        ([CVE-2021-29601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29601))
    *   Fixes a integer overflow in TFLite memory allocation
        ([CVE-2021-29605](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29605))
    *   Fixes a heap OOB write in TFLite
        ([CVE-2021-29603](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29603))
    *   Fixes a heap OOB read in TFLite
        ([CVE-2021-29606](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29606))
    *   Fixes a heap OOB and null pointer dereference in `RaggedTensorToTensor`
        ([CVE-2021-29608](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29608))
    *   Fixes vulnerabilities caused by incomplete validation in `SparseAdd`
        ([CVE-2021-29609](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29609))
    *   Fixes vulnerabilities caused by incomplete validation in
        `SparseSparseMinimum`
        ([CVE-2021-29607](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29607))
    *   Fixes vulnerabilities caused by incomplete validation in `SparseReshape`
        ([CVE-2021-29611](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29611))
    *   Fixes vulnerabilities caused by invalid validation in
        `QuantizeAndDequantizeV2`
        ([CVE-2021-29610](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29610))
    *   Fixes a heap buffer overflow in `BandedTriangularSolve`
        ([CVE-2021-29612](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29612))
    *   Fixes vulnerabilities caused by incomplete validation in
        `tf.raw_ops.CTCLoss`
        ([CVE-2021-29613](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29613))
    *   Fixes an interpreter crash from vulnerabilities in `tf.io.decode_raw`
        ([CVE-2021-29614](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29614))
    *   Fixes a stack overflow in `ParseAttrValue` with nested tensors
        ([CVE-2021-29615](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29615))
    *   Fixes a null dereference in Grappler's `TrySimplify`
        ([CVE-2021-29616](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29616))
    *   Fixes a crash in `tf.transpose` with complex inputs
        ([CVE-2021-29618](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29618))
    *   Fixes a crash in `tf.strings.substr` due to `CHECK`-fail
        ([CVE-2021-29617](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29617))
    *   Fixes a segfault in `tf.raw_ops.SparseCountSparseOutput`
        ([CVE-2021-29619](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29619))
    *   Fixes a segfault in `tf.raw_ops.ImmutableConst`
        ([CVE-2021-29539](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29539))
    *   Updates `curl` to `7.76.0` to handle
        [CVE-2020-8169](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8169),
        [CVE-2020-8177](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8177),
        [CVE-2020-8231](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8231),
        [CVE-2020-8284](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8284),
        [CVE-2020-8285](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8285)
        and
        [CVE-2020-8286](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8286).
*   Other
    *   Added `show_debug_info` to `mlir.convert_graph_def` and
        `mlir.convert_function`.
    *   Added
        [Arm Compute Library (ACL)](https://github.com/ARM-software/ComputeLibrary)
        support to `--config=mkl_aarch64` build.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Aaron S. Mondal, Abhilash Mahendrakar, Abhinav Upadhyay, Abhishek
Kulkarni, Abolfazl Shahbazi, Adam Hillier, Aditya Kane, Ag Ramesh, ahmedsabie,
Albert Villanova Del Moral, Aleksey Vitebskiy, Alex Hoffman, Alexander Bayandin,
Alfie Edwards, Aman Kishore, Amogh Joshi, andreABbauer, Andrew Goodbody, Andrzej
Pomirski, Artemiy Ryabinkov, Ashish Jha, ather, Ayan Moitra, Bairen Yi, Bart
Ribbers, Bas Aarts, Behzad Abghari, Ben Arnao, Ben Barsdell, Benjamin Klimczak,
bhack, Brendan Collins, Can Wang, Cheng Ren, Chris Leary, Chris Olivier, Clemens
Giuliani, Cloud Han, Corey Cole, Cui, Yifeng, Cuong V. Nguyen, Daniel Moore,
Dawid Wojciechowski, Ddavis-2015, Dean Wyatte, Denisa Roberts, dependabot[bot],
Dmitry Volodin, Dominic Jack, Duncan Riach, dushuai, Elena Zhelezina, Eli
Osherovich, Erik Smistad, ewsn1593, Felix Fent, fo40225, François Chollet,
Frederic Bastien, Freedom" Koan-Sin Tan, fsx950223, ganand1, gbaned, Georgiy
Manuilov, gerbauz, Guillaume Klein, Guozhong Zhuang, Harry Slatyer, Harsh188,
henri, Henri Woodcock, Hiran Sarkar, Hollow Man, Håkon Sandsmark, I Wayan
Dharmana, icysapphire, Ikko Ashimine, Jab Hofmeier, Jack Hessel, Jacob Valdez,
Jakub Jatczak, James Bernardi, Jared Smolens, Jason Zaman, jedlimlx, Jenny
Plunkett, Jens Elofsson, Jerry Shih, jgehw, Jia Fu Low, Jim Fisher, jpodivin,
Julien Stephan, Jungsub Lim, Junha Park, Junhyuk So, justkw, Kaixi Hou,
kashyapraval, Kasra Bigdeli, Kazuaki Ishizaki, Keith Mok, Kevin Cheng, kopytjuk,
Kristian Hartikainen, ksood12345, Kulin Seth, kushanam, latyas, Lequn Chen,
Leslie-Fang, Long M. Lưu, Lukas Geiger, machineko, Mahmoud Abuzaina, Manish, Mao
Yunfei, Maozhou, Ge, Marcin Juszkiewicz, Marcin Owsiany, Marconi Jiang, Marcos
Pereira, Maria Romanenko Vexlard, Maria Vexlard, Marius Brehler, marload, Martin
Kubovčík, Matej, Mateusz Holenko, Maxiwell S. Garcia, Mazhar, mazharul,
mbhuiyan, mdfaijul, Michael Gielda, Michael Kuchnik, Michal Szutenberg, Mikhail
Stepanov, Milan Straka, Mitchel Humpherys, Mohamed Moselhy, Mohamed Nour
Abouelseoud, Måns Bermell, Måns Nilsson, Nathan Luehr, Nico Jahn, Niroop
Ammbashankar, Oceania2018, Omri Steiner, Orivej Desh, Oskar Flordal, oujiafan,
Patrik Laurell, Paul B. Isaac'S, Paul Klinger, Pawel Piskorski, Pedro Marques,
Phat Tran, Piotr Zierhoffer, piyushdatta, Pnikam-Cad, Prashant Kumar, Prateek
Gupta, PratsBhatt, Pravin Karandikar, qqq.jq, QQ喵, Quintin, Rama Ketineni,
ravikyram, Rehan Guha, rhdong, rmothukuru, Roger Cheng, Rohit Santhanam, rposts,
Rsanthanam-Amd, rsun, Rsun-Bdti, Ryan Kuester, ryanking13, Saduf2019, Sami Kama,
Samuel Marks, Scott Tseng, Sean Moriarity, Sergey Popov, Sergii Khomenko, Sheng,
Yang, shwetaoj, Sidong-Wei, Simon Maurer, Simrit Kaur, Srini511, Srinivasan
Narayanamoorthy, Stephan, Stephen Matthews, Sungmann Cho, Sunoru, Suraj Sudhir,
Suraj Upadhyay, Taebum Kim, Takayoshi Koizumi, Tamas Bela Feher, Teng Lu,
Thibaut Goetghebuer-Planchon, Tomwildenhain-Microsoft, Tony, Traun Leyden, Trent
Lo, TVLIgnacy, Tzu-Wei Sung, vaibhav, Vignesh Kothapalli, Vikram Dattu,
viktprog, Vinayaka Bandishti, Vincent Abriou, Vishakha Agrawal, Vivek Panyam,
Vladimir Silyaev, Võ Văn Nghĩa, wamuir, Wang, Yanzhang, wangsiyu, Waqar Hameed,
wxinix, Xiao Yang, xiaohong1031, Xiaoming (Jason) Cui, Xinan Jiang, Yair
Ehrenwald, Yajush Vyas, Yasir Modak, Yimei Sun, Yong Tang, Yosshi999,
youshenmebutuo, yqtianust, Yuan Tang, yuanbopeng, Yuriy Chernyshov, Yuta
Fukasawa, Zachary Deane-Mayer, Zeno Gantner, Zhoulong Jiang, zhuyie, zilinzhu,
彭震东
# Release 2.4.1
*   This release removes the AVX2 requirement from TF 2.4.0.
# Release 2.3.2
## Bug Fixes and Other Changes
*   Fixes an access to unitialized memory in Eigen code
    ([CVE-2020-26266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26266))
*   Fixes a security vulnerability caused by lack of validation in
    `tf.raw_ops.DataFormatVecPermute` and `tf.raw_ops.DataFormatDimMap`
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a vulnerability caused by attempting to write to immutable memory
    region in `tf.raw_ops.ImmutableConst`
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268)
*   Fixes a `CHECK`-fail in LSTM with zero-length input
    ([CVE-2020-26270](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26270))
*   Fixes a security vulnerability caused by accessing heap data outside of
    bounds when loading a specially crafted `SavedModel`
    ([CVE-2020-26271](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26271))
*   Solves an OOM issue on TPUs when XLA contexts use fused average updates
*   Updates `libjpeg-turbo` to `2.0.5` to handle
    [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
*   Updates `junit` to `4.13.1` to handle
    [CVE-2020-15250](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15250).
*   Updates `PCRE` to `8.44` to handle
    [CVE-2019-20838](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20838)
    and
    [CVE-2020-14155](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14155).
*   Updates `sqlite3` to `3.44.0` to keep in sync with master branch.
# Release 2.2.2
## Bug Fixes and Other Changes
*   Fixes an access to unitialized memory in Eigen code
    ([CVE-2020-26266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26266))
*   Fixes a security vulnerability caused by lack of validation in
    `tf.raw_ops.DataFormatVecPermute` and `tf.raw_ops.DataFormatDimMap`
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a vulnerability caused by attempting to write to immutable memory
    region in `tf.raw_ops.ImmutableConst`
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268)
*   Fixes a `CHECK`-fail in LSTM with zero-length input
    ([CVE-2020-26270](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26270))
*   Fixes a security vulnerability caused by accessing heap data outside of
    bounds when loading a specially crafted `SavedModel`
    ([CVE-2020-26271](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26271))
*   Prevents memory leaks in loading `SavedModel`s that import functions
*   Updates `libjpeg-turbo` to `2.0.5` to handle
    [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
*   Updates `junit` to `4.13.1` to handle
    [CVE-2020-15250](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15250).
*   Updates `PCRE` to `8.44` to handle
    [CVE-2019-20838](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20838)
    and
    [CVE-2020-14155](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14155).
*   Updates `sqlite3` to `3.44.0` to keep in sync with master branch.
# Release 2.1.3
## Bug Fixes and Other Changes
*   Fixes an access to unitialized memory in Eigen code
    ([CVE-2020-26266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26266))
*   Fixes a security vulnerability caused by lack of validation in
    `tf.raw_ops.DataFormatVecPermute` and `tf.raw_ops.DataFormatDimMap`
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a vulnerability caused by attempting to write to immutable memory
    region in `tf.raw_ops.ImmutableConst`
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268)
*   Fixes a `CHECK`-fail in LSTM with zero-length input
    ([CVE-2020-26270](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26270))
*   Fixes a security vulnerability caused by accessing heap data outside of
    bounds when loading a specially crafted `SavedModel`
    ([CVE-2020-26271](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26271))
*   Updates `libjpeg-turbo` to `2.0.5` to handle
    [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
*   Updates `junit` to `4.13.1` to handle
    [CVE-2020-15250](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15250).
*   Updates `PCRE` to `8.44` to handle
    [CVE-2019-20838](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20838)
    and
    [CVE-2020-14155](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14155).
*   Updates `sqlite3` to `3.44.0` to keep in sync with master branch.
*   Newer ROCm versions are supported on the 2.1 branch.
# Release 2.0.4
Note that this is the last patch release for the TensorFlow 2.0.x series.
## Bug Fixes and Other Changes
*   Fixes an access to unitialized memory in Eigen code
    ([CVE-2020-26266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26266))
*   Fixes a security vulnerability caused by lack of validation in
    `tf.raw_ops.DataFormatVecPermute` and `tf.raw_ops.DataFormatDimMap`
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a vulnerability caused by attempting to write to immutable memory
    region in `tf.raw_ops.ImmutableConst`
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268)
*   Fixes a `CHECK`-fail in LSTM with zero-length input
    ([CVE-2020-26270](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26270))
*   Fixes a security vulnerability caused by accessing heap data outside of
    bounds when loading a specially crafted `SavedModel`
    ([CVE-2020-26271](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26271))
*   Updates `libjpeg-turbo` to `2.0.5` to handle
    [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
*   Updates `junit` to `4.13.1` to handle
    [CVE-2020-15250](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15250).
*   Updates `PCRE` to `8.44` to handle
    [CVE-2019-20838](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20838)
    and
    [CVE-2020-14155](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14155).
*   Updates `sqlite3` to `3.44.0` to keep in sync with master branch.
# Release 1.15.5
Note that this is the last patch release for the TensorFlow 1.x series.
## Bug Fixes and Other Changes
*   Fixes an access to unitialized memory in Eigen code
    ([CVE-2020-26266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26266))
*   Fixes a security vulnerability caused by lack of validation in
    `tf.raw_ops.DataFormatVecPermute` and `tf.raw_ops.DataFormatDimMap`
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a vulnerability caused by attempting to write to immutable memory
    region in `tf.raw_ops.ImmutableConst`
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268)
*   Fixes a `CHECK`-fail in LSTM with zero-length input
    ([CVE-2020-26270](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26270))
*   Fixes a security vulnerability caused by accessing heap data outside of
    bounds when loading a specially crafted `SavedModel`
    ([CVE-2020-26271](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26271))
*   Updates `libjpeg-turbo` to `2.0.5` to handle
    [CVE-2020-13790](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13790).
*   Updates `junit` to `4.13.1` to handle
    [CVE-2020-15250](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15250).
*   Updates `PCRE` to `8.44` to handle
    [CVE-2019-20838](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20838)
    and
    [CVE-2020-14155](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14155).
*   Updates `sqlite3` to `3.44.0` to keep in sync with master branch.
# Release 2.4.0
\## Major Features and Improvements
*   `tf.distribute` introduces experimental support for asynchronous training of
    models via the
    [`tf.distribute.experimental.ParameterServerStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/ParameterServerStrategy)
    API. Please see the
    [tutorial](https://www.tensorflow.org/tutorials/distribute/parameter_server_training)
    to learn more.
*   [`MultiWorkerMirroredStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy)
    is now a stable API and is no longer considered experimental. Some of the
    major improvements involve handling peer failure and many bug fixes. Please
    check out the detailed tutorial on
    [Multi-worker training with Keras](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras).
*   Introduces experimental support for a new module named
    [`tf.experimental.numpy`](https://www.tensorflow.org/api_docs/python/tf/experimental/numpy)
    which is a NumPy-compatible API for writing TF programs. See the
    [detailed guide](https://www.tensorflow.org/guide/tf_numpy) to learn more.
    Additional details below.
*   Adds Support for
    [TensorFloat-32](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/)
    on Ampere based GPUs. TensorFloat-32, or TF32 for short, is a math mode for
    NVIDIA Ampere based GPUs and is enabled by default.
*   A major refactoring of the internals of the Keras Functional API has been
    completed, that should improve the reliability, stability, and performance
    of constructing Functional models.
*   Keras mixed precision API
    [`tf.keras.mixed_precision`](https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision?version=nightly)
    is no longer experimental and allows the use of 16-bit floating point
    formats during training, improving performance by up to 3x on GPUs and 60%
    on TPUs. Please see below for additional details.
*   TensorFlow Profiler now supports profiling `MultiWorkerMirroredStrategy` and
    tracing multiple workers using the
    [sampling mode API](https://www.tensorflow.org/guide/profiler#profiling_apis).
*   TFLite Profiler for Android is available. See the detailed
    [guide](https://www.tensorflow.org/lite/performance/measurement#trace_tensorflow_lite_internals_in_android)
    to learn more.
*   TensorFlow pip packages are now built with CUDA11 and cuDNN 8.0.2.
## Breaking Changes
*   TF Core:
    *   Certain float32 ops run in lower precision on Ampere based GPUs,
        including matmuls and convolutions, due to the use of
        [TensorFloat-32](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/).
        Specifically, inputs to such ops are rounded from 23 bits of precision
        to 10 bits of precision. This is unlikely to cause issues in practice
        for deep learning models. In some cases, TensorFloat-32 is also used for
        complex64 ops. TensorFloat-32 can be disabled by running
        `tf.config.experimental.enable_tensor_float_32_execution(False)`.
    *   The byte layout for string tensors across the C-API has been updated to
        match TF Core/C++; i.e., a contiguous array of
        `tensorflow::tstring`/`TF_TString`s.
    *   C-API functions `TF_StringDecode`, `TF_StringEncode`, and
        `TF_StringEncodedSize` are no longer relevant and have been removed; see
        `core/platform/ctstring.h` for string access/modification in C.
    *   `tensorflow.python`, `tensorflow.core` and `tensorflow.compiler` modules
        are now hidden. These modules are not part of TensorFlow public API.
    *   `tf.raw_ops.Max` and `tf.raw_ops.Min` no longer accept inputs of type
        `tf.complex64` or `tf.complex128`, because the behavior of these ops is
        not well defined for complex types.
    *   XLA:CPU and XLA:GPU devices are no longer registered by default. Use
        `TF_XLA_FLAGS=--tf_xla_enable_xla_devices` if you really need them, but
        this flag will eventually be removed in subsequent releases.
*   `tf.keras`:
    *   The `steps_per_execution` argument in `model.compile()` is no longer
        experimental; if you were passing `experimental_steps_per_execution`,
        rename it to `steps_per_execution` in your code. This argument controls
        the number of batches to run during each `tf.function` call when calling
        `model.fit()`. Running multiple batches inside a single `tf.function`
        call can greatly improve performance on TPUs or small models with a
        large Python overhead.
    *   A **major refactoring** of the internals of the Keras Functional API may
        affect code that is relying on certain internal details:
    *   Code that uses `isinstance(x, tf.Tensor)` instead of `tf.is_tensor` when
        checking Keras symbolic inputs/outputs should switch to using
        `tf.is_tensor`.
    *   Code that is overly dependent on the exact names attached to symbolic
        tensors (e.g. assumes there will be ":0" at the end of the inputs,
        treats names as unique identifiers instead of using `tensor.ref()`,
        etc.) may break.
    *   Code that uses full path for `get_concrete_function` to trace Keras
        symbolic inputs directly should switch to building matching
        `tf.TensorSpec`s directly and tracing the `TensorSpec` objects.
    *   Code that relies on the exact number and names of the op layers that
        TensorFlow operations were converted into may have changed.
    *   Code that uses `tf.map_fn`/`tf.cond`/`tf.while_loop`/control flow as op
        layers and happens to work before TF 2.4. These will explicitly be
        unsupported now. Converting these ops to Functional API op layers was
        unreliable before TF 2.4, and prone to erroring incomprehensibly or
        being silently buggy.
    *   Code that directly asserts on a Keras symbolic value in cases where ops
        like `tf.rank` used to return a static or symbolic value depending on if
        the input had a fully static shape or not. Now these ops always return
        symbolic values.
    *   Code already susceptible to leaking tensors outside of graphs becomes
        slightly more likely to do so now.
    *   Code that tries directly getting gradients with respect to symbolic
        Keras inputs/outputs. Use `GradientTape` on the actual Tensors passed to
        the already-constructed model instead.
    *   Code that requires very tricky shape manipulation via converted op
        layers in order to work, where the Keras symbolic shape inference proves
        insufficient.
    *   Code that tries manually walking a `tf.keras.Model` layer by layer and
        assumes layers only ever have one positional argument. This assumption
        doesn't hold true before TF 2.4 either, but is more likely to cause
        issues now.
    *   Code that manually enters `keras.backend.get_graph()` before building a
        functional model is no longer needed.
    *   Start enforcing input shape assumptions when calling Functional API
        Keras models. This may potentially break some users, in case there is a
        mismatch between the shape used when creating `Input` objects in a
        Functional model, and the shape of the data passed to that model. You
        can fix this mismatch by either calling the model with correctly-shaped
        data, or by relaxing `Input` shape assumptions (note that you can pass
        shapes with `None` entries for axes that are meant to be dynamic). You
        can also disable the input checking entirely by setting
        `model.input_spec = None`.
    *   Several changes have been made to
        `tf.keras.mixed_precision.experimental`. Note that it is now recommended
        to use the non-experimental `tf.keras.mixed_precision` API.
    *   `AutoCastVariable.dtype` now refers to the actual variable dtype, not
        the dtype it will be casted to.
    *   When mixed precision is enabled, `tf.keras.layers.Embedding` now outputs
        a float16 or bfloat16 tensor instead of a float32 tensor.
    *   The property
        `tf.keras.mixed_precision.experimental.LossScaleOptimizer.loss_scale` is
        now a tensor, not a `LossScale` object. This means to get a loss scale
        of a `LossScaleOptimizer` as a tensor, you must now call
        `opt.loss_scale`instead of `opt.loss_scale()`.
    *   The property `should_cast_variables` has been removed from
        `tf.keras.mixed_precision.experimental.Policy`
    *   When passing a `tf.mixed_precision.experimental.DynamicLossScale` to
        `tf.keras.mixed_precision.experimental.LossScaleOptimizer`, the
        `DynamicLossScale`'s multiplier must be 2.
    *   When passing a `tf.mixed_precision.experimental.DynamicLossScale` to
        `tf.keras.mixed_precision.experimental.LossScaleOptimizer`, the weights
        of the `DynanmicLossScale` are copied into the `LossScaleOptimizer`
        instead of being reused. This means modifying the weights of the
        `DynamicLossScale` will no longer affect the weights of the
        LossScaleOptimizer, and vice versa.
    *   The global policy can no longer be set to a non-floating point policy in
        `tf.keras.mixed_precision.experimental.set_policy`
    *   In `Layer.call`, `AutoCastVariable`s will no longer be casted within
        `MirroredStrategy.run` or `ReplicaContext.merge_call`. This is because a
        thread local variable is used to determine whether `AutoCastVariable`s
        are casted, and those two functions run with a different thread. Note
        this only applies if one of these two functions is called within
        `Layer.call`; if one of those two functions calls `Layer.call`,
        `AutoCastVariable`s will still be casted.
*   `tf.data`:
    *   `tf.data.experimental.service.DispatchServer` now takes a config tuple
        instead of individual arguments. Usages should be updated to
        `tf.data.experimental.service.DispatchServer(dispatcher_config)`.
    *   `tf.data.experimental.service.WorkerServer` now takes a config tuple
        instead of individual arguments. Usages should be updated to
        `tf.data.experimental.service.WorkerServer(worker_config)`.
*   `tf.distribute`:
    *   Removes `tf.distribute.Strategy.experimental_make_numpy_dataset`. Please
        use `tf.data.Dataset.from_tensor_slices` instead.
    *   Renames `experimental_hints` in
        `tf.distribute.StrategyExtended.reduce_to`,
        `tf.distribute.StrategyExtended.batch_reduce_to`,
        `tf.distribute.ReplicaContext.all_reduce` to `options`.
    *   Renames `tf.distribute.experimental.CollectiveHints` to
        `tf.distribute.experimental.CommunicationOptions`.
    *   Renames `tf.distribute.experimental.CollectiveCommunication` to
        `tf.distribute.experimental.CommunicationImplementation`.
    *   Renames
        `tf.distribute.Strategy.experimental_distribute_datasets_from_function`
        to `distribute_datasets_from_function` as it is no longer experimental.
    *   Removes `tf.distribute.Strategy.experimental_run_v2` method, which was
        deprecated in TF 2.2.
*   `tf.lite`:
    *   `tf.quantization.quantize_and_dequantize_v2` has been introduced, which
        updates the gradient definition for quantization which is outside the
        range to be 0. To simulate the V1 the behavior of
        `tf.quantization.quantize_and_dequantize(...)` use
        `tf.grad_pass_through(tf.quantization.quantize_and_dequantize_v2)(...)`.
*   Building TensorFlow:
    *   Windows platform builds: TensorFlow on Windows under MSVC is now built
        with `--copt=/experimental:preprocessor
        --host_copt=/experimental:preprocessor` (see `.bazelrc` for more
        details). Builds including TensorFlow may fail with unexpected syntax
        errors if these flags are absent. See also
        [this thread on SIG Build](https://groups.google.com/a/tensorflow.org/g/build/c/LbAw8RILvTg/m/ttnuhYU2BgAJ).
## Known Caveats
*   `tf.keras.mixed_precision`
    *   When using mixed precision, calling `RMSprop.apply_gradients` or
        `Nadam.apply_gradients` outside a `tf.function` does not work and will
        raise the AttributeError "Tensor.op is meaningless when eager execution
        is enabled". See this
        [issue](https://github.com/tensorflow/tensorflow/issues/45536) for
        details and a workaround.
## Bug Fixes and Other Changes
### TF Core:
*   Introduces experimental support for a new module named
    [`tf.experimental.numpy`](https://www.tensorflow.org/api_docs/python/tf/experimental/numpy),
    which is a NumPy-compatible API for writing TF programs. This module
    provides class `ndarray`, which mimics the `ndarray` class in NumPy, and
    wraps an immutable `tf.Tensor` under the hood. A subset of NumPy functions
    (e.g. `numpy.add`) are provided. Their inter-operation with TF facilities is
    seamless in most cases. See
    [tensorflow/python/ops/numpy_ops/README.md](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/numpy_ops/README.md)
    for details of what operations are supported and what are the differences
    from NumPy.
*   `tf.types.experimental.TensorLike` is a new `Union` type that can be used as
    type annotation for variables representing a Tensor or a value that can be
    converted to Tensor by `tf.convert_to_tensor`.
*   Calling ops with a python constants or numpy values is now consistent with
    tf.convert_to_tensor behavior. This avoids operations like tf.reshape
    truncating inputs such as from int64 to int32.
*   Adds `tf.sparse.map_values` to apply a function to the `.value`s of
    `SparseTensor` arguments.
*   The Python bitwise operators for `Tensor` (`__and__`, `__or__`, `__xor__`
    and `__invert__` now support non-`bool` arguments and apply the
    corresponding bitwise ops. `bool` arguments continue to be supported and
    dispatch to logical ops. This brings them more in line with Python and NumPy
    behavior.
*   Adds `tf.SparseTensor.with_values`. This returns a new SparseTensor with the
    same sparsity pattern, but with new provided values. It is similar to the
    `with_values` function of `RaggedTensor`.
*   Adds `StatelessCase` op, and uses it if none of case branches has stateful
    ops.
*   Adds `tf.config.experimental.get_memory_usage` to return total memory usage
    of the device.
*   Adds gradients for `RaggedTensorToVariant` and `RaggedTensorFromVariant`.
*   Improve shape inference of nested function calls by supporting constant
    folding across Arg nodes which makes more static values available to shape
    inference functions.
*   `tf.debugging`:
    *   `tf.debugging.assert_shapes()` now works on `SparseTensor`s (Fixes
        [#36268](https://github.com/tensorflow/tensorflow/issues/36268)).
*   GPU
    *   Adds Support for
        [TensorFloat-32](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/)
        on Ampere based GPUs.TensorFloat-32, or TF32 for short, is a math mode
        for NVIDIA Ampere based GPUs which causes certain float32 ops, such as
        matrix multiplications and convolutions, to run much faster on Ampere
        GPUs but with reduced precision. This reduced precision has not been
        found to effect convergence quality of deep learning models in practice.
        TensorFloat-32 is enabled by default, but can be disabled with
        `tf.config.experimental.enable_tensor_float_32_execution`.
*   `tf.math`:
    *   Adds `tf.math.erfcinv`, the inverse to `tf.math.erfc`.
*   `tf.nn`:
    *   `tf.nn.max_pool2d` now supports explicit padding.
*   `tf.image`:
    *   Adds deterministic `tf.image.stateless_random_*` functions for each
        `tf.image.random_*` function. Added a new op
        `stateless_sample_distorted_bounding_box` which is a deterministic
        version of `sample_distorted_bounding_box` op. Given the same seed,
        these stateless functions/ops produce the same results independent of
        how many times the function is called, and independent of global seed
        settings.
    *   Adds deterministic `tf.image.resize` backprop CUDA kernels for
        `method=ResizeMethod.BILINEAR` (the default method). Enable by setting
        the environment variable `TF_DETERMINISTIC_OPS` to `"true"` or `"1"`.
*   `tf.print`:
    *   Bug fix in `tf.print()` with `OrderedDict` where if an `OrderedDict`
        didn't have the keys sorted, the keys and values were not being printed
        in accordance with their correct mapping.
*   `tf.train.Checkpoint`:
    *   Now accepts a `root` argument in the initialization, which generates a
        checkpoint with a root object. This allows users to create a
        `Checkpoint` object that is compatible with Keras `model.save_weights()`
        and `model.load_weights`. The checkpoint is also compatible with the
        checkpoint saved in the `variables/` folder in the SavedModel.
    *   When restoring, `save_path` can be a path to a SavedModel. The function
        will automatically find the checkpoint in the SavedModel.
### `tf.data`:
*   Adds new `tf.data.experimental.service.register_dataset` and
    `tf.data.experimental.service.from_dataset_id` APIs to enable one process to
    register a dataset with the tf.data service, and another process to consume
    data from the dataset.
*   Adds support for dispatcher fault tolerance. To enable fault tolerance,
    configure a `work_dir` when running your dispatcher server and set
    `dispatcher_fault_tolerance=True`. The dispatcher will store its state to
    `work_dir`, so that on restart it can continue from its previous state after
    restart.
*   Adds support for sharing dataset graphs via shared filesystem instead of
    over RPC. This reduces load on the dispatcher, improving performance of
    distributing datasets. For this to work, the dispatcher's `work_dir` must be
    accessible from workers. If the worker fails to read from the `work_dir`, it
    falls back to using RPC for dataset graph transfer.
*   Adds support for a new "distributed_epoch" processing mode. This processing
    mode distributes a dataset across all tf.data workers, instead of having
    each worker process the full dataset. See
    [the tf.data service docs](https://www.tensorflow.org/api_docs/python/tf/data/experimental/service#understand_processing_mode)
    to learn more.
*   Adds optional `exclude_cols` parameter to CsvDataset. This parameter is the
    complement of `select_cols`; at most one of these should be specified.
*   We have implemented an optimization which reorders data-discarding
    transformations such as `take` and `shard` to happen earlier in the dataset
    when it is safe to do so. The optimization can be disabled via the
    `experimental_optimization.reorder_data_discarding_ops` dataset option.
*   `tf.data.Options` were previously immutable and can now be overridden.
*   `tf.data.Dataset.from_generator` now supports Ragged and Sparse tensors with
    a new `output_signature` argument, which allows `from_generator` to produce
    any type describable by a `tf.TypeSpec`.
*   `tf.data.experimental.AUTOTUNE` is now available in the core API as
    `tf.data.AUTOTUNE`.
### `tf.distribute`:
*   Introduces experimental support for asynchronous training of models via
    `tf.distribute.experimental.ParameterServerStrategy`:
    *   Replaces the existing
        `tf.distribute.experimental.ParameterServerStrategy` symbol with a new
        class that is for parameter server training in TF2. Usage of the old
        symbol, usually with Estimator API, should be **replaced** with
        [`tf.compat.v1.distribute.experimental.ParameterServerStrategy`].
    *   Added `tf.distribute.experimental.coordinator.*` namespace, including
        the main API `ClusterCoordinator` for coordinating the training cluster,
        the related data structure `RemoteValue` and `PerWorkerValue`.
*   `MultiWorkerMirroredStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy)
    is now a stable API and is no longer considered experimental. Some of the
    major improvements involve handling peer failure and many bug fixes. Please
    check out the detailed tutorial on
    [Multi-worer training with Keras](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras).
*   Adds `tf.distribute.Strategy.gather` and
    `tf.distribute.ReplicaContext.all_gather` APIs to support gathering dense
    distributed values.
*   Fixes various issues with saving a distributed model.
### `tf.keras`:
*   Improvements from the Functional API refactoring:
    *   Functional model construction does not need to maintain a global
        workspace graph, removing memory leaks especially when building many
        models or very large models.
    *   Functional model construction should be ~8-10% faster on average.
    *   Functional models can now contain non-symbolic values in their call
        inputs inside of the first positional argument.
    *   Several classes of TF ops that were not reliably converted to Keras
        layers during functional API construction should now work,
        e.g.`tf.image.ssim_multiscale`
    *   Error messages when Functional API construction goes wrong (and when ops
        cannot be converted to Keras layers automatically) should be clearer and
        easier to understand.
*   `Optimizer.minimize` can now accept a loss `Tensor` and a `GradientTape` as
    an alternative to accepting a `callable` loss.
*   Adds `beta` hyperparameter to
    [FTRL](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl)
    optimizer classes (Keras and others) to match
    [FTRL paper](https://research.google.com/pubs/archive/41159.pdf).
*   `Optimizer.__init__` now accepts a `gradient_aggregator` to allow for
    customization of how gradients are aggregated across devices, as well as
    `gradients_transformers` to allow for custom gradient transformations (such
    as gradient clipping).
*   Improvements to Keras preprocessing layers:
    *   TextVectorization can now accept a vocabulary list or file as an init
        arg.
    *   Normalization can now accept mean and variance values as init args.
*   In `Attention` and `AdditiveAttention` layers, the `call()` method now
    accepts a `return_attention_scores` argument. When set to True, the layer
    returns the attention scores as an additional output argument.
*   Adds `tf.metrics.log_cosh` and `tf.metrics.logcosh` API entrypoints with the
    same implementation as their `tf.losses` equivalent.
*   For Keras model, the individual call of `Model.evaluate` uses no cached data
    for evaluation, while `Model.fit` uses cached data when `validation_data`
    arg is provided for better performance.
*   Adds a `save_traces` argument to `model.save`/ `tf.keras.models.save_model`
    which determines whether the SavedModel format stores the Keras model/layer
    call functions. The traced functions allow Keras to revive custom models and
    layers without the original class definition, but if this isn't required the
    tracing can be disabled with the added option.
*   The `tf.keras.mixed_precision` API is now non-experimental. The
    non-experimental API differs from the experimental API in several ways.
    *   `tf.keras.mixed_precision.Policy` no longer takes in a
        `tf.mixed_precision. experimental.LossScale` in the constructor, and no
        longer has a `LossScale` associated with it. Instead, `Model.compile`
        will automatically wrap the optimizer with a `LossScaleOptimizer` using
        dynamic loss scaling if `Policy.name` is "mixed_float16".
    *   `tf.keras.mixed_precision.LossScaleOptimizer`'s constructor takes in
        different arguments. In particular, it no longer takes in a `LossScale`,
        and there is no longer a `LossScale` associated with the
        `LossScaleOptimizer`. Instead, `LossScaleOptimizer` directly implements
        fixed or dynamic loss scaling. See the documentation of
        [`tf.keras.mixed_precision.experimental.LossScaleOptimizer`](https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/experimental/LossScaleOptimizer?version=nightly)
        for details on the differences between the experimental
        `LossScaleOptimizer` and the new non-experimental `LossScaleOptimizer`.
    *   `tf.mixed_precision.experimental.LossScale` and its subclasses are
        deprecated, as all of its functionality now exists within
        `tf.keras.mixed_precision.LossScaleOptimizer`
### `tf.lite`:
*   `TFLiteConverter`:
    *   Support optional flags `inference_input_type` and
        `inference_output_type` for full integer quantized models. This allows
        users to modify the model input and output type to integer types
        (`tf.int8`, `tf.uint8`) instead of defaulting to float type
        (`tf.float32`).
*   NNAPI
    *   Adds NNAPI Delegation support for requantization use cases by converting
        the operation into a dequantize-quantize pair.
    *   Removes deprecated `Interpreter.setUseNNAPI(boolean)` Java API. Use
        `Interpreter.Options.setUseNNAPI` instead.
    *   Deprecates `Interpreter::UseNNAPI(bool)` C++ API. Use `NnApiDelegate()`
        and related delegate configuration methods directly.
    *   Deprecates `Interpreter::SetAllowFp16PrecisionForFp32(bool)` C++ API.
        Prefer controlling this via delegate options, e.g.
        `tflite::StatefulNnApiDelegate::Options::allow_fp16'
        or`TfLiteGpuDelegateOptionsV2::is_precision_loss_allowed`.
*   GPU
    *   GPU acceleration now supports quantized models by default
*   `DynamicBuffer::AddJoinedString()` will now add a separator if the first
    string to be joined is empty.
*   Adds support for cumulative sum (cumsum), both as builtin op and MLIR
    conversion.
### `TensorRT`
*   Issues a warning when the `session_config` parameter for the TF1 converter
    is used or the `rewrite_config_template` field in the TF2 converter
    parameter object is used.
### TPU Enhancements:
*   Adds support for the `beta` parameter of the FTRL optimizer for TPU
    embeddings. Users of other TensorFlow platforms can implement equivalent
    behavior by adjusting the `l2` parameter.
### XLA Support:
*   xla.experimental.compile is deprecated, use
    `tf.function(experimental_compile=True)` instead.
*   Adds `tf.function.experimental_get_compiler_ir` which returns compiler IR
    (currently 'hlo' and 'optimized_hlo') for given input for given function.
### Security:
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`,
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    *   [CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    *   [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    *   [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193)
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    *   [CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    *   [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195)
*   Fixes several vulnerabilities in `RaggedCountSparseOutput` and
    `SparseCountSparseOutput` operations
    *   [CVE-2020-15196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15196),
    *   [CVE-2020-15197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15197),
    *   [CVE-2020-15198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15198),
    *   [CVE-2020-15199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15199),
    *   [CVE-2020-15200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15200),
    *   [CVE-2020-15201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15201)
*   Fixes an integer truncation vulnerability in code using the work sharder
    API,
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`,
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode,
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`,
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation,
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite,
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite,
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    *   [CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    *   [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    *   [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211)
*   Fixes several vulnerabilities in TFLite implementation of segment sum
    *   [CVE-2020-15212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15212),
    *   [CVE-2020-15213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15213),
    *   [CVE-2020-15214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15214)
*   Fixes a segfault in `tf.quantization.quantize_and_dequantize`,
    ([CVE-2020-15265](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15265))
*   Fixes an undefined behavior float cast causing a crash,
    ([CVE-2020-15266](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15266))
*   Fixes a lack of validation in `tf.raw_ops.DataFormatVecPermute` and
    `tf.raw_ops.DataFormatDimMap` which can cause uninitialized memory access,
    read outside bounds of arrays, data corruption and segmentation faults
    ([CVE-2020-26267](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26267))
*   Fixes a crash caused by writing to read only memory region
    ([CVE-2020-26268](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26268))
*   Fixes a heap out of bounds access in filesystem globbing implementation
    ([CVE-2020-26269](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-26269))
### Other:
*   We have replaced uses of "whitelist" and "blacklist" with "allowlist" and
    "denylist" where possible. Please see
    [this list](https://developers.google.com/style/word-list#blacklist) for
    more context.
*   Adds `tf.config.experimental.mlir_bridge_rollout` which will help us rollout
    the new MLIR TPU bridge.
*   Adds `tf.experimental.register_filesystem_plugin` to load modular filesystem
    plugins from Python
## Thanks to our Contributors
This release contains contributions from many people at Google as well as the
following external contributors:
8bitmp3, aaa.jq, Abhineet Choudhary, Abolfazl Shahbazi, acxz, Adam Hillier,
Adrian Garcia Badaracco, Ag Ramesh, ahmedsabie, Alan Anderson, Alexander Grund,
Alexandre Lissy, Alexey Ivanov, Amedeo Cavallo, anencore94, Aniket Kumar Singh,
Anthony Platanios, Ashwin Phadke, Balint Cristian, Basit Ayantunde, bbbboom, Ben
Barsdell, Benjamin Chetioui, Benjamin Peterson, bhack, Bhanu Prakash Bandaru
Venkata, Biagio Montaruli, Brent M. Spell, bubblebooy, bzhao, cfRod, Cheng Chen,
Cheng(Kit) Chen, Chris Tessum, Christian, chuanqiw, codeadmin_peritiae,
COTASPAR, CuiYifeng, danielknobe, danielyou0230, dannyfriar, daria,
DarrenZhang01, Denisa Roberts, dependabot[bot], Deven Desai, Dmitry Volodin,
Dmitry Zakharov, drebain, Duncan Riach, Eduard Feicho, Ehsan Toosi, Elena
Zhelezina, emlaprise2358, Eugene Kuznetsov, Evaderan-Lab, Evgeniy Polyakov,
Fausto Morales, Felix Johnny, fo40225, Frederic Bastien, Fredrik Knutsson,
fsx950223, Gaurav Singh, Gauri1 Deshpande, George Grzegorz Pawelczak, gerbauz,
Gianluca Baratti, Giorgio Arena, Gmc2, Guozhong Zhuang, Hannes Achleitner,
Harirai, HarisWang, Harsh188, hedgehog91, Hemal Mamtora, Hideto Ueno, Hugh Ku,
Ian Beauregard, Ilya Persky, jacco, Jakub Beránek, Jan Jongboom, Javier Montalt
Tordera, Jens Elofsson, Jerry Shih, jerryyin, jgehw, Jinjing Zhou, jma, jmsmdy,
Johan Nordström, John Poole, Jonah Kohn, Jonathan Dekhtiar, jpodivin, Jung Daun,
Kai Katsumata, Kaixi Hou, Kamil Rakoczy, Kaustubh Maske Patil, Kazuaki Ishizaki,
Kedar Sovani, Koan-Sin Tan, Koki Ibukuro, Krzysztof Laskowski, Kushagra Sharma,
Kushan Ahmadian, Lakshay Tokas, Leicong Li, levinxo, Lukas Geiger, Maderator,
Mahmoud Abuzaina, Mao Yunfei, Marius Brehler, markf, Martin Hwasser, Martin
Kubovčík, Matt Conley, Matthias, mazharul, mdfaijul, Michael137, MichelBr,
Mikhail Startsev, Milan Straka, Ml-0, Myung-Hyun Kim, Måns Nilsson, Nathan
Luehr, ngc92, nikochiko, Niranjan Hasabnis, nyagato_00, Oceania2018, Oleg Guba,
Ongun Kanat, OscarVanL, Patrik Laurell, Paul Tanger, Peter Sobot, Phil Pearl,
PlusPlusUltra, Poedator, Prasad Nikam, Rahul-Kamat, Rajeshwar Reddy T,
redwrasse, Rickard, Robert Szczepanski, Rohan Lekhwani, Sam Holt, Sami Kama,
Samuel Holt, Sandeep Giri, sboshin, Sean Settle, settle, Sharada Shiddibhavi,
Shawn Presser, ShengYang1, Shi,Guangyong, Shuxiang Gao, Sicong Li, Sidong-Wei,
Srihari Humbarwadi, Srinivasan Narayanamoorthy, Steenu Johnson, Steven Clarkson,
stjohnso98, Tamas Bela Feher, Tamas Nyiri, Tarandeep Singh, Teng Lu, Thibaut
Goetghebuer-Planchon, Tim Bradley, Tomasz Strejczek, Tongzhou Wang, Torsten
Rudolf, Trent Lo, Ty Mick, Tzu-Wei Sung, Varghese, Jojimon, Vignesh Kothapalli,
Vishakha Agrawal, Vividha, Vladimir Menshakov, Vladimir Silyaev, VoVAllen, Võ
Văn Nghĩa, wondertx, xiaohong1031, Xiaoming (Jason) Cui, Xinan Jiang, Yair
Ehrenwald, Yasir Modak, Yasuhiro Matsumoto, Yimei Sun, Yiwen Li, Yixing, Yoav
Ramon, Yong Tang, Yong Wu, yuanbopeng, Yunmo Koo, Zhangqiang, Zhou Peng,
ZhuBaohe, zilinzhu, zmx
# Release 2.3.1
## Bug Fixes and Other Changes
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    ([CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193))
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    ([CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195))
*   Fixes several vulnerabilities in `RaggedCountSparseOutput` and
    `SparseCountSparseOutput` operations
    ([CVE-2020-15196](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15196),
    [CVE-2020-15197](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15197),
    [CVE-2020-15198](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15198),
    [CVE-2020-15199](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15199),
    [CVE-2020-15200](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15200),
    [CVE-2020-15201](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15201))
*   Fixes an integer truncation vulnerability in code using the work sharder API
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    ([CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211))
*   Fixes several vulnerabilities in TFLite implementation of segment sum
    ([CVE-2020-15212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15212),
    [CVE-2020-15213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15213),
    [CVE-2020-15214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15214))
*   Updates `sqlite3` to `3.33.00` to handle
    [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358).
*   Fixes deprecated usage of `collections` API
*   Removes `scipy` dependency from `setup.py` since TensorFlow does not need it
    to install the pip package
# Release 2.2.1
## Bug Fixes and Other Changes
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    ([CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193))
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    ([CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195))
*   Fixes an integer truncation vulnerability in code using the work sharder API
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    ([CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211))
*   Fixes several vulnerabilities in TFLite implementation of segment sum
    ([CVE-2020-15212](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15212),
    [CVE-2020-15213](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15213),
    [CVE-2020-15214](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15214))
*   Updates `sqlite3` to `3.33.00` to handle
    [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327),
    [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655),
    [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656),
    [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434),
    [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435),
    [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630),
    [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631),
    [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871),
    and
    [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358).
*   Fixes deprecated usage of `collections` API
*   Removes `scipy` dependency from `setup.py` since TensorFlow does not need it
    to install the pip package
# Release 2.1.2
## Bug Fixes and Other Changes
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    ([CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193))
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    ([CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195))
*   Fixes an integer truncation vulnerability in code using the work sharder API
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    ([CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211))
*   Updates `sqlite3` to `3.33.00` to handle
    [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327),
    [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655),
    [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656),
    [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434),
    [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435),
    [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630),
    [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631),
    [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871),
    and
    [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358).
*   Removes `scipy` dependency from `setup.py` since TensorFlow does not need it
    to install the pip package
*   Switches ROCM builds to use ROCM 3.7
# Release 2.0.3
## Bug Fixes and Other Changes
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    ([CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193))
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    ([CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195))
*   Fixes an integer truncation vulnerability in code using the work sharder API
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    ([CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211))
*   Updates `sqlite3` to `3.33.00` to handle
    [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327),
    [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655),
    [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656),
    [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434),
    [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435),
    [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630),
    [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631),
    [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871),
    and
    [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358).
*   Pins `numpy` to 1.18.5 to prevent ABI breakage when compiling code that uses
    both NumPy and TensorFlow headers.
# Release 1.15.4
## Bug Fixes and Other Changes
*   Fixes an undefined behavior causing a segfault in `tf.raw_ops.Switch`
    ([CVE-2020-15190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15190))
*   Fixes three vulnerabilities in conversion to DLPack format
    ([CVE-2020-15191](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15191),
    [CVE-2020-15192](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15192),
    [CVE-2020-15193](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15193))
*   Fixes two vulnerabilities in `SparseFillEmptyRowsGrad`
    ([CVE-2020-15194](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15194),
    [CVE-2020-15195](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15195))
*   Fixes an integer truncation vulnerability in code using the work sharder API
    ([CVE-2020-15202](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15202))
*   Fixes a format string vulnerability in `tf.strings.as_string`
    ([CVE-2020-15203](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15203))
*   Fixes segfault raised by calling session-only ops in eager mode
    ([CVE-2020-15204](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15204))
*   Fixes data leak and potential ASLR violation from `tf.raw_ops.StringNGrams`
    ([CVE-2020-15205](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15205))
*   Fixes segfaults caused by incomplete `SavedModel` validation
    ([CVE-2020-15206](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15206))
*   Fixes a data corruption due to a bug in negative indexing support in TFLite
    ([CVE-2020-15207](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15207))
*   Fixes a data corruption due to dimension mismatch in TFLite
    ([CVE-2020-15208](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15208))
*   Fixes several vulnerabilities in TFLite saved model format
    ([CVE-2020-15209](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15209),
    [CVE-2020-15210](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15210),
    [CVE-2020-15211](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15211))
*   Updates `sqlite3` to `3.33.00` to handle
    [CVE-2020-9327](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9327),
    [CVE-2020-11655](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11655),
    [CVE-2020-11656](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11656),
    [CVE-2020-13434](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13434),
    [CVE-2020-13435](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13435),
    [CVE-2020-13630](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13630),
    [CVE-2020-13631](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13631),
    [CVE-2020-13871](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13871),
    and
    [CVE-2020-15358](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15358).
*   Fixes #41630 by including `max_seq_length` in CuDNN descriptor cache key
*   Pins `numpy` to 1.18.5 to prevent ABI breakage when compiling code that uses
    both NumPy and TensorFlow headers.
# Release 2.3.0
## Major Features and Improvements
*   `tf.data` adds two new mechanisms to solve input pipeline bottlenecks and
    save resources:
    *   [snapshot](https://www.tensorflow.org/api_docs/python/tf/data/experimental/snapshot)
    *   [tf.data service](https://www.tensorflow.org/api_docs/python/tf/data/experimental/service).
    In addition checkout the detailed
    [guide](https://www.tensorflow.org/guide/data_performance_analysis) for
    analyzing input pipeline performance with TF Profiler.
*   [`tf.distribute.TPUStrategy`](https://www.tensorflow.org/api_docs/python/tf/distribute/TPUStrategy)
    is now a stable API and no longer considered experimental for TensorFlow.
    (earlier `tf.distribute.experimental.TPUStrategy`).
*   [TF Profiler](https://www.tensorflow.org/guide/profiler) introduces two new
    tools: a memory profiler to visualize your model’s memory usage over time
    and a [python tracer](https://www.tensorflow.org/guide/profiler#events)
    which allows you to trace python function calls in your model. Usability
    improvements include better diagnostic messages and
    [profile options](https://tensorflow.org/guide/profiler#collect_performance_data)
    to customize the host and device trace verbosity level.
*   Introduces experimental support for Keras Preprocessing Layers API
    ([`tf.keras.layers.experimental.preprocessing.*`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing?version=nightly))
    to handle data preprocessing operations, with support for composite tensor
    inputs. Please see below for additional details on these layers.
*   TFLite now properly supports dynamic shapes during conversion and inference.
    We’ve also added opt-in support on Android and iOS for
    [XNNPACK](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/delegates/xnnpack),
    a highly optimized set of CPU kernels, as well as opt-in support for
    [executing quantized models on the GPU](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/g3doc/performance/gpu_advanced.md#running-quantized-models-experimental).
*   Libtensorflow packages are available in GCS starting this release. We have
    also started to
    [release a nightly version of these packages](https://github.com/tensorflow/tensorflow#official-builds).
*   The experimental Python API
    [`tf.debugging.experimental.enable_dump_debug_info()`](https://www.tensorflow.org/api_docs/python/tf/debugging/experimental/enable_dump_debug_info)
    now allows you to instrument a TensorFlow program and dump debugging
    information to a directory on the file system. The directory can be read and
    visualized by a new interactive dashboard in TensorBoard 2.3 called
    [Debugger V2](https://www.tensorflow.org/tensorboard/debugger_v2), which
    reveals the details of the TensorFlow program including graph structures,
    history of op executions at the Python (eager) and intra-graph levels, the
    runtime dtype, shape, and numerical composition of tensors, as well as their
    code locations.
## Breaking Changes
*   Increases the **minimum bazel version** required to build TF to **3.1.0**.
*   `tf.data`
    *   Makes the following (breaking) changes to the `tf.data`.
    *   C++ API: - `IteratorBase::RestoreInternal`,
        `IteratorBase::SaveInternal`, and `DatasetBase::CheckExternalState`
        become pure-virtual and subclasses are now expected to provide an
        implementation.
    *   The deprecated `DatasetBase::IsStateful` method is removed in favor of
        `DatasetBase::CheckExternalState`.
    *   Deprecated overrides of `DatasetBase::MakeIterator` and
        `MakeIteratorFromInputElement` are removed.
    *   The signature of `tensorflow::data::IteratorBase::SaveInternal` and
        `tensorflow::data::IteratorBase::SaveInput` has been extended with
        `SerializationContext` argument to enable overriding the default policy
        for the handling external state during iterator checkpointing. This is
        not a backwards compatible change and all subclasses of `IteratorBase`
        *need to be updated* accordingly.
*   `tf.keras`
    *   Add a new `BackupAndRestore` callback for handling distributed training
        failures & restarts. Please take a look at this
        [tutorial](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras)
        for details on how to use the callback.
*   `tf.image.extract_glimpse` has been updated to correctly process the case
    where `centered=False` and `normalized=False`. This is a breaking change as
    the output is different from (incorrect) previous versions. Note this
    breaking change only impacts `tf.image.extract_glimpse` and
    `tf.compat.v2.image.extract_glimpse` API endpoints. The behavior of
    `tf.compat.v1.image.extract_glimpse` does not change. The behavior of
    existing C++ kernel `ExtractGlimpse` does not change either, so saved models
    using `tf.raw_ops.ExtractGlimpse` will not be impacted.
## Known Caveats
*   `tf.lite`
    *   Keras-based LSTM models must be converted with an explicit batch size in
        the input layer.
## Bug Fixes and Other Changes
### TF Core:
*   Set `tf2_behavior` to 1 to enable V2 for early loading cases.
*   Add `execute_fn_for_device function` to dynamically choose the
    implementation based on underlying device placement.
*   Eager:
    *   Add `reduce_logsumexp` benchmark with experiment compile.
    *   Give `EagerTensor`s a meaningful `__array__` implementation.
    *   Add another version of defun matmul for performance analysis.
*   `tf.function`/AutoGraph:
    *   `AutoGraph` now includes into TensorFlow loops any variables that are
        closed over by local functions. Previously, such variables were
        sometimes incorrectly ignored.
    *   functions returned by the `get_concrete_function` method of
        `tf.function` objects can now be called with arguments consistent with
        the original arguments or type specs passed to `get_concrete_function`.
        This calling convention is now the preferred way to use concrete
        functions with nested values and composite tensors. Please check the
        [guide](https://www.tensorflow.org/guide/concrete_function) for more
        details on `concrete_ function`.
    *   Update `tf.function`'s `experimental_relax_shapes` to handle composite
        tensors appropriately.
    *   Optimize `tf.function` invocation, by removing redundant list converter.
    *   `tf.function` will retrace when called with a different variable instead
        of simply using the `dtype` & `shape`.
    *   [Improve support](https://github.com/tensorflow/tensorflow/issues/33862)
        for dynamically-sized TensorArray inside `tf.function`.
*   `tf.math`:
    *   Narrow down `argmin`/`argmax` contract to always return the smallest
        index for ties.
    *   `tf.math.reduce_variance` and `tf.math.reduce_std` return correct
        computation for complex types and no longer support integer types.
    *   Add Bessel functions of order 0,1 to `tf.math.special`.
    *   `tf.divide` now always returns a tensor to be consistent with
        documentation and other APIs.
*   `tf.image`:
    *   Replaced
        [`tf.image.non_max_suppression_padded`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/image/non_max_suppression_padded?hl=en)
        with a new implementation that supports batched inputs, which is
        considerably faster on TPUs and GPUs. Boxes with area=0 will be ignored.
        Existing usage with single inputs should still work as before.
*   `tf.linalg`
    *   Add `tf.linalg.banded_triangular_solve`.
*   `tf.random`:
    *   Add `tf.random.stateless_parameterized_truncated_normal`.
*   `tf.ragged`:
    *   Add `tf.ragged.cross` and `tf.ragged.cross_hashed` operations.
*   `tf.RaggedTensor`:
    *   `RaggedTensor.to_tensor()` now preserves static shape.
    *   Add `tf.strings.format()` and `tf.print()` to support RaggedTensors.
*   `tf.saved_model`:
    *   `@tf.function` from SavedModel no longer ignores args after a
        `RaggedTensor` when selecting the concrete function to run.
    *   Fix save model issue for ops with a list of functions.
    *   Add `tf.saved_model.LoadOptions` with
        [`experimental_io_device`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/saved_model/LoadOptions?hl=en)
        as arg with default value `None` to choose the I/O device for loading
        models and weights.
    *   Update `tf.saved_model.SaveOptions` with
        [`experimental_io_device`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/saved_model/SaveOptions?hl=en)
        as arg with default value `None` to choose the I/O device for saving
        models and weights.
    *   Mutable tables now restore checkpointed values when loaded from
        SavedModel.
    *   The user object metadata field in the SavedModel proto has been
        deprecated as part of the updates to Keras SavedModel. Keras was the
        only consumer of this field prior to the update.
*   GPU
    *   TF 2.3 includes PTX kernels only for
        [compute capability](https://developer.nvidia.com/cuda-gpus) 7.0 to
        reduce the TF pip binary size. Earlier releases included PTX for a
        variety of older compute capabilities.
    *   Remove environmental variable `TF_USE_CUDNN`.
*   Others
    *   Retain parent namescope for ops added inside
        `tf.while_loop`/`tf.cond`/`tf.switch_case`.
    *   Update `tf.vectorized_map` to support vectorizing `tf.while_loop` and
        TensorList operations.
    *   `tf.custom_gradient` can now be applied to functions that accept nested
        structures of `tensors` as inputs (instead of just a list of tensors).
        Note that Python structures such as tuples and lists now won't be
        treated as tensors, so if you still want them to be treated that way,
        you need to wrap them with `tf.convert_to_tensor`.
    *   No lowering on gradient case op when input is `DeviceIndex` op.
    *   Extend the ragged version of `tf.gather` to support `batch_dims` and
        `axis` args.
    *   Update `tf.map_fn` to support RaggedTensors and SparseTensors.
    *   Deprecate `tf.group`. It is not useful in eager mode.
    *   Add CPU and GPU implementation of modified variation of
        [`FTRL`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/ApplyFtrl)/[`FTRLV2`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/ApplyFtrlV2)
        that can triggerred by `multiply_linear_by_lr` allowing a learning rate
        of zero.
### `tf.data`:
*   `tf.data.experimental.dense_to_ragged_batch` works correctly with tuples.
*   `tf.data.experimental.dense_to_ragged_batch` to output variable ragged rank.
*   `tf.data.experimental.cardinality` is now a method on `tf.data.Dataset`.
*   `tf.data.Dataset` now supports `len(Dataset)` when the cardinality is
    finite.
### `tf.distribute`:
*   Expose experimental
    [`tf.distribute.DistributedDataset`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/DistributedDataset?hl=en)
    and
    [`tf.distribute.DistributedIterator`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/DistributedIterator)
    to distribute input data when using `tf.distribute` to scale training on
    multiple devices.
    *   Added a
        [`get_next_as_optional`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/DistributedIterator?hl=en#get_next_as_optional)
        method for
        [`tf.distribute.DistributedIterator`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/DistributedIterator?hl=en)
        class to return a `tf.experimental.Optional` instance that contains the
        next value for all replicas or none instead of raising an out of range
        error. Also see *new*
        [guide on input distribution](https://www.tensorflow.org/tutorials/distribute/input).
*   Allow var.assign on MirroredVariables with aggregation=NONE in replica
    context. Previously this would raise an error. We now allow this because
    many users and library writers find using `.assign` in replica context to be
    more convenient, instead of having to use `Strategy.extended.update` which
    was the previous way of updating variables in this situation.
*   `tf.distribute.experimental.MultiWorkerMirroredStrategy` adds support for
    partial batches. Workers running out of data now continue to participate in
    the training with empty inputs, instead of raising an error. Learn more
    about
    [partial batches here](https://www.tensorflow.org/tutorials/distribute/input#partial_batches).
*   Improve the performance of reading metrics eagerly under
    `tf.distribute.experimental.MultiWorkerMirroredStrategy`.
*   Fix the issue that `strategy.reduce()` inside `tf.function` may raise
    exceptions when the values to reduce are from loops or if-clauses.
*   Fix the issue that `tf.distribute.MirroredStrategy` cannot be used together
    with `tf.distribute.experimental.MultiWorkerMirroredStrategy`.
*   Add a `tf.distribute.cluster_resolver.TPUClusterResolver.connect` API to
    simplify TPU initialization.
*   Add `tf.distribute.Strategy.gather` and
    `tf.distribute.ReplicaContext.all_gather` methods to gather and concatenate
    `tf.distribute.DistributedValues` across workers and devices.
### `tf.keras`:
*   Introduces experimental preprocessing layers API
    (`tf.keras.layers.experimental.preprocessing`) to handle data preprocessing
    operations such as categorical feature encoding, text vectorization, data
    normalization, and data discretization (binning). The newly added layers
    provide a replacement for the legacy feature column API, and support
    composite tensor inputs.
*   Added **categorical data** processing layers:
    *   `IntegerLookup` & `StringLookup`: build an index of categorical feature
        values
    *   `CategoryEncoding`: turn integer-encoded categories into one-hot,
        multi-hot, or tf-idf encoded representations
    *   `CategoryCrossing`: create new categorical features representing
        co-occurrences of previous categorical feature values
    *   `Hashing`: the hashing trick, for large-vocabulary categorical features
    *   `Discretization`: turn continuous numerical features into categorical
        features by binning their values
*   Improved **image preprocessing** layers: `CenterCrop`, `Rescaling`
*   Improved **image augmentation** layers: `RandomCrop`, `RandomFlip`,
    `RandomTranslation`, `RandomRotation`, `RandomHeight`, `RandomWidth`,
    `RandomZoom`, `RandomContrast`
*   Improved **`TextVectorization`** layer, which handles string tokenization,
    n-gram generation, and token encoding
    *   The `TextVectorization` layer now accounts for the mask_token as part of
        the vocabulary size when output_mode='int'. This means that, if you have
        a max_tokens value of 5000, your output will have 5000 unique values
        (not 5001 as before).
    *   Change the return value of `TextVectorization.get_vocabulary()` from
        `byte` to `string`. Users who previously were calling 'decode' on the
        output of this method should no longer need to do so.
*   Introduce new Keras dataset generation utilities :
    *   **[`image_dataset_from_directory`](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image_dataset_from_directory)**
        is a utility based on `tf.data.Dataset`, meant to replace the legacy
        `ImageDataGenerator`. It takes you from a structured directory of images
        to a labeled dataset, in one function call. Note that it doesn't perform
        image data augmentation (which is meant to be done using preprocessing
        layers).
    *   **[`text_dataset_from_directory`](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text_dataset_from_directory)**
        takes you from a structured directory of text files to a labeled
        dataset, in one function call.
    *   **[`timeseries_dataset_from_array`](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/timeseries_dataset_from_array)**
        is a `tf.data.Dataset`-based replacement of the legacy
        `TimeseriesGenerator`. It takes you from an array of timeseries data to
        a dataset of shifting windows with their targets.
*   Added
    [`experimental_steps_per_execution`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/Model?hl=en#compile)
    arg to `model.compile` to indicate the number of batches to run per
    `tf.function` call. This can speed up Keras Models on TPUs up to 3x.
*   Extends `tf.keras.layers.Lambda` layers to support multi-argument lambdas,
    and keyword arguments when calling the layer.
*   Functional models now get constructed if *any* tensor in a layer call's
    arguments/keyword arguments comes from a keras input. Previously the
    functional api would only work if all of the elements in the first argument
    to the layer came from a keras input.
*   Clean up `BatchNormalization` layer's `trainable` property to act like
    standard python state when it's used inside `tf.functions` (frozen at
    tracing time), instead of acting like a pseudo-variable whose updates *kind
    of sometimes* get reflected in already-traced `tf.function` traces.
*   Add the `Conv1DTranspose` layer.
*   Refine the semantics of `SensitivitySpecificityBase` derived metrics. See
    the updated API docstrings for
    [`tf.keras.metrics.SensitivityAtSpecificity`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/metrics/SensitivityAtSpecificity)
    and
    [`tf.keras.metrics.SpecificityAtSensitivty`](https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/metrics/SpecificityAtSensitivity).
### `tf.lite`:
*   Converter
    *   Restored `inference_input_type` and `inference_output_type` flags in TF
        2.x TFLiteConverter (backward compatible with TF 1.x) to support integer
        (tf.int8, tf.uint8) input and output types in post training full integer
        quantized models.
    *   Added support for converting and resizing models with dynamic
        (placeholder) dimensions. Previously, there was only limited support for
        dynamic batch size, and even that did not guarantee that the model could
        be properly resized at runtime.
        *   Enabled experimental support for a new quantization mode with 16-bit
            activations and 8-bit weights. See
            `lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8`.
*   CPU
    *   Fix an issue w/ dynamic weights and `Conv2D` on x86.
    *   Add a runtime Android flag for enabling `XNNPACK` for optimized CPU
        performance.
    *   Add a runtime iOS flag for enabling `XNNPACK` for optimized CPU
        performance.
    *   Add a compiler flag to enable building a TFLite library that applies
        `XNNPACK` delegate automatically when the model has a `fp32` operation.
*   GPU
    *   Allow GPU acceleration starting with internal graph nodes
    *   Experimental support for quantized models with the Android GPU delegate
    *   Add GPU delegate whitelist.
    *   Rename GPU whitelist -> compatibility (list).
    *   Improve GPU compatibility list entries from crash reports.
*   NNAPI
    *   Set default value for
        `StatefulNnApiDelegate::Options::max_number_delegated_partitions` to 3.
    *   Add capability to disable `NNAPI` CPU and check `NNAPI` Errno.
    *   Fix crashes when using `NNAPI` with target accelerator specified with
        model containing Conv2d or FullyConnected or LSTM nodes with quantized
        weights.
    *   Fix `ANEURALNETWORKS_BAD_DATA` execution failures with
        `sum`/`max`/`min`/`reduce` operations with `scalar` inputs.
*   Hexagon
    *   TFLite Hexagon Delegate out of experimental.
    *   Experimental `int8` support for most hexagon ops.
    *   Experimental per-channel quant support for `conv` in Hexagon delegate.
    *   Support dynamic batch size in C++ API.
*   CoreML
    *   Opensource CoreML delegate
*   Misc
    *   Enable building Android TFLite targets on Windows
    *   Add support for `BatchMatMul`.
    *   Add support for `half_pixel_centers` with `ResizeNearestNeighbor`.
    *   Add 3D support for `BatchToSpaceND`.
    *   Add 5D support for `BroadcastSub`, `Maximum`, `Minimum`, `Transpose` and
        `BroadcastDiv`.
    *   Rename `kTfLiteActRelu1` to `kTfLiteActReluN1To1`.
    *   Enable flex delegate on tensorflow.lite.Interpreter Python package.
    *   Add `Buckettize`, `SparseCross` and `BoostedTreesBucketize` to the flex
        whitelist.
    *   Add support for selective registration of flex ops.
    *   Add missing kernels for flex delegate whitelisted ops.
    *   Fix issue when using direct `ByteBuffer` inputs with graphs that have
        dynamic shapes.
    *   Fix error checking supported operations in a model containing
        `HardSwish`.
### Packaging Support
*   Added `tf.sysconfig.get_build_info()`. Returns a dict that describes the
    build environment of the currently installed TensorFlow package, e.g. the
    NVIDIA CUDA and NVIDIA CuDNN versions used when TensorFlow was built.
### Profiler
*   Fix a subtle use-after-free issue in `XStatVisitor::RefValue()`.
### TPU Enhancements
*   Adds 3D mesh support in TPU configurations ops.
*   Added TPU code for `FTRL` with `multiply_linear_by_lr`.
*   Silently adds a new file system registry at `gstpu`.
*   Support `restartType` in cloud tpu client.
*   Depend on a specific version of google-api-python-client.
*   Fixes apiclient import.
### Tracing and Debugging
*   Add a `TFE_Py_Execute` traceme.
### XLA Support
*   Implement stable `argmin` and `argmax`
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
902449@58880@bigcat_chen@ASIC, Abdul Baseer Khan, Abhineet Choudhary, Abolfazl
Shahbazi, Adam Hillier, ag.ramesh, Agoniii, Ajay P, Alex Hoffman, Alexander
Bayandin, Alexander Grund, Alexandre Abadie, Alexey Rogachevskiy, amoitra,
Andrew Stevens, Angus-Luo, Anshuman Tripathy, Anush Elangovan, Artem Mavrin,
Ashutosh Hathidara, autoih, Ayushman Kumar, ayushmankumar7, Bairen Yi, Bas
Aarts, Bastian Eichenberger, Ben Barsdell, bhack, Bharat Raghunathan, Biagio
Montaruli, Bigcat-Himax, blueyi, Bryan Cutler, Byambaa, Carlos
Hernandez-Vaquero, Chen Lei, Chris Knorowski, Christian Clauss, chuanqiw,
CuiYifeng, Daniel Situnayake, Daria Zhuravleva, Dayananda-V, Deven Desai, Devi
Sandeep Endluri, Dmitry Zakharov, Dominic Jack, Duncan Riach, Edgar Liberis,
Ehsan Toosi, ekuznetsov139, Elena Zhelezina, Eugene Kuznetsov, Eugene
Mikhantiev, Evgenii Zheltonozhskii, Fabio Di Domenico, Fausto Morales, Fei Sun,
feihugis, Felix E. Klee, flyingcat, Frederic Bastien, Fredrik Knutsson, frreiss,
fsx950223, ganler, Gaurav Singh, Georgios Pinitas, Gian Marco Iodice, Giorgio
Arena, Giuseppe Rossini, Gregory Keith, Guozhong Zhuang, gurushantj, Hahn
Anselm, Harald Husum, Harjyot Bagga, Hristo Vrigazov, Ilya Persky, Ir1d, Itamar
Turner-Trauring, jacco, Jake Tae, Janosh Riebesell, Jason Zaman, jayanth, Jeff
Daily, Jens Elofsson, Jinzhe Zeng, JLZ, Jonas Skog, Jonathan Dekhtiar, Josh
Meyer, Joshua Chia, Judd, justkw, Kaixi Hou, Kam D Kasravi, Kamil Rakoczy, Karol
Gugala, Kayou, Kazuaki Ishizaki, Keith Smiley, Khaled Besrour, Kilaru Yasaswi
Sri Chandra Gandhi, Kim, Young Soo, Kristian Hartikainen, Kwabena W. Agyeman,
Leslie-Fang, Leslie-Fang-Intel, Li, Guizi, Lukas Geiger, Lutz Roeder, M\U00E5Ns
Nilsson, Mahmoud Abuzaina, Manish, Marcel Koester, Marcin Sielski, marload,
Martin Jul, Matt Conley, mdfaijul, Meng, Peng, Meteorix, Michael Käufl,
Michael137, Milan Straka, Mitchell Vitez, Ml-0, Mokke Meguru, Mshr-H, nammbash,
Nathan Luehr, naumkin, Neeraj Bhadani, ngc92, Nick Morgan, nihui, Niranjan
Hasabnis, Niranjan Yadla, Nishidha Panpaliya, Oceania2018, oclyke, Ouyang Jin,
OverLordGoldDragon, Owen Lyke, Patrick Hemmer, Paul Andrey, Peng Sun,
periannath, Phil Pearl, Prashant Dandriyal, Prashant Kumar, Rahul Huilgol, Rajan
Singh, Rajeshwar Reddy T, rangjiaheng, Rishit Dagli, Rohan Reddy, rpalakkal,
rposts, Ruan Kunliang, Rushabh Vasani, Ryohei Ikegami, Semun Lee, Seo-Inyoung,
Sergey Mironov, Sharada Shiddibhavi, ShengYang1, Shraiysh Vaishay, Shunya Ueta,
shwetaoj, Siyavash Najafzade, Srinivasan Narayanamoorthy, Stephan Uphoff,
storypku, sunchenggen, sunway513, Sven-Hendrik Haase, Swapnil Parekh, Tamas Bela
Feher, Teng Lu, tigertang, tomas, Tomohiro Ubukata, tongxuan.ltx, Tony Tonev,
Tzu-Wei Huang, Téo Bouvard, Uday Bondhugula, Vaibhav Jade, Vijay Tadikamalla,
Vikram Dattu, Vincent Abriou, Vishnuvardhan Janapati, Vo Van Nghia, VoVAllen,
Will Battel, William D. Irons, wyzhao, Xiaoming (Jason) Cui, Xiaoquan Kong,
Xinan Jiang, xutianming, Yair Ehrenwald, Yasir Modak, Yasuhiro Matsumoto, Yixing
Fu, Yong Tang, Yuan Tang, zhaozheng09, Zilin Zhu, zilinzhu, 张志豪
# Release 2.1.1
## Bug Fixes and Other Changes
*   Updates `sqlite3` to `3.31.01` to handle
    [CVE-2019-19880](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19880),
    [CVE-2019-19244](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19244)
    and
    [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645)
*   Updates `curl` to `7.69.1` to handle
    [CVE-2019-15601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15601)
*   Updates `libjpeg-turbo` to `2.0.4` to handle
    [CVE-2018-19664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19664),
    [CVE-2018-20330](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20330)
    and
    [CVE-2019-13960](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13960)
*   Updates Apache Spark to `2.4.5` to handle
    [CVE-2019-10099](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10099),
    [CVE-2018-17190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17190)
    and
    [CVE-2018-11770](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11770)
*   Fixes a versioning bug which causes Keras layers from TF 1.x to be used
    instead of those from TF 2.x
# Release 2.0.2
## Bug Fixes and Other Changes
*   Updates `sqlite3` to `3.31.01` to handle
    [CVE-2019-19880](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19880),
    [CVE-2019-19244](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19244)
    and
    [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645)
*   Updates `curl` to `7.69.1` to handle
    [CVE-2019-15601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15601)
*   Updates `libjpeg-turbo` to `2.0.4` to handle
    [CVE-2018-19664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19664),
    [CVE-2018-20330](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20330)
    and
    [CVE-2019-13960](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13960)
*   Updates Apache Spark to `2.4.5` to handle
    [CVE-2019-10099](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10099),
    [CVE-2018-17190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17190)
    and
    [CVE-2018-11770](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11770)
# Release 1.15.3
## Bug Fixes and Other Changes
*   Updates `sqlite3` to `3.31.01` to handle
    [CVE-2019-19880](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19880),
    [CVE-2019-19244](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19244)
    and
    [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645)
*   Updates `curl` to `7.69.1` to handle
    [CVE-2019-15601](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15601)
*   Updates `libjpeg-turbo` to `2.0.4` to handle
    [CVE-2018-19664](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19664),
    [CVE-2018-20330](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20330)
    and
    [CVE-2019-13960](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13960)
*   Updates Apache Spark to `2.4.5` to handle
    [CVE-2019-10099](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10099),
    [CVE-2018-17190](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17190)
    and
    [CVE-2018-11770](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11770)
# Release 2.2.0
TensorFlow 2.2 discontinues support for Python 2,
[previously announced](https://groups.google.com/a/tensorflow.org/d/msg/announce/gVwS5RC8mds/dCt1ka2XAAAJ)
as following
[Python 2's EOL on January 1, 2020](https://www.python.org/dev/peps/pep-0373/#update).
Coinciding with this change, new releases of
[TensorFlow's Docker images](https://hub.docker.com/r/tensorflow/tensorflow/)
provide Python 3 exclusively. Because all images now use Python 3, Docker tags
containing `-py3` will no longer be provided and existing `-py3` tags like
`latest-py3` will not be updated.
## Major Features and Improvements
*   Replaced the scalar type for string tensors from `std::string` to
    `tensorflow::tstring` which is now ABI stable.
*   A new Profiler for TF 2 for CPU/GPU/TPU. It offers both device and host
    performance analysis, including input pipeline and TF Ops. Optimization
    advisory is provided whenever possible. Please see
    [this tutorial](https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras)
    and [guide](https://www.tensorflow.org/guide/profiler) for usage guidelines.
*   Export C++ functions to Python using `pybind11` as opposed to `SWIG` as a
    part of our
    [deprecation of swig efforts](https://github.com/tensorflow/community/blob/master/rfcs/20190208-pybind11.md).
*   `tf.distribute`:
    *   Support added for global sync `BatchNormalization` by using the newly
        added `tf.keras.layers.experimental.SyncBatchNormalization` layer. This
        layer will sync `BatchNormalization` statistics every step across all
        replicas taking part in sync training.
    *   Performance improvements for GPU multi-worker distributed training using
        `tf.distribute.experimental.MultiWorkerMirroredStrategy`
    *   Update NVIDIA `NCCL` to `2.5.7-1` for better performance and performance
        tuning. Please see
        [nccl developer guide](https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/env.html)
        for more information on this.
    *   Support gradient `allreduce` in `float16`. See this
        [example](https://github.com/tensorflow/models/blob/master/official/modeling/grad_utils.py)
        usage.
    *   Experimental support of
        [all reduce gradient packing](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/CollectiveHints)
        to allow overlapping gradient aggregation with backward path
        computation.
    *   Deprecated `experimental_run_v2` method for distribution strategies and
        renamed the method `run` as it is no longer experimental.
    *   Add CompositeTensor support for DistributedIterators. This should help
        prevent unnecessary function retracing and memory leaks.
*   `tf.keras`:
    *   `Model.fit` major improvements:
        *   You can now use custom training logic with `Model.fit` by overriding
            `Model.train_step`.
        *   Easily write state-of-the-art training loops without worrying about
            all of the features `Model.fit` handles for you (distribution
            strategies, callbacks, data formats, looping logic, etc)
        *   See the default
            [`Model.train_step`](https://github.com/tensorflow/tensorflow/blob/1381fc8e15e22402417b98e3881dfd409998daea/tensorflow/python/keras/engine/training.py#L540)
            for an example of what this function should look like. Same applies
            for validation and inference via `Model.test_step` and
            `Model.predict_step`.
        *   SavedModel uses its own `Model._saved_model_inputs_spec` attr now
            instead of relying on `Model.inputs` and `Model.input_names`, which
            are no longer set for subclass Models. This attr is set in eager,
            `tf.function`, and graph modes. This gets rid of the need for users
            to manually call `Model._set_inputs` when using Custom Training
            Loops(CTLs).
        *   Dynamic shapes are supported for generators by calling the Model on
            the first batch we "peek" from the generator. This used to happen
            implicitly in `Model._standardize_user_data`. Long-term, a solution
            where the `DataAdapter` doesn't need to call the Model is probably
            preferable.
    *   The SavedModel format now supports all Keras built-in layers (including
        metrics, preprocessing layers, and stateful RNN layers)
    *   Update Keras batch normalization layer to use the running mean and
        average computation in the `fused_batch_norm`. You should see
        significant performance improvements when using `fused_batch_norm` in
        Eager mode.
*   `tf.lite`:
    *   Enable TFLite experimental new converter by default.
*   XLA
    *   XLA now builds and works on windows. All prebuilt packages come with XLA
        available.
    *   XLA can be
        [enabled for a `tf.function`](https://www.tensorflow.org/xla#explicit_compilation_with_tffunction)
        with “compile or throw exception” semantics on CPU and GPU.
## Breaking Changes
*   `tf.keras`:
    *   In `tf.keras.applications` the name of the "top" layer has been
        standardized to "predictions". This is only a problem if your code
        relies on the exact name of the layer.
    *   Huber loss function has been updated to be consistent with other Keras
        losses. It now computes mean over the last axis of per-sample losses
        before applying the reduction function.
*   AutoGraph no longer converts functions passed to `tf.py_function`,
    `tf.py_func` and `tf.numpy_function`.
*   Deprecating `XLA_CPU` and `XLA_GPU` devices with this release.
*   Increasing the minimum bazel version to build TF to 2.0.0 to use Bazel's
    `cc_experimental_shared_library`.
*   Keras compile/fit behavior for functional and subclassed models have been
    unified. Model properties such as `metrics`, `metrics_names` will now be
    available only after **training/evaluating the model on actual data** for
    functional models. `metrics` will **now include** model `loss` and output
    losses.`loss_functions` property has been removed from the model. This was
    an undocumented property that was accidentally public and has now been
    removed.
## Known Caveats
*   The current TensorFlow release now **requires**
    [gast](https://pypi.org/project/gast/) version 0.3.3.
## Bug Fixes and Other Changes
*   `tf.data`:
    *   Removed `autotune_algorithm` from experimental optimization options.
*   TF Core:
    *   `tf.constant` always creates CPU tensors irrespective of the current
        device context.
    *   Eager `TensorHandles` maintain a list of mirrors for any copies to local
        or remote devices. This avoids any redundant copies due to op execution.
    *   For `tf.Tensor` & `tf.Variable`, `.experimental_ref()` is no longer
        experimental and is available as simply `.ref()`.
    *   `pfor/vectorized_map`: Added support for vectorizing 56 more ops.
        Vectorizing `tf.cond` is also supported now.
    *   Set as much partial shape as we can infer statically within the gradient
        impl of the gather op.
    *   Gradient of `tf.while_loop` emits `StatelessWhile` op if `cond` and body
        functions are stateless. This allows multiple gradients while ops to run
        in parallel under distribution strategy.
    *   Speed up `GradientTape` in eager mode by auto-generating list of op
        inputs/outputs which are unused and hence not cached for gradient
        functions.
    *   Support `back_prop=False` in `while_v2` but mark it as deprecated.
    *   Improve error message when attempting to use `None` in data-dependent
        control flow.
    *   Add `RaggedTensor.numpy()`.
    *   Update `RaggedTensor.__getitem__` to preserve uniform dimensions & allow
        indexing into uniform dimensions.
    *   Update `tf.expand_dims` to always insert the new dimension as a
        non-ragged dimension.
    *   Update `tf.embedding_lookup` to use `partition_strategy` and `max_norm`
        when `ids` is ragged.
    *   Allow `batch_dims==rank(indices)` in `tf.gather`.
    *   Add support for bfloat16 in `tf.print`.
*   `tf.distribute`:
    *   Support `embedding_column` with variable-length input features for
        `MultiWorkerMirroredStrategy`.
*   `tf.keras`:
    *   Added `experimental_aggregate_gradients` argument to
        `tf.keras.optimizer.Optimizer.apply_gradients`. This allows custom
        gradient aggregation and processing aggregated gradients in custom
        training loop.
    *   Allow `pathlib.Path` paths for loading models via Keras API.
*   `tf.function`/AutoGraph:
    *   AutoGraph is now available in `ReplicaContext.merge_call`,
        `Strategy.extended.update` and `Strategy.extended.update_non_slot`.
    *   Experimental support for shape invariants has been enabled in
        `tf.function`. See the API docs for
        `tf.autograph.experimental.set_loop_options` for additional info.
    *   AutoGraph error messages now exclude frames corresponding to APIs
        internal to AutoGraph.
    *   Improve shape inference for `tf.function` input arguments to unlock more
        Grappler optimizations in TensorFlow 2.x.
    *   Improve automatic control dependency management of resources by allowing
        resource reads to occur in parallel and synchronizing only on writes.
    *   Fix execution order of multiple stateful calls to `experimental_run_v2`
        in `tf.function`.
    *   You can now iterate over `RaggedTensors` using a for loop inside
        `tf.function`.
*   `tf.lite`:
    *   Migrated the `tf.lite` C inference API out of experimental into lite/c.
    *   Add an option to disallow `NNAPI` CPU / partial acceleration on Android
        10
    *   TFLite Android AARs now include the C headers and APIs are required to
        use TFLite from native code.
    *   Refactors the delegate and delegate kernel sources to allow usage in the
        linter.
    *   Limit delegated ops to actually supported ones if a device name is
        specified or `NNAPI` CPU Fallback is disabled.
    *   TFLite now supports `tf.math.reciprocal1` op by lowering to `tf.div op`.
    *   TFLite's unpack op now supports boolean tensor inputs.
    *   Microcontroller and embedded code moved from experimental to main
        TensorFlow Lite folder
    *   Check for large TFLite tensors.
    *   Fix GPU delegate crash with C++17.
    *   Add 5D support to TFLite `strided_slice`.
    *   Fix error in delegation of `DEPTH_TO_SPACE` to `NNAPI` causing op not to
        be accelerated.
    *   Fix segmentation fault when running a model with LSTM nodes using
        `NNAPI` Delegate
    *   Fix `NNAPI` delegate failure when an operand for Maximum/Minimum
        operation is a scalar.
    *   Fix `NNAPI` delegate failure when Axis input for reduce operation is a
        scalar.
    *   Expose option to limit the number of partitions that will be delegated
        to `NNAPI`.
    *   If a target accelerator is specified, use its feature level to determine
        operations to delegate instead of SDK version.
*   `tf.random`:
    *   Various random number generation improvements:
    *   Add a fast path for default `random_uniform`
    *   `random_seed` documentation improvement.
    *   `RandomBinomial` broadcasts and appends the sample shape to the left
        rather than the right.
    *   Added `tf.random.stateless_binomial`, `tf.random.stateless_gamma`,
        `tf.random.stateless_poisson`
    *   `tf.random.stateless_uniform` now supports unbounded sampling of `int`
        types.
*   Math and Linear Algebra:
    *   Add `tf.linalg.LinearOperatorTridiag`.
    *   Add `LinearOperatorBlockLowerTriangular`
    *   Add broadcasting support to
        tf.linalg.triangular_solve[#26204](https://github.com/tensorflow/tensorflow/issues/26204),
        tf.math.invert_permutation.
    *   Add `tf.math.sobol_sample` op.
    *   Add `tf.math.xlog1py`.
    *   Add `tf.math.special.{dawsn,expi,fresnel_cos,fresnel_sin,spence}`.
    *   Add a Modified Discrete Cosine Transform (MDCT) and its inverse to
        `tf.signal`.
*   TPU Enhancements:
    *   Refactor `TpuClusterResolver` to move shared logic to a separate pip
        package.
    *   Support configuring TPU software version from cloud tpu client.
    *   Allowed TPU embedding weight decay factor to be multiplied by learning
        rate.
*   XLA Support:
    *   Add standalone XLA AOT runtime target + relevant .cc sources to pip
        package.
    *   Add check for memory alignment to MemoryAllocation::MemoryAllocation()
        on 32-bit ARM. This ensures a deterministic early exit instead of a hard
        to debug bus error later.
    *   `saved_model_cli aot_compile_cpu` allows you to compile saved models to
        XLA header+object files and include them in your C++ programs.
    *   Enable `Igamma`, `Igammac` for XLA.
*   Deterministic Op Functionality:
    *   XLA reduction emitter is deterministic when the environment variable
        `TF_DETERMINISTIC_OPS` is set to "true" or "1". This extends
        deterministic `tf.nn.bias_add` back-prop functionality (and therefore
        also deterministic back-prop of bias-addition in Keras layers) to
        include when XLA JIT compilation is enabled.
    *   Fix problem, when running on a CUDA GPU and when either environment
        variable `TF_DETERMINISTIC_OPS` or environment variable
        `TF_CUDNN_DETERMINISTIC` is set to "true" or "1", in which some layer
        configurations led to an exception with the message "No algorithm
        worked!"
*   Tracing and Debugging:
    *   Add source, destination name to `_send` traceme to allow easier
        debugging.
    *   Add traceme event to `fastpathexecute`.
*   Other:
    *   Fix an issue with AUC.reset_states for multi-label AUC
        [#35852](https://github.com/tensorflow/tensorflow/issues/35852)
    *   Fix the TF upgrade script to not delete files when there is a parsing
        error and the output mode is `in-place`.
    *   Move `tensorflow/core:framework/*_pyclif` rules to
        `tensorflow/core/framework:*_pyclif`.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
372046933, 8bitmp3, aaronhma, Abin Shahab, Aditya Patwardhan, Agoniii, Ahti
Kitsik, Alan Yee, Albin Joy, Alex Hoffman, Alexander Grund, Alexandre E.
Eichenberger, Amit Kumar Jaiswal, amoitra, Andrew Anderson, Angus-Luo, Anthony
Barbier, Anton Kachatkou, Anuj Rawat, archis, Arpan-Dhatt, Arvind Sundararajan,
Ashutosh Hathidara, autoih, Bairen Yi, Balint Cristian, Bas Aarts, BashirSbaiti,
Basit Ayantunde, Ben Barsdell, Benjamin Gaillard, boron, Brett Koonce, Bryan
Cutler, Christian Goll, Christian Sachs, Clayne Robison, comet, Daniel Falbel,
Daria Zhuravleva, darsh8200, David Truby, Dayananda-V, deepakm, Denis Khalikov,
Devansh Singh, Dheeraj R Reddy, Diederik Van Liere, Diego Caballero, Dominic
Jack, dothinking, Douman, Drake Gens, Duncan Riach, Ehsan Toosi, ekuznetsov139,
Elena Zhelezina, elzino, Ending2015a, Eric Schweitz, Erik Zettel, Ethan Saadia,
Eugene Kuznetsov, Evgeniy Zheltonozhskiy, Ewout Ter Hoeven, exfalso, FAIJUL,
Fangjun Kuang, Fei Hu, Frank Laub, Frederic Bastien, Fredrik Knutsson, frreiss,
Frédéric Rechtenstein, fsx950223, Gaurav Singh, gbaned, George Grzegorz
Pawelczak, George Sterpu, Gian Marco Iodice, Giorgio Arena, Hans Gaiser, Hans
Pabst, Haoyu Wu, Harry Slatyer, hsahovic, Hugo, Hugo Sjöberg, IrinaM21, jacco,
Jake Tae, Jean-Denis Lesage, Jean-Michel Gorius, Jeff Daily, Jens Elofsson,
Jerry Shih, jerryyin, Jin Mingjian, Jinjing Zhou, JKIsaacLee, jojimonv, Jonathan
Dekhtiar, Jose Ignacio Gomez, Joseph-Rance, Judd, Julian Gross, Kaixi Hou,
Kaustubh Maske Patil, Keunwoo Choi, Kevin Hanselman, Khor Chean Wei, Kilaru
Yasaswi Sri Chandra Gandhi, Koan-Sin Tan, Koki Ibukuro, Kristian Holsheimer,
kurileo, Lakshay Tokas, Lee Netherton, leike666666, Leslie-Fang-Intel, Li,
Guizi, LIUJIAN435, Lukas Geiger, Lyo Nguyen, madisetti, Maher Jendoubi, Mahmoud
Abuzaina, Manuel Freiberger, Marcel Koester, Marco Jacopo Ferrarotti, Markus
Franke, marload, Mbah-Javis, mbhuiyan, Meng Zhang, Michael Liao,
MichaelKonobeev, Michal Tarnowski, Milan Straka, minoring, Mohamed Nour
Abouelseoud, MoussaMM, Mrinal Jain, mrTsjolder, Måns Nilsson, Namrata Bhave,
Nicholas Gao, Niels Ole Salscheider, nikochiko, Niranjan Hasabnis, Nishidha
Panpaliya, nmostafa, Noah Trenaman, nuka137, Officium, Owen L - Sfe, Pallavi G,
Paul Andrey, Peng Sun, Peng Wu, Phil Pearl, PhilipMay, pingsutw, Pooya Davoodi,
PragmaTwice, pshiko, Qwerty71, R Gomathi, Rahul Huilgol, Richard Xiao, Rick
Wierenga, Roberto Rosmaninho, ruchit2801, Rushabh Vasani, Sami, Sana Damani,
Sarvesh Dubey, Sasan Jafarnejad, Sergii Khomenko, Shane Smiskol, Shaochen Shi,
sharkdtu, Shawn Presser, ShengYang1, Shreyash Patodia, Shyam Sundar Dhanabalan,
Siju Samuel, Somyajit Chakraborty Sam, Srihari Humbarwadi,
srinivasan.narayanamoorthy, Srishti Yadav, Steph-En-M, Stephan Uphoff, Stephen
Mugisha, SumanSudhir, Taehun Kim, Tamas Bela Feher, TengLu, Tetragramm, Thierry
Herrmann, Tian Jin, tigertang, Tom Carchrae, Tom Forbes, Trent Lo, Victor Peng,
vijayphoenix, Vincent Abriou, Vishal Bhola, Vishnuvardhan Janapati, vladbataev,
VoVAllen, Wallyss Lima, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons,
William Zhang, Xiaoming (Jason) Cui, Xiaoquan Kong, Xinan Jiang, Yasir Modak,
Yasuhiro Matsumoto, Yaxun (Sam) Liu, Yong Tang, Ytyt-Yt, yuan, Yuan Mingshuai,
Yuan Tang, Yuki Ueda, Yusup, zhangshijin, zhuwenxi
# Release 2.0.1
## Bug Fixes and Other Changes
*   Fixes a security vulnerability where converting a Python string to a
    `tf.float16` value produces a segmentation fault
    ([CVE-2020-5215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215))
*   Updates `curl` to `7.66.0` to handle
    [CVE-2019-5482](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5482)
    and
    [CVE-2019-5481](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5481)
*   Updates `sqlite3` to `3.30.01` to handle
    [CVE-2019-19646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19646),
    [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645)
    and
    [CVE-2019-16168](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16168)
# Release 1.15.2
## Bug Fixes and Other Changes
*   Fixes a security vulnerability where converting a Python string to a
    `tf.float16` value produces a segmentation fault
    ([CVE-2020-5215](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215))
*   Updates `curl` to `7.66.0` to handle
    [CVE-2019-5482](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5482)
    and
    [CVE-2019-5481](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5481)
*   Updates `sqlite3` to `3.30.01` to handle
    [CVE-2019-19646](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19646),
    [CVE-2019-19645](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19645)
    and
    [CVE-2019-16168](https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16168)
# Release 2.1.0
TensorFlow 2.1 will be the last TF release supporting Python 2. Python 2 support
[officially ends an January 1, 2020](https://www.python.org/dev/peps/pep-0373/#update).
[As announced earlier](https://groups.google.com/a/tensorflow.org/d/msg/announce/gVwS5RC8mds/dCt1ka2XAAAJ),
TensorFlow will also stop supporting Python 2 starting January 1, 2020, and no
more releases are expected in 2019.
## Major Features and Improvements
*   The `tensorflow` pip package now includes GPU support by default (same as
    `tensorflow-gpu`) for both Linux and Windows. This runs on machines with and
    without NVIDIA GPUs. `tensorflow-gpu` is still available, and CPU-only
    packages can be downloaded at `tensorflow-cpu` for users who are concerned
    about package size.
*   **Windows users:** Officially-released `tensorflow` Pip packages are now
    built with Visual Studio 2019 version 16.4 in order to take advantage of the
    new `/d2ReducedOptimizeHugeFunctions` compiler flag. To use these new
    packages, you must install "Microsoft Visual C++ Redistributable for Visual
    Studio 2015, 2017 and 2019", available from Microsoft's website
    [here](https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads).
    *   This does not change the minimum required version for building
        TensorFlow from source on Windows, but builds enabling
        `EIGEN_STRONG_INLINE` can take over 48 hours to compile without this
        flag. Refer to `configure.py` for more information about
        `EIGEN_STRONG_INLINE` and `/d2ReducedOptimizeHugeFunctions`.
    *   If either of the required DLLs, `msvcp140.dll` (old) or `msvcp140_1.dll`
        (new), are missing on your machine, `import tensorflow` will print a
        warning message.
*   The `tensorflow` pip package is built with CUDA 10.1 and cuDNN 7.6.
*   `tf.keras`
    *   Experimental support for mixed precision is available on GPUs and Cloud
        TPUs. See
        [usage guide](https://www.tensorflow.org/guide/keras/mixed_precision).
    *   Introduced the `TextVectorization` layer, which takes as input raw
        strings and takes care of text standardization, tokenization, n-gram
        generation, and vocabulary indexing. See this
        [end-to-end text classification example](https://colab.research.google.com/drive/1RvCnR7h0_l4Ekn5vINWToI9TNJdpUZB3).
    *   Keras `.compile` `.fit` `.evaluate` and `.predict` are allowed to be
        outside of the DistributionStrategy scope, as long as the model was
        constructed inside of a scope.
    *   Experimental support for Keras `.compile`, `.fit`, `.evaluate`, and
        `.predict` is available for Cloud TPUs, Cloud TPU, for all types of
        Keras models (sequential, functional and subclassing models).
    *   Automatic outside compilation is now enabled for Cloud TPUs. This allows
        `tf.summary` to be used more conveniently with Cloud TPUs.
    *   Dynamic batch sizes with DistributionStrategy and Keras are supported on
        Cloud TPUs.
    *   Support for `.fit`, `.evaluate`, `.predict` on TPU using numpy data, in
        addition to `tf.data.Dataset`.
    *   Keras reference implementations for many popular models are available in
        the TensorFlow
        [Model Garden](https://github.com/tensorflow/models/tree/master/official).
*   `tf.data`
    *   Changes rebatching for `tf.data datasets` + DistributionStrategy for
        better performance. Note that the dataset also behaves slightly
        differently, in that the rebatched dataset cardinality will always be a
        multiple of the number of replicas.
    *   `tf.data.Dataset` now supports automatic data distribution and sharding
        in distributed environments, including on TPU pods.
    *   Distribution policies for `tf.data.Dataset` can now be tuned with 1.
        `tf.data.experimental.AutoShardPolicy(OFF, AUTO, FILE, DATA)` 2.
        `tf.data.experimental.ExternalStatePolicy(WARN, IGNORE, FAIL)`
*   `tf.debugging`
    *   Add `tf.debugging.enable_check_numerics()` and
        `tf.debugging.disable_check_numerics()` to help debugging the root
        causes of issues involving infinities and `NaN`s.
*   `tf.distribute`
    *   Custom training loop support on TPUs and TPU pods is available through
        `strategy.experimental_distribute_dataset`,
        `strategy.experimental_distribute_datasets_from_function`,
        `strategy.experimental_run_v2`, `strategy.reduce`.
    *   Support for a global distribution strategy through
        `tf.distribute.experimental_set_strategy(),` in addition to
        `strategy.scope()`.
*   `TensorRT`
    *   [TensorRT 6.0](https://developer.nvidia.com/tensorrt#tensorrt-whats-new)
        is now supported and enabled by default. This adds support for more
        TensorFlow ops including Conv3D, Conv3DBackpropInputV2, AvgPool3D,
        MaxPool3D, ResizeBilinear, and ResizeNearestNeighbor. In addition, the
        TensorFlow-TensorRT python conversion API is exported as
        `tf.experimental.tensorrt.Converter`.
*   Environment variable `TF_DETERMINISTIC_OPS` has been added. When set to
    "true" or "1", this environment variable makes `tf.nn.bias_add` operate
    deterministically (i.e. reproducibly), but currently only when XLA JIT
    compilation is *not* enabled. Setting `TF_DETERMINISTIC_OPS` to "true" or
    "1" also makes cuDNN convolution and max-pooling operate deterministically.
    This makes Keras Conv\*D and MaxPool\*D layers operate deterministically in
    both the forward and backward directions when running on a CUDA-enabled GPU.
## Breaking Changes
*   Deletes `Operation.traceback_with_start_lines` for which we know of no
    usages.
*   Removed `id` from `tf.Tensor.__repr__()` as `id` is not useful other than
    internal debugging.
*   Some `tf.assert_*` methods now raise assertions at operation creation time
    if the input tensors' values are known at that time, not during the
    `session.run()`. This only changes behavior when the graph execution would
    have resulted in an error. When this happens, a noop is returned and the
    input tensors are marked non-feedable. In other words, if they are used as
    keys in `feed_dict` argument to `session.run()`, an error will be raised.
    Also, because some assert ops don't make it into the graph, the graph
    structure changes. A different graph can result in different per-op random
    seeds when they are not given explicitly (most often).
*   The following APIs are not longer experimental:
    `tf.config.list_logical_devices`, `tf.config.list_physical_devices`,
    `tf.config.get_visible_devices`, `tf.config.set_visible_devices`,
    `tf.config.get_logical_device_configuration`,
    `tf.config.set_logical_device_configuration`.
*   `tf.config.experimentalVirtualDeviceConfiguration` has been renamed to
    `tf.config.LogicalDeviceConfiguration`.
*   `tf.config.experimental_list_devices` has been removed, please use
    `tf.config.list_logical_devices`.
## Bug Fixes and Other Changes
*   `tf.data`
    *   Fixes concurrency issue with `tf.data.experimental.parallel_interleave`
        with `sloppy=True`.
    *   Add `tf.data.experimental.dense_to_ragged_batch()`.
    *   Extend `tf.data` parsing ops to support `RaggedTensors`.
*   `tf.distribute`
    *   Fix issue where GRU would crash or give incorrect output when a
        `tf.distribute.Strategy` was used.
*   `tf.estimator`
    *   Added option in `tf.estimator.CheckpointSaverHook` to not save the
        `GraphDef`.
    *   Moving the checkpoint reader from swig to pybind11.
*   `tf.keras`
    *   Export `depthwise_conv2d` in `tf.keras.backend`.
    *   In Keras Layers and Models, Variables in `trainable_weights`,
        `non_trainable_weights`, and `weights` are explicitly deduplicated.
    *   Keras `model.load_weights` now accepts `skip_mismatch` as an argument.
        This was available in external Keras, and has now been copied over to
        `tf.keras`.
    *   Fix the input shape caching behavior of Keras convolutional layers.
    *   `Model.fit_generator`, `Model.evaluate_generator`,
        `Model.predict_generator`, `Model.train_on_batch`,
        `Model.test_on_batch`, and `Model.predict_on_batch` methods now respect
        the `run_eagerly` property, and will correctly run using `tf.function`
        by default. Note that `Model.fit_generator`, `Model.evaluate_generator`,
        and `Model.predict_generator` are deprecated endpoints. They are
        subsumed by `Model.fit`, `Model.evaluate`, and `Model.predict` which now
        support generators and Sequences.
*   `tf.lite`
    *   Legalization for `NMS` ops in TFLite.
    *   add `narrow_range` and `axis` to `quantize_v2` and `dequantize` ops.
    *   Added support for `FusedBatchNormV3` in converter.
    *   Add an `errno`-like field to `NNAPI` delegate for detecting `NNAPI`
        errors for fallback behaviour.
    *   Refactors `NNAPI` Delegate to support detailed reason why an operation
        is not accelerated.
    *   Converts hardswish subgraphs into atomic ops.
*   Other
    *   Critical stability updates for TPUs, especially in cases where the XLA
        compiler produces compilation errors.
    *   TPUs can now be re-initialized multiple times, using
        `tf.tpu.experimental.initialize_tpu_system`.
    *   Add `RaggedTensor.merge_dims()`.
    *   Added new `uniform_row_length` row-partitioning tensor to
        `RaggedTensor`.
    *   Add `shape` arg to `RaggedTensor.to_tensor`; Improve speed of
        `RaggedTensor.to_tensor`.
    *   `tf.io.parse_sequence_example` and `tf.io.parse_single_sequence_example`
        now support ragged features.
    *   Fix `while_v2` with variables in custom gradient.
    *   Support taking gradients of V2 `tf.cond` and `tf.while_loop` using
        `LookupTable`.
    *   Fix bug where `vectorized_map` failed on inputs with unknown static
        shape.
    *   Add preliminary support for sparse CSR matrices.
    *   Tensor equality with `None` now behaves as expected.
    *   Make calls to `tf.function(f)()`, `tf.function(f).get_concrete_function`
        and `tf.function(f).get_initialization_function` thread-safe.
    *   Extend `tf.identity` to work with CompositeTensors (such as
        SparseTensor)
    *   Added more `dtypes` and zero-sized inputs to `Einsum` Op and improved
        its performance
    *   Enable multi-worker `NCCL` `all-reduce` inside functions executing
        eagerly.
    *   Added complex128 support to `RFFT`, `RFFT2D`, `RFFT3D`, `IRFFT`,
        `IRFFT2D`, and `IRFFT3D`.
    *   Add `pfor` converter for `SelfAdjointEigV2`.
    *   Add `tf.math.ndtri` and `tf.math.erfinv`.
    *   Add `tf.config.experimental.enable_mlir_bridge` to allow using MLIR
        compiler bridge in eager model.
    *   Added support for MatrixSolve on Cloud TPU / XLA.
    *   Added `tf.autodiff.ForwardAccumulator` for forward-mode autodiff
    *   Add `LinearOperatorPermutation`.
    *   A few performance optimizations on `tf.reduce_logsumexp`.
    *   Added multilabel handling to `AUC` metric
    *   Optimization on `zeros_like`.
    *   Dimension constructor now requires `None` or types with an `__index__`
        method.
    *   Add `tf.random.uniform` microbenchmark.
    *   Use `_protogen` suffix for proto library targets instead of
        `_cc_protogen` suffix.
    *   Moving the checkpoint reader from `swig` to `pybind11`.
    *   `tf.device` & `MirroredStrategy` now supports passing in a
        `tf.config.LogicalDevice`
    *   If you're building Tensorflow from source, consider using
        [bazelisk](https://github.com/bazelbuild/bazelisk) to automatically
        download and use the correct Bazel version. Bazelisk reads the
        `.bazelversion` file at the root of the project directory.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
8bitmp3, Aaron Ma, AbdüLhamit Yilmaz, Abhai Kollara, aflc, Ag Ramesh, Albert Z.
Guo, Alex Torres, amoitra, Andrii Prymostka, angeliand, Anshuman Tripathy,
Anthony Barbier, Anton Kachatkou, Anubh-V, Anuja Jakhade, Artem Ryabov, autoih,
Bairen Yi, Bas Aarts, Basit Ayantunde, Ben Barsdell, Bhavani Subramanian, Brett
Koonce, candy.dc, Captain-Pool, caster, cathy, Chong Yan, Choong Yin Thong,
Clayne Robison, Colle, Dan Ganea, David Norman, David Refaeli, dengziming, Diego
Caballero, Divyanshu, djshen, Douman, Duncan Riach, EFanZh, Elena Zhelezina,
Eric Schweitz, Evgenii Zheltonozhskii, Fei Hu, fo40225, Fred Reiss, Frederic
Bastien, Fredrik Knutsson, fsx950223, fwcore, George Grzegorz Pawelczak, George
Sterpu, Gian Marco Iodice, Giorgio Arena, giuros01, Gomathi Ramamurthy, Guozhong
Zhuang, Haifeng Jin, Haoyu Wu, HarikrishnanBalagopal, HJYOO, Huang Chen-Yi,
Ilham Firdausi Putra, Imran Salam, Jared Nielsen, Jason Zaman, Jasper Vicenti,
Jeff Daily, Jeff Poznanovic, Jens Elofsson, Jerry Shih, jerryyin, Jesper
Dramsch, jim.meyer, Jongwon Lee, Jun Wan, Junyuan Xie, Kaixi Hou, kamalkraj, Kan
Chen, Karthik Muthuraman, Keiji Ariyama, Kevin Rose, Kevin Wang, Koan-Sin Tan,
kstuedem, Kwabena W. Agyeman, Lakshay Tokas, latyas, Leslie-Fang-Intel, Li,
Guizi, Luciano Resende, Lukas Folle, Lukas Geiger, Mahmoud Abuzaina, Manuel
Freiberger, Mark Ryan, Martin Mlostek, Masaki Kozuki, Matthew Bentham, Matthew
Denton, mbhuiyan, mdfaijul, Muhwan Kim, Nagy Mostafa, nammbash, Nathan Luehr,
Nathan Wells, Niranjan Hasabnis, Oleksii Volkovskyi, Olivier Moindrot, olramde,
Ouyang Jin, OverLordGoldDragon, Pallavi G, Paul Andrey, Paul Wais, pkanwar23,
Pooya Davoodi, Prabindh Sundareson, Rajeshwar Reddy T, Ralovich, Kristof,
Refraction-Ray, Richard Barnes, richardbrks, Robert Herbig, Romeo Kienzler, Ryan
Mccormick, saishruthi, Saket Khandelwal, Sami Kama, Sana Damani, Satoshi Tanaka,
Sergey Mironov, Sergii Khomenko, Shahid, Shawn Presser, ShengYang1, Siddhartha
Bagaria, Simon Plovyt, skeydan, srinivasan.narayanamoorthy, Stephen Mugisha,
sunway513, Takeshi Watanabe, Taylor Jakobson, TengLu, TheMindVirus, ThisIsIsaac,
Tim Gates, Timothy Liu, Tomer Gafner, Trent Lo, Trevor Hickey, Trevor Morris,
vcarpani, Wei Wang, Wen-Heng (Jack) Chung, wenshuai, Wenshuai-Xiaomi, wenxizhu,
william, William D. Irons, Xinan Jiang, Yannic, Yasir Modak, Yasuhiro Matsumoto,
Yong Tang, Yongfeng Gu, Youwei Song, Zaccharie Ramzi, Zhang, Zhenyu Guo, 王振华
(Zhenhua Wang), 韩董, 이중건 Isaac Lee
# Release 1.15.0
This is the last 1.x release for TensorFlow. We do not expect to update the 1.x
branch with features, although we will issue patch releases to fix
vulnerabilities for at least one year.
## Major Features and Improvements
*   As
    [announced](https://groups.google.com/a/tensorflow.org/forum/#!topic/developers/iRCt5m4qUz0),
    `tensorflow` pip package will by default include GPU support (same as
    `tensorflow-gpu` now) for the platforms we currently have GPU support (Linux
    and Windows). It will work on machines with and without Nvidia GPUs.
    `tensorflow-gpu` will still be available, and CPU-only packages can be
    downloaded at `tensorflow-cpu` for users who are concerned about package
    size.
*   TensorFlow 1.15 contains a complete implementation of the 2.0 API in its
    `compat.v2` module. It contains a copy of the 1.15 main module (without
    `contrib`) in the `compat.v1` module. TensorFlow 1.15 is able to emulate 2.0
    behavior using the `enable_v2_behavior()` function. This enables writing
    forward compatible code: by explicitly importing either
    `tensorflow.compat.v1` or `tensorflow.compat.v2`, you can ensure that your
    code works without modifications against an installation of 1.15 or 2.0.
*   EagerTensor now supports numpy buffer interface for tensors.
*   Add toggles `tf.enable_control_flow_v2()` and `tf.disable_control_flow_v2()`
    for enabling/disabling v2 control flow.
*   Enable v2 control flow as part of `tf.enable_v2_behavior()` and
    `TF2_BEHAVIOR=1`.
*   AutoGraph translates Python control flow into TensorFlow expressions,
    allowing users to write regular Python inside `tf.function`-decorated
    functions. AutoGraph is also applied in functions used with `tf.data`,
    `tf.distribute` and `tf.keras` APIS.
*   Adds `enable_tensor_equality()`, which switches the behavior such that:
    *   Tensors are no longer hashable.
    *   Tensors can be compared with `==` and `!=`, yielding a Boolean Tensor
        with element-wise comparison results. This will be the default behavior
        in 2.0.
## Breaking Changes
*   Tensorflow code now produces 2 different pip packages: `tensorflow_core`
    containing all the code (in the future it will contain only the private
    implementation) and `tensorflow` which is a virtual pip package doing
    forwarding to `tensorflow_core` (and in the future will contain only the
    public API of tensorflow). We don't expect this to be breaking, unless you
    were importing directly from the implementation.
*   TensorFlow 1.15 is built using devtoolset7 (GCC7) on Ubuntu 16. This may
    lead to ABI incompatibilities with extensions built against earlier versions
    of TensorFlow.
*   Deprecated the use of `constraint=` and `.constraint` with ResourceVariable.
*   `tf.keras`:
    *   `OMP_NUM_THREADS` is no longer used by the default Keras config. To
        configure the number of threads, use `tf.config.threading` APIs.
    *   `tf.keras.model.save_model` and `model.save` now defaults to saving a
        TensorFlow SavedModel.
    *   `keras.backend.resize_images` (and consequently,
        `keras.layers.Upsampling2D`) behavior has changed, a bug in the resizing
        implementation was fixed.
    *   Layers now default to `float32`, and automatically cast their inputs to
        the layer's dtype. If you had a model that used `float64`, it will
        probably silently use `float32` in TensorFlow2, and a warning will be
        issued that starts with Layer "layer-name" is casting an input tensor
        from dtype float64 to the layer's dtype of float32. To fix, either set
        the default dtype to float64 with
        `tf.keras.backend.set_floatx('float64')`, or pass `dtype='float64'` to
        each of the Layer constructors. See `tf.keras.layers.Layer` for more
        information.
    *   Some `tf.assert_*` methods now raise assertions at operation creation
        time (i.e. when this Python line executes) if the input tensors' values
        are known at that time, not during the session.run(). When this happens,
        a noop is returned and the input tensors are marked non-feedable. In
        other words, if they are used as keys in `feed_dict` argument to
        `session.run()`, an error will be raised. Also, because some assert ops
        don't make it into the graph, the graph structure changes. A different
        graph can result in different per-op random seeds when they are not
        given explicitly (most often).
## Bug Fixes and Other Changes
*   `tf.estimator`:
    *   `tf.keras.estimator.model_to_estimator` now supports exporting to
        `tf.train.Checkpoint` format, which allows the saved checkpoints to be
        compatible with `model.load_weights`.
    *   Fix tests in canned estimators.
    *   Expose Head as public API.
    *   Fixes critical bugs that help with `DenseFeatures` usability in TF2
*   `tf.data`:
    *   Promoting `unbatch` from experimental to core API.
    *   Adding support for datasets as inputs to `from_tensors` and
        `from_tensor_slices` and batching and unbatching of nested datasets.
*   `tf.keras`:
    *   `tf.keras.estimator.model_to_estimator` now supports exporting to
        tf.train.Checkpoint format, which allows the saved checkpoints to be
        compatible with `model.load_weights`.
    *   Saving a Keras Model using `tf.saved_model.save` now saves the list of
        variables, trainable variables, regularization losses, and the call
        function.
    *   Deprecated `tf.keras.experimental.export_saved_model` and
        `tf.keras.experimental.function`. Please use
        `tf.keras.models.save_model(..., save_format='tf')` and
        `tf.keras.models.load_model` instead.
    *   Add an `implementation=3` mode for `tf.keras.layers.LocallyConnected2D`
        and `tf.keras.layers.LocallyConnected1D` layers using `tf.SparseTensor`
        to store weights, allowing a dramatic speedup for large sparse models.
    *   Enable the Keras compile API `experimental_run_tf_function` flag by
        default. This flag enables single training/eval/predict execution path.
        With this 1. All input types are converted to `Dataset`. 2. When
        distribution strategy is not specified this goes through the no-op
        distribution strategy path. 3. Execution is wrapped in tf.function
        unless `run_eagerly=True` is set in compile.
    *   Raise error if `batch_size` argument is used when input is
        dataset/generator/keras sequence.
*   `tf.lite`
    *   Add `GATHER` support to NN API delegate.
    *   tflite object detection script has a debug mode.
    *   Add delegate support for `QUANTIZE`.
    *   Added evaluation script for COCO minival.
    *   Add delegate support for `QUANTIZED_16BIT_LSTM`.
    *   Converts hardswish subgraphs into atomic ops.
*   Add support for defaulting the value of `cycle_length` argument of
    `tf.data.Dataset.interleave` to the number of schedulable CPU cores.
*   `parallel_for`: Add converter for `MatrixDiag`.
*   Add `narrow_range` attribute to `QuantizeAndDequantizeV2` and V3.
*   Added new op: `tf.strings.unsorted_segment_join`.
*   Add HW acceleration support for `topK_v2`.
*   Add new `TypeSpec` classes.
*   CloudBigtable version updated to v0.10.0.
*   Expose `Head` as public API.
*   Update docstring for gather to properly describe the non-empty `batch_dims`
    case.
*   Added `tf.sparse.from_dense` utility function.
*   Improved ragged tensor support in `TensorFlowTestCase`.
*   Makes the a-normal form transformation in Pyct configurable as to which
    nodes are converted to variables and which are not.
*   `ResizeInputTensor` now works for all delegates.
*   Add `EXPAND_DIMS` support to NN API delegate TEST: expand_dims_test
*   `tf.cond` emits a StatelessIf op if the branch functions are stateless and
    do not touch any resources.
*   `tf.cond`, `tf.while` and `if` and `while` in AutoGraph now accept a
    nonscalar predicate if has a single element. This does not affect non-V2
    control flow.
*   `tf.while_loop` emits a StatelessWhile op if the cond and body functions are
    stateless and do not touch any resources.
*   Refactors code in Quant8 LSTM support to reduce TFLite binary size.
*   Add support of local soft device placement for eager op.
*   Add HW acceleration support for `LogSoftMax`.
*   Added a function `nested_value_rowids` for ragged tensors.
*   Add guard to avoid acceleration of L2 Normalization with input rank != 4
*   Add `tf.math.cumulative_logsumexp operation`.
*   Add `tf.ragged.stack`.
*   Fix memory allocation problem when calling `AddNewInputConstantTensor`.
*   Delegate application failure leaves interpreter in valid state.
*   Add check for correct memory alignment to
    `MemoryAllocation::MemoryAllocation()`.
*   Extracts `NNAPIDelegateKernel` from nnapi_delegate.cc
*   Added support for `FusedBatchNormV3` in converter.
*   A ragged to dense op for directly calculating tensors.
*   Fix accidental quadratic graph construction cost in graph-mode
    `tf.gradients()`.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
a6802739, Aaron Ma, Abdullah Selek, Abolfazl Shahbazi, Ag Ramesh, Albert Z. Guo,
Albin Joy, Alex Itkes, Alex Sergeev, Alexander Pivovarov, Alexey Romanov,
alhkad, Amit Srivastava, amoitra, Andrew Lihonosov, Andrii Prymostka, Anuj
Rawat, Astropeak, Ayush Agrawal, Bairen Yi, Bas Aarts, Bastian Eichenberger, Ben
Barsdell, Benjamin Peterson, bhack, Bharat Raghunathan, Bhavani Subramanian,
Bryan Cutler, candy.dc, Cao Zongyan, Captain-Pool, Casper Da Costa-Luis, Chen
Guoyin, Cheng Chang, chengchingwen, Chong Yan, Choong Yin Thong, Christopher
Yeh, Clayne Robison, Coady, Patrick, Dan Ganea, David Norman, Denis Khalikov,
Deven Desai, Diego Caballero, Duncan Dean, Duncan Riach, Dwight J Lyle, Eamon
Ito-Fisher, eashtian3, EFanZh, ejot, Elroy Ashtian Jr, Eric Schweitz, Fangjun
Kuang, Fei Hu, fo40225, formath, Fred Reiss, Frederic Bastien, Fredrik Knutsson,
G. Hussain Chinoy, Gabriel, gehring, George Grzegorz Pawelczak, Gianluca
Varisco, Gleb Popov, Greg Peatfield, Guillaume Klein, Gurpreet Singh, Gustavo
Lima Chaves, haison, Haraldur TóMas HallgríMsson, HarikrishnanBalagopal, HåKon
Sandsmark, I-Hong, Ilham Firdausi Putra, Imran Salam, Jason Zaman, Jason
Zavaglia, jayhpark530, jefby, Jeff Daily, Jeffrey Poznanovic, Jekyll Lai, Jeroen
BéDorf, Jerry Shih, jerryyin, jiakai, JiangXIAO, Joe Bowser, Joel Shapiro, Johan
Gunnarsson, Jojimon Varghese, Joon, Josh Beal, Julian Niedermeier, Jun Wan,
Junqin Zhang, Junyuan Xie, Justin Tunis, Kaixi Hou, Karl Lessard, Karthik
Muthuraman, Kbhute-Ibm, khanhlvg, Koock Yoon, kstuedem, Kyuwon Kim, Lakshay
Tokas, leike666666, leonard951, Leslie-Fang, Leslie-Fang-Intel, Li, Guizi, Lukas
Folle, Lukas Geiger, Mahmoud Abuzaina, Manraj Singh Grover, Margaret
Maynard-Reid, Mark Ryan, Matt Conley, Matthew Bentham, Matthew Denton, mbhuiyan,
mdfaijul, Mei Jie, merturl, MichaelKonobeev, Michal W. Tarnowski, minds, mpppk,
musikisomorphie, Nagy Mostafa, Nayana Thorat, Neil, Niels Ole Salscheider,
Niklas SilfverströM, Niranjan Hasabnis, ocjosen, olramde, Pariksheet Pinjari,
Patrick J. Lopresti, Patrik Gustavsson, per1234, PeterLee, Phan Van Nguyen Duc,
Phillip Kravtsov, Pooya Davoodi, Pranav Marathe, Putra Manggala, Qingqing Cao,
Rajeshwar Reddy T, Ramon ViñAs, Rasmus Diederichsen, Reuben Morais, richardbrks,
robert, RonLek, Ryan Jiang, saishruthi, Saket Khandelwal, Saleem Abdulrasool,
Sami Kama, Sana-Damani, Sergii Khomenko, Severen Redwood, Shubham Goyal, Sigrid
Keydana, Siju Samuel, sleighsoft, smilu97, Son Tran, Srini511,
srinivasan.narayanamoorthy, Sumesh Udayakumaran, Sungmann Cho, Tae-Hwan Jung,
Taehoon Lee, Takeshi Watanabe, TengLu, terryky, TheMindVirus, ThisIsIsaac, Till
Hoffmann, Timothy Liu, Tomer Gafner, Tongxuan Liu, Trent Lo, Trevor Morris, Uday
Bondhugula, Vasileios Lioutas, vbvg2008, Vishnuvardhan Janapati, Vivek
Suryamurthy, Wei Wang, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons,
winstonq, wyzhao, Xiaoming (Jason) Cui, Xinan Jiang, Xinping Wang, Yann-Yy,
Yasir Modak, Yong Tang, Yongfeng Gu, Yuchen Ying, Yuxin Wu, zyeric, 王振华 (Zhenhua
Wang)
# Release 2.0.0
## Major Features and Improvements
TensorFlow 2.0 focuses on **simplicity** and **ease of use**, featuring updates
like:
*   Easy model building with Keras and eager execution.
*   Robust model deployment in production on any platform.
*   Powerful experimentation for research.
*   API simplification by reducing duplication and removing deprecated
    endpoints.
For details on best practices with 2.0, see
[the Effective 2.0 guide](https://www.tensorflow.org/beta/guide/effective_tf2)
For information on upgrading your existing TensorFlow 1.x models, please refer
to our
[Upgrade](https://medium.com/tensorflow/upgrading-your-code-to-tensorflow-2-0-f72c3a4d83b5)
and [Migration](https://www.tensorflow.org/beta/guide/migration_guide) guides.
We have also released a collection of
[tutorials and getting started guides](https://www.tensorflow.org/beta).
## Highlights
*   TF 2.0 delivers Keras as the central high level API used to build and train
    models. Keras provides several model-building APIs such as Sequential,
    Functional, and Subclassing along with eager execution, for immediate
    iteration and intuitive debugging, and `tf.data`, for building scalable
    input pipelines. Checkout
    [guide](https://www.tensorflow.org/beta/guide/keras/overview) for additional
    details.
*   Distribution Strategy: TF 2.0 users will be able to use the
    [`tf.distribute.Strategy`](https://www.tensorflow.org/beta/guide/distribute_strategy)
    API to distribute training with minimal code changes, yielding great
    out-of-the-box performance. It supports distributed training with Keras
    model.fit, as well as with custom training loops. Multi-GPU support is
    available, along with experimental support for multi worker and Cloud TPUs.
    Check out the
    [guide](https://www.tensorflow.org/beta/guide/distribute_strategy) for more
    details.
*   Functions, not Sessions. The traditional declarative programming model of
    building a graph and executing it via a `tf.Session` is discouraged, and
    replaced with by writing regular Python functions. Using the `tf.function`
    decorator, such functions can be turned into graphs which can be executed
    remotely, serialized, and optimized for performance.
*   Unification of `tf.train.Optimizers` and `tf.keras.Optimizers`. Use
    `tf.keras.Optimizers` for TF2.0. `compute_gradients` is removed as public
    API, use `GradientTape` to compute gradients.
*   AutoGraph translates Python control flow into TensorFlow expressions,
    allowing users to write regular Python inside `tf.function`-decorated
    functions. AutoGraph is also applied in functions used with tf.data,
    tf.distribute and tf.keras APIs.
*   Unification of exchange formats to SavedModel. All TensorFlow ecosystem
    projects (TensorFlow Lite, TensorFlow JS, TensorFlow Serving, TensorFlow
    Hub) accept SavedModels. Model state should be saved to and restored from
    SavedModels.
*   API Changes: Many API symbols have been renamed or removed, and argument
    names have changed. Many of these changes are motivated by consistency and
    clarity. The 1.x API remains available in the compat.v1 module. A list of
    all symbol changes can be found
    [here](https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0).
    *   API clean-up, included removing `tf.app`, `tf.flags`, and `tf.logging`
        in favor of [absl-py](https://github.com/abseil/abseil-py).
*   No more global variables with helper methods like
    `tf.global_variables_initializer` and `tf.get_global_step`.
*   Add toggles `tf.enable_control_flow_v2()` and `tf.disable_control_flow_v2()`
    for enabling/disabling v2 control flow.
*   Enable v2 control flow as part of `tf.enable_v2_behavior()` and
    `TF2_BEHAVIOR=1`.
*   Fixes autocomplete for most TensorFlow API references by switching to use
    relative imports in API `__init__.py` files.
*   Auto Mixed-Precision graph optimizer simplifies converting models to
    `float16` for acceleration on Volta and Turing Tensor Cores. This feature
    can be enabled by wrapping an optimizer class with
    `tf.train.experimental.enable_mixed_precision_graph_rewrite()`.
*   Add environment variable `TF_CUDNN_DETERMINISTIC`. Setting to "true" or "1"
    forces the selection of deterministic cuDNN convolution and max-pooling
    algorithms. When this is enabled, the algorithm selection procedure itself
    is also deterministic.
## Breaking Changes
*   Many backwards incompatible API changes have been made to clean up the APIs
    and make them more consistent.
*   Toolchains:
    *   TensorFlow 2.0.0 is built using devtoolset7 (GCC7) on Ubuntu 16. This
        may lead to ABI incompatibilities with extensions built against earlier
        versions of TensorFlow.
    *   Tensorflow code now produces 2 different pip packages: tensorflow_core
        containing all the code (in the future it will contain only the private
        implementation) and tensorflow which is a virtual pip package doing
        forwarding to tensorflow_core (and in the future will contain only the
        public API of tensorflow). We don't expect this to be breaking, unless
        you were importing directly from the implementation. Removed the
        `freeze_graph` command line tool; `SavedModel` should be used in place
        of frozen graphs.
*   `tf.contrib`:
    *   `tf.contrib` has been deprecated, and functionality has been either
        migrated to the core TensorFlow API, to an ecosystem project such as
        [tensorflow/addons](https://www.github.com/tensorflow/addons) or
        [tensorflow/io](https://www.github.com/tensorflow/io), or removed
        entirely.
    *   Remove `tf.contrib.timeseries` dependency on TF distributions.
    *   Replace contrib references with `tf.estimator.experimental.*` for apis
        in `early_stopping.py`.
*   `tf.estimator`:
    *   Premade estimators in the tf.estimator.DNN/Linear/DNNLinearCombined
        family have been updated to use `tf.keras.optimizers` instead of the
        `tf.compat.v1.train.Optimizer`s. If you do not pass in an `optimizer=`
        arg or if you use a string, the premade estimator will use the Keras
        optimizer. This is checkpoint breaking, as the optimizers have separate
        variables. A checkpoint converter tool for converting optimizers is
        included with the release, but if you want to avoid any change, switch
        to the v1 version of the estimator:
        `tf.compat.v1.estimator.DNN/Linear/DNNLinearCombined*`.
    *   Default aggregation for canned Estimators is now `SUM_OVER_BATCH_SIZE`.
        To maintain previous default behavior, please pass `SUM` as the loss
        aggregation method.
    *   Canned Estimators don’t support `input_layer_partitioner` arg in the
        API. If you have this arg, you will have to switch to `tf.compat.v1
        canned Estimators`.
    *   `Estimator.export_savedmodel` has been renamed to `export_saved_model`.
    *   When saving to SavedModel, Estimators will strip default op attributes.
        This is almost always the correct behavior, as it is more forwards
        compatible, but if you require that default attributes to be saved with
        the model, please use `tf.compat.v1.Estimator`.
    *   Feature Columns have been upgraded to be more Eager-friendly and to work
        with Keras. As a result, `tf.feature_column.input_layer` has been
        deprecated in favor of `tf.keras.layers.DenseFeatures`. v1 feature
        columns have direct analogues in v2 except for
        `shared_embedding_columns`, which are not cross-compatible with v1 and
        v2. Use `tf.feature_column.shared_embeddings` instead.
*   `tf.keras`:
    *   `OMP_NUM_THREADS` is no longer used by the default Keras config. To
        configure the number of threads, use `tf.config.threading` APIs.
    *   `tf.keras.model.save_model` and `model.save` now defaults to saving a
        TensorFlow SavedModel. HDF5 files are still supported.
    *   Deprecated `tf.keras.experimental.export_saved_model` and
        `tf.keras.experimental.function`. Please use
        `tf.keras.models.save_model(..., save_format='tf')` and
        `tf.keras.models.load_model` instead.
    *   Layers now default to float32, and automatically cast their inputs to
        the layer's dtype. If you had a model that used float64, it will
        probably silently use float32 in TensorFlow 2, and a warning will be
        issued that starts with `Layer <layer-name>` is casting an input tensor
        from dtype float64 to the layer's dtype of float32. To fix, either set
        the default dtype to float64 with
        `tf.keras.backend.set_floatx('float64')`, or pass `dtype='float64'` to
        each of the Layer constructors. See `tf.keras.layers.Layer` for more
        information.
*   `tf.lite`:
    *   Removed `lite.OpHint`, `lite.experimental`, and `lite.constant` from 2.0
        API.
*   Tensors are no longer hashable, but instead compare element-wise with `==`
    and `!=`. Use `tf.compat.v1.disable_tensor_equality()` to return to the
    previous behavior.
*   Performing equality operations on Tensors or Variables with incompatible
    shapes an exception is no longer thrown. Instead `__eq__` returns False and
    `__ne__` returns True.
*   Removed `tf.string_split` from v2 API.
*   Deprecated the use of `constraint=` and `.constraint` with ResourceVariable.
*   Add `UnifiedGRU` as the new GRU implementation for tf2.0. Change the default
    recurrent activation function for GRU from `hard_sigmoid` to `sigmoid`, and
    `reset_after` to True in 2.0. Historically recurrent activation is
    `hard_sigmoid` since it is fast than 'sigmoid'. With new unified backend
    between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we change
    the default for CPU mode to sigmoid as well. With that, the default GRU will
    be compatible with both CPU and GPU kernel. This will enable user with GPU
    to use CuDNN kernel by default and get a 10x performance boost in training.
    Note that this is checkpoint breaking change. If user want to use their 1.x
    pre-trained checkpoint, please construct the layer with
    GRU(recurrent_activation='hard_sigmoid', reset_after=False) to fallback to
    1.x behavior.
*   `CUDNN_INSTALL_PATH`, `TENSORRT_INSTALL_PATH`, `NCCL_INSTALL_PATH`,
    `NCCL_HDR_PATH` are deprecated. Use `TF_CUDA_PATHS` instead which supports a
    comma-separated list of base paths that are searched to find CUDA libraries
    and headers.
Refer to our
[public project status tracker](https://github.com/orgs/tensorflow/projects/4)
and
[issues tagged with `2.0`](https://github.com/tensorflow/tensorflow/issues?q=is%3Aopen+is%3Aissue+label%3A2.0)
on GitHub for insight into recent issues and development progress.
If you experience any snags when using TF 2.0, please let us know at the
[TF 2.0 Testing User Group](https://groups.google.com/a/tensorflow.org/forum/?utm_medium=email&utm_source=footer#!forum/testing).
We have a support mailing list as well as weekly testing meetings, and would
love to hear your migration feedback and questions.
## Bug Fixes and Other Changes
*   `tf.contrib`:
    *   Expose `tf.contrib.proto.*` ops in `tf.io` (they will exist in TF2)
*   `tf.data`:
    *   Add support for TensorArrays to `tf.data Dataset`.
    *   Integrate Ragged Tensors with `tf.data`.
    *   All core and experimental tf.data transformations that input
        user-defined functions can span multiple devices now.
    *   Extending the TF 2.0 support for `shuffle(...,
        reshuffle_each_iteration=True)` and `cache()` to work across different
        Python iterators for the same dataset.
    *   Removing the `experimental_numa_aware` option from `tf.data.Options`.
    *   Add `num_parallel_reads` and passing in a Dataset containing filenames
        into `TextLineDataset` and `FixedLengthRecordDataset`.
    *   Add support for defaulting the value of `cycle_length` argument of
        `tf.data.Dataset.interleave` to the number of schedulable CPU cores.
    *   Promoting `tf.data.experimental.enumerate_dataset` to core as
        `tf.data.Dataset.enumerate`.
    *   Promoting `tf.data.experimental.unbatch` to core as
        `tf.data.Dataset.unbatch`.
    *   Adds option for introducing slack in the pipeline to reduce CPU
        contention, via `tf.data.Options().experimental_slack = True`
    *   Added experimental support for parallel batching to `batch()` and
        `padded_batch()`. This functionality can be enabled through
        `tf.data.Options()`.
    *   Support cancellation of long-running `reduce`.
    *   Now we use `dataset` node name as prefix instead of the op name, to
        identify the component correctly in metrics, for pipelines with repeated
        components.
    *   Improve the performance of datasets using `from_tensors()`.
    *   Promoting `unbatch` from experimental to core API.
    *   Adding support for datasets as inputs to `from_tensors` and
        `from_tensor_slices` and batching and unbatching of nested datasets.
*   `tf.distribute`:
    *   Enable `tf.distribute.experimental.MultiWorkerMirroredStrategy` working
        in eager mode.
    *   Callbacks are supported in `MultiWorkerMirroredStrategy`.
    *   Disable `run_eagerly` and distribution strategy if there are symbolic
        tensors added to the model using `add_metric` or `add_loss`.
    *   Loss and gradients should now more reliably be correctly scaled w.r.t.
        the global batch size when using a `tf.distribute.Strategy`.
    *   Set default loss reduction as `AUTO` for improving reliability of loss
        scaling with distribution strategy and custom training loops. `AUTO`
        indicates that the reduction option will be determined by the usage
        context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`.
        When used in distribution strategy scope, outside of built-in training
        loops such as `tf.keras` `compile` and `fit`, we expect reduction value
        to be 'None' or 'SUM'. Using other values will raise an error.
    *   Support for multi-host `ncclAllReduce` in Distribution Strategy.
*   `tf.estimator`:
    *   Replace `tf.contrib.estimator.add_metrics` with
        `tf.estimator.add_metrics`
    *   Use `tf.compat.v1.estimator.inputs` instead of `tf.estimator.inputs`
    *   Replace contrib references with `tf.estimator.experimental.*` for apis
        in early_s in Estimator
    *   Canned Estimators will now use keras optimizers by default. An error
        will be raised if tf.train.Optimizers are used, and you will have to
        switch to tf.keras.optimizers or tf.compat.v1 canned Estimators.
    *   A checkpoint converter for canned Estimators has been provided to
        transition canned Estimators that are warm started from
        `tf.train.Optimizers` to `tf.keras.optimizers`.
    *   Losses are scaled in canned estimator v2 and not in the optimizers
        anymore. If you are using Estimator + distribution strategy + optimikzer
        v1 then the behavior does not change. This implies that if you are using
        custom estimator with optimizer v2, you have to scale losses. We have
        new utilities to help scale losses `tf.nn.compute_average_loss`,
        `tf.nn.scale_regularization_loss`.
*   `tf.keras`:
    *   Premade models (including Linear and WideDeep) have been introduced for
        the purpose of replacing Premade estimators.
    *   Model saving changes
    *   `model.save` and `tf.saved_model.save` may now save to the TensorFlow
        SavedModel format. The model can be restored using
        `tf.keras.models.load_model`. HDF5 files are still supported, and may be
        used by specifying `save_format="h5"` when saving.
    *   Raw TensorFlow functions can now be used in conjunction with the Keras
        Functional API during model creation. This obviates the need for users
        to create Lambda layers in most cases when using the Functional API.
        Like Lambda layers, TensorFlow functions that result in Variable
        creation or assign ops are not supported.
    *   Add support for passing list of lists to the `metrics` argument in Keras
        `compile`.
    *   Add `tf.keras.layers.AbstractRNNCell` as the preferred implementation
        for RNN cells in TF v2. User can use it to implement RNN cells with
        custom behavior.
    *   Keras training and validation curves are shown on the same plot when
        using the TensorBoard callback.
    *   Switched Keras `fit/evaluate/predict` execution to use only a single
        unified path by default unless eager execution has been explicitly
        disabled, regardless of input type. This unified path places an
        eager-friendly training step inside of a `tf.function`. With this
    *   All input types are converted to `Dataset`.
    *   The path assumes there is always a distribution strategy. when
        distribution strategy is not specified the path uses a no-op
        distribution strategy.
    *   The training step is wrapped in `tf.function` unless `run_eagerly=True`
        is set in compile. The single path execution code does not yet support
        all use cases. We fallback to the existing v1 execution paths if your
        model contains the following:
        1.  `sample_weight_mode` in compile
        2.  `weighted_metrics` in compile
        3.  v1 optimizer
        4.  target tensors in compile If you are experiencing any issues because
            of this change, please inform us (file an issue) about your use case
            and you can unblock yourself by setting
            `experimental_run_tf_function=False` in compile meanwhile. We have
            seen couple of use cases where the model usage pattern is not as
            expected and would not work with this change.
    *   output tensors of one layer is used in the constructor of another.
    *   symbolic tensors outside the scope of the model are used in custom loss
        functions. The flag can be disabled for these cases and ideally the
        usage pattern will need to be fixed.
    *   Mark Keras `set_session` as `compat.v1` only.
    *   `tf.keras.estimator.model_to_estimator` now supports exporting to
        `tf.train.Checkpoint format`, which allows the saved checkpoints to be
        compatible with `model.load_weights`.
    *   `keras.backend.resize_images` (and consequently,
        `keras.layers.Upsampling2D`) behavior has changed, a bug in the resizing
        implementation was fixed.
    *   Add an `implementation=3` mode for `tf.keras.layers.LocallyConnected2D`
        and `tf.keras.layers.LocallyConnected1D` layers using `tf.SparseTensor`
        to store weights, allowing a dramatic speedup for large sparse models.
    *   Raise error if `batch_size` argument is used when input is
        dataset/generator/keras sequence.
    *   Update TF 2.0 `keras.backend.name_scope` to use TF 2.0 `name_scope`.
    *   Add v2 module aliases for losses, metrics, initializers and optimizers:
        `tf.losses = tf.keras.losses` & `tf.metrics = tf.keras.metrics` &
        `tf.initializers = tf.keras.initializers` & `tf.optimizers =
        tf.keras.optimizers`.
    *   Updates binary cross entropy logic in Keras when input is probabilities.
        Instead of converting probabilities to logits, we are using the cross
        entropy formula for probabilities.
    *   Added public APIs for `cumsum` and `cumprod` keras backend functions.
    *   Add support for temporal sample weight mode in subclassed models.
    *   Raise `ValueError` if an integer is passed to the training APIs.
    *   Added fault-tolerance support for training Keras model via `model.fit()`
        with `MultiWorkerMirroredStrategy`, tutorial available.
    *   Custom Callback tutorial is now available.
    *   To train with `tf.distribute`, Keras API is recommended over estimator.
    *   `steps_per_epoch` and `steps` arguments are supported with numpy arrays.
    *   New error message when unexpected keys are used in
        sample_weight/class_weight dictionaries
    *   Losses are scaled in Keras compile/fit and not in the optimizers
        anymore. If you are using custom training loop, we have new utilities to
        help scale losses `tf.nn.compute_average_loss`,
        `tf.nn.scale_regularization_loss`.
    *   `Layer` apply and add_variable APIs are deprecated.
    *   Added support for channels first data format in cross entropy losses
        with logits and support for tensors with unknown ranks.
    *   Error messages will be raised if `add_update`, `add_metric`, `add_loss`,
        activity regularizers are used inside of a control flow branch.
    *   New loss reduction types:
    *   `AUTO`: Indicates that the reduction option will be determined by the
        usage context. For almost all cases this defaults to
        `SUM_OVER_BATCH_SIZE`. When used with `tf.distribute.Strategy`, outside
        of built-in training loops such as `tf.keras` `compile` and `fit`, we
        expect reduction value to be `SUM` or `NONE`. Using `AUTO` in that case
        will raise an error.
    *   `NONE`: Weighted losses with one dimension reduced (axis=-1, or axis
        specified by loss function). When this reduction type used with built-in
        Keras training loops like `fit`/`evaluate`, the unreduced vector loss is
        passed to the optimizer but the reported loss will be a scalar value.
    *   `SUM`: Scalar sum of weighted losses. 4. `SUM_OVER_BATCH_SIZE`: Scalar
        `SUM` divided by number of elements in losses. This reduction type is
        not supported when used with `tf.distribute.Strategy` outside of
        built-in training loops like `tf.keras` `compile`/`fit`.
    *   Wraps losses passed to the `compile` API (strings and v1 losses) which
        are not instances of v2 `Loss` class in `LossWrapper` class. => All
        losses will now use `SUM_OVER_BATCH_SIZE` reduction as default.
    *   `model.add_loss(symbolic_tensor)` should work in ambient eager.
    *   Update metric name to always reflect what the user has given in compile.
        Affects following cases
    *   When name is given as 'accuracy'/'crossentropy'
    *   When an aliased function name is used eg. 'mse'
    *   Removing the `weighted` prefix from weighted metric names.
    *   Allow non-Tensors through v2 losses.
    *   Add v2 sparse categorical crossentropy metric.
    *   Add v2 APIs for `AUCCurve` and `AUCSummationMethod` enums.
    *   `add_update` can now be passed a zero-arg callable in order to support
        turning off the update when setting `trainable=False` on a Layer of a
        Model compiled with `run_eagerly=True`.
    *   Standardize the LayerNormalization API by replacing the args `norm_axis`
        and `params_axis` with `axis`.
    *   Fixed critical bugs that help with DenseFeatures usability in TF2
*   `tf.lite`:
    *   Added evaluation script for `COCO` minival
    *   Add delegate support for `QUANTIZE`.
    *   Add `GATHER` support to NN API delegate.
    *   Added support for TFLiteConverter Python API in 2.0. Contains functions
        from_saved_model, from_keras_file, and from_concrete_functions.
    *   Add `EXPAND_DIMS` support to NN API delegate TEST.
    *   Add `narrow_range` attribute to QuantizeAndDequantizeV2 and V3.
    *   Added support for `tflite_convert` command line tool in 2.0.
    *   Post-training quantization tool supports quantizing weights shared by
        multiple operations. The models made with versions of this tool will use
        INT8 types for weights and will only be executable interpreters from
        this version onwards.
    *   Post-training quantization tool supports fp16 weights and GPU delegate
        acceleration for fp16.
    *   Add delegate support for `QUANTIZED_16BIT_LSTM`.
    *   Extracts `NNAPIDelegateKernel` from nnapi_delegate.cc
*   TensorRT
    *   Add TensorFlow 2.0-compatible `TrtGraphConverterV2` API for TensorRT
        conversion. TensorRT initialization arguments are now passed wrapped in
        a named-tuple, `TrtConversionParams`, rather than as separate arguments
        as in `TrtGraphConverter`.
    *   Changed API to optimize TensorRT engines during graph optimization. This
        is now done by calling `converter.build()` where previously
        `is_dynamic_op=False` would be set.
    *   `converter.convert()` no longer returns a `tf.function`. Now the
        function must be accessed from the saved model.
    *   The `converter.calibrate()` method has been removed. To trigger
        calibration, a `calibration_input_fn` should be provided to
        `converter.convert()`.
*   Other:
    *   Fix accidental quadratic graph construction cost in graph-mode
        `tf.gradients()`.
    *   ResourceVariable's gather op supports batch dimensions.
    *   ResourceVariable support for `gather_nd`.
    *   `ResourceVariable` and `Variable` no longer accepts `constraint` in the
        constructor, nor expose it as a @property.
    *   Added gradient for `SparseToDense` op.
    *   Expose a flag that allows the number of threads to vary across Python
        benchmarks.
    *   `image.resize` in 2.0 now supports gradients for the new resize kernels.
    *   `image.resize` now considers proper pixel centers and has new kernels
        (incl. anti-aliasing).
    *   Renamed `tf.image` functions to remove duplicate "image" where it is
        redundant.
    *   Variadic reduce is supported on CPU Variadic reduce is supported on CPU
    *   Remove unused `StringViewVariantWrapper`.
    *   Delete unused `Fingerprint64Map` op registration
    *   Add broadcasting support to `tf.matmul`.
    *   Add C++ Gradient for `BatchMatMulV2`.
    *   Add `tf.math.cumulative_logsumexp` operation.
    *   Add ellipsis (...) support for `tf.einsum()`.
    *   Add expand_composites argument to all `nest.*` methods.
    *   Added `strings.byte_split`.
    *   Add a new "result_type" parameter to `tf.strings.split`.
    *   Add name argument to `tf.string_split` and `tf.strings_split`.
    *   Extend `tf.strings.split` to support inputs with any rank.
    *   Added `tf.random.binomial`.
    *   Added `key` and `skip` methods to `random.experimental.Generator`.
    *   Extend `tf.function` with basic support for CompositeTensors arguments
        (such as `SparseTensor` and `RaggedTensor`).
    *   `parallel_for.pfor`: add converters for Softmax, LogSoftmax, IsNaN, All,
        Any, and MatrixSetDiag.
    *   `parallel_for`: add converters for LowerTriangularSolve and Cholesky.
    *   `parallel_for`: add converters for `LogMatrixDeterminant` and
        `MatrixBandPart`.
    *   `parallel_for`: Add converter for `MatrixDiag`.
    *   `parallel_for`: Add converters for `OneHot`, `LowerBound`, `UpperBound`.
    *   `parallel_for`: add converter for `BroadcastTo`.
    *   Add `pfor` converter for `Squeeze`.
    *   Add `RaggedTensor.placeholder()`.
    *   Add ragged tensor support to `tf.squeeze`.
    *   Update RaggedTensors to support int32 row_splits.
    *   Allow `LinearOperator.solve` to take a `LinearOperator`.
    *   Allow all dtypes for `LinearOperatorCirculant`.
    *   Introduce MaxParallelism method
    *   Add `LinearOperatorHouseholder`.
    *   Adds Philox support to new stateful RNG's XLA path.
    *   Added `TensorSpec` support for CompositeTensors.
    *   Added `tf.linalg.tridiagonal_solve` op.
    *   Added partial_pivoting input parameter to `tf.linalg.tridiagonal_solve`.
    *   Added gradient to `tf.linalg.tridiagonal_solve`.
    *   Added `tf.linalg.tridiagonal_mul op`.
    *   Added GPU implementation of `tf.linalg.tridiagonal_matmul`.
    *   Added `LinearOperatorToeplitz`.
    *   Upgraded LIBXSMM to version 1.11.
    *   Uniform processing of quantized embeddings by Gather and EmbeddingLookup
        Ops.
    *   Correct a misstatement in the documentation of the sparse softmax cross
        entropy logit parameter.
    *   Add `tf.ragged.boolean_mask`.
    *   `tf.switch_case` added, which selects a branch_fn based on a
        branch_index.
    *   The C++ kernel of gather op supports batch dimensions.
    *   Fixed default value and documentation for `trainable` arg of
        tf.Variable.
    *   `EagerTensor` now supports numpy buffer interface for tensors.
    *   This change bumps the version number of the `FullyConnected` Op to 5.
    *   Added new op: `tf.strings.unsorted_segment_join`.
    *   Added HW acceleration support for `topK_v2`.
    *   CloudBigtable version updated to v0.10.0 BEGIN_PUBLIC CloudBigtable
        version updated to v0.10.0.
    *   Expose `Head` as public API.
    *   Added `tf.sparse.from_dense` utility function.
    *   Improved ragged tensor support in `TensorFlowTestCase`.
    *   Added a function `nested_value_rowids` for ragged tensors.
    *   Added `tf.ragged.stack`.
    *   Makes the a-normal form transformation in Pyct configurable as to which
        nodes are converted to variables and which are not.
    *   `ResizeInputTensor` now works for all delegates.
    *   `tf.cond` emits a StatelessIf op if the branch functions are stateless
        and do not touch any resources.
    *   Add support of local soft device placement for eager op.
    *   Pass partial_pivoting to the `_TridiagonalSolveGrad`.
    *   Add HW acceleration support for `LogSoftMax`.
    *   Add guard to avoid acceleration of L2 Normalization with input rank != 4
    *   Fix memory allocation problem when calling `AddNewInputConstantTensor`.
    *   Delegate application failure leaves interpreter in valid state
    *   `tf.while_loop` emits a StatelessWhile op if the cond and body functions
        are stateless and do not touch any resources.
    *   `tf.cond`, `tf.while` and if and while in AutoGraph now accept a
        nonscalar predicate if has a single element. This does not affect non-V2
        control flow.
    *   Fix potential security vulnerability where decoding variant tensors from
        proto could result in heap out of bounds memory access.
    *   Only create a GCS directory object if the object does not already exist.
    *   Introduce `dynamic` constructor argument in Layer and Model, which
        should be set to `True` when using imperative control flow in the `call`
        method.
    *   Begin adding Go wrapper for C Eager API.
    *   XLA HLO graphs can be inspected with interactive_graphviz tool now.
    *   Add dataset ops to the graph (or create kernels in Eager execution)
        during the python Dataset object creation instead doing it during
        Iterator creation time.
    *   Add `batch_dims` argument to `tf.gather`.
    *   The behavior of `tf.gather` is now correct when `axis=None` and
        `batch_dims<0`.
    *   Update docstring for gather to properly describe the non-empty
        `batch_dims` case.
    *   Removing of dtype in the constructor of initializers and partition_info
        in call.
    *   Add `tf.math.nextafter` op.
    *   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
        dispatches the best kernel implementation based on CPU vector
        architecture. To disable them, build with
        `--define=tensorflow_mkldnn_contraction_kernel=0`.
    *   `tf.linspace(start, stop, num)` now always uses "stop" as last value
        (for num > 1)
    *   Added top-k to precision and recall to keras metrics.
    *   Add a ragged size op and register it to the op dispatcher
    *   Transitive dependencies on :`pooling_ops` were removed. Some users may
        need to add explicit dependencies on :`pooling_ops` if they reference
        the operators from that library.
    *   Add `CompositeTensor` base class.
    *   Malformed gif images could result in an access out of bounds in the
        color palette of the frame. This has been fixed now
    *   Add templates and interfaces for creating lookup tables
    *   `Tensor::UnsafeCopyFromInternal` deprecated in favor
        `Tensor::BitcastFrom`.
    *   In `map_vectorization` optimization, reduce the degree of parallelism in
        the vectorized map node.
    *   Add variant wrapper for `absl::string_view`.
    *   Add OpKernels for some stateless maps.
    *   DType is no longer convertible to an int. Use `dtype.as_datatype_enum`
        instead of `int(dtype)` to get the same result.
    *   Support both binary and -1/1 label input in v2 hinge and squared hinge
        losses.
    *   Added `LinearOperator.adjoint` and `LinearOperator.H` (alias).
    *   Expose CriticalSection in core as `tf.CriticalSection`.
    *   Enhanced graphviz output.
    *   Add opkernel templates for common table operations.
    *   Fix callbacks do not log values in eager mode when a deferred build
        model is used.
    *   `SignatureDef` util functions have been deprecated.
    *   Update `Fingerprint64Map` to use aliases
    *   Add legacy string flat hash map op kernels.
    *   Add support for `add_metric` in the graph function mode.
    *   Updating cosine similarity loss - removed the negate sign from cosine
        similarity.
    *   Changed default for gradient accumulation for TPU embeddings to true.
    *   Adds summary trace API for collecting graph and profile information.
    *   The `precision_mode` argument to `TrtGraphConverter` is now case
        insensitive.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
1e100, a6802739, 4d55397500, a6802739, Abdullah Selek, abenmao, Abolfazl
Shahbazi, Adam Richter, Adam Weiss, Ag Ramesh, Alan Du, Albin Joy, Alex, Alex
Itkes, Alex Sergeev, Alexander Pivovarov, Alexey Romanov, alhkad, Aman Patel,
Amit, Amit Kumar Jaiswal, Amit Srivastava, amoitra, Andreas Eberle, Andrew
Lihonosov, Andy Craze, Anshuman Tripathy, Anthony Hsu, Anthony Platanios, Anuj
Rawat, arp95, Arpit Shah, Armen Poghosov, armenpoghosov, Astropeak, Ashwin
Ramaswami, Arpit Shah, Augustina Ragwitz, Aurelien Geron, AuréLien Geron,
avasid, aweers, awesomealex1, Ayush Agrawal, Bas Aarts, Bastian Eichenberger,
Bairen Yi, Bayberry Z, Ben Barsdell, Benjamin Peterson, bhack, Bharat
Raghunathan, Bhavani Subramanian, Bin Fan, blairhan, BléNesi Attila, Bodin-E,
Brandon Carter, Bryan Cutler, candy.dc, Cao Zongyan, Casper Da Costa-Luis, Chao
Liu, Chen Guoyin, chenchc, chengchingwen, chie8842, Christian Hansen, Christoph
Boeddeker, Christopher Yeh, Clayne Robison, Coady, Patrick, crafet, csukuangfj,
ctiijima, Dan Jarvis, Dan Lazewatsky, Daniel Ingram, Daniel Rasmussen, Daniel
Salvadori, Dave Airlie, David Norman, Dayananda V, delock, Denis Khalikov, Deven
Desai, Dheeraj Rajaram Reddy, Diego Caballero, dmitrievanthony, Donovan Ong,
Drew Szurko, Duncan Dean, Duncan Riach, Dustin Neighly, Dwight J Lyle, Eamon
Ito-Fisher, eashtian3, Edward Forgacs, EFanZh, ejot, Elroy Ashtian Jr, Eric
Schweitz, Evgeniy Polyakov, Fangjun Kuang, Federico Martinez, Fei Hu, Felix
Lemke, Filip Matzner, FlashTek, fo40225, formath, FrançOis Chollet, frreiss,
Fred Reiss, Frederic Bastien, Fredrik Knutsson, G. Hussain Chinoy, Gabriel,
Gautam, gehring, Geoffrey Irving, George Grzegorz Pawelczak, Grzegorz Pawelczak,
George Sterpu, Gianluca Varisco, Gleb Popov, Greg Peatfield, Guillaume Klein,
Gurpreet Singh, Gustavo Lima Chaves, Gyoung-Yoon Ryoo, haison, Hanton Yang,
HanGuo97, Haraldur TóMas HallgríMsson, Hari Shankar, hehongliang, Heungsub Lee,
Hoeseong Kim, Huan Li (李卓桓), HåKon Sandsmark, I-Hong, I-Hong Jhuo, Ilham
Firdausi Putra, Ilango R, Imran Salam, Innovimax, Jacky Ko, Irene Dea, Ivan
Habernal, Jakub Lipinski, Jacky, Jason Zaman, Jason Zavaglia, jayhpark530,
jcf94, jefby, Jeff Daily, Jeff Poznanovic, Jeffrey Poznanovic, Jekyll Lai, jer,
Jeroen BéDorf, jerryyin, jhalakp, jiakai, Jia Qingtong, Jiankang, JiangXIAO, Joe
Bowser, Joe Q, Joe Quadrino, Joel Shapiro, Johan Gunnarsson, Jojimon Varghese,
Jonas Rauber, Jonathan Kyl, Jonathan, Joon, Joppe Geluykens, Joseph Friedman,
Josh Beal, jtressle, Julian Niedermeier, Junqin Zhang, Justin Dujardin, Justin
Tunis, jwu, K. Hodges, kaixih, Kaixi Hou, kjopek, Karl Lessard, Karl
Weinmeister, Karthik Muthuraman, Kashif Rasul, Kay Zhu, Kbhute-Ibm, KDR, Keno
Fischer, Kevin Mader, khanhlvg, Kilaru Yasaswi Sri Chandra Gandhi, Koan-Sin Tan,
Koock Yoon, kouml, ktaebum, Kyuwon Kim, Lakshay Tokas, Laurent Le Brun,
leike666666, leonard951, Leslie-Fang, Letian Kang, Li, Guizi, Loo Rong Jie,
Lucas Hendren, Lukas Folle, Lukas Geiger, Luke Han, luxupu, lvli, Ma, Guokai,
Mahmoud Abuzaina, Maksym Kysylov, Mandar Deshpande, manhyuk, Manraj Singh
Grover, Marco Gaido, Marek Drozdowski, Margaret Maynard-Reid, Mark Ryan, mars20,
Mateusz Chudyk, Matt Conley, mbhuiyan, mdfaijul, Mei Jie, Melissa Grueter,
merturl, MichaelKonobeev, Michael KäUfl, Michal W. Tarnowski, MickaëL
Schoentgen, Miguel Morin, Mihail Salnikov, Mikalai Drabovich, Mike Arpaia, Mike
Holcomb, minds, monklof, Moses Marin, mpppk, Mr. Metal, Mshr-H, musikisomorphie,
nammbash, Natalia Gimelshein, Nathan Luehr, Nayana-Ibm, Nayana Thorat, neargye,
Neeraj Pradhan, Nehal J Wani, Neil, Nick, Nick Lewycky, Niels Ole Salscheider,
Niklas SilfverströM, Niranjan Hasabnis, Nuka-137, Nutti, ocjosen, olicht,
omeir1, P Sudeepam, Paige Bailey, Palmer Lao, Pan Daoxin, Pariksheet Pinjari,
Pasquale Minervini, Patrick J. Lopresti, Patrik Gustavsson, Pavel Akhtyamov,
Pavel Samolysov, PENGWA, per1234, PeterLee, Phan Van Nguyen Duc, Philipp Jund,
Phillip Kravtsov, Pooya Davoodi, Pranav Marathe, Putra Manggala, Qingqing Cao, R
S Nikhil Krishna, Rajeshwar Reddy T, Ramon ViñAs, Rasmus Diederichsen, Reuben
Morais, robert, Rohit Gupta, Roland Zimmermann, Roman Soldatow, RonLek, Ruizhe,
Ryan Jiang, saishruthi, Saleem Abdulrasool, Samantha Andow, Sami Kama,
Sana-Damani, Saurabh Deoras, sdamani, Sean Morgan, seanshpark, Sebastien Iooss,
Serv-Inc, Severen Redwood, Shahzad Lone, Shashank Gupta, shashvat, Shashvat
Chand Shahi, Shubham Goyal, Shashi, Sigrid Keydana, Siju, Siju Samuel,
sleighsoft, smilu97, Snease-Abq, Son Tran, Spencer Schaber, sremedios, Srini511,
srinivasan.narayanamoorthy, Steve Lang, Steve Nesae, Subin, Sumesh Udayakumaran,
Sungmann Cho, sunway513, Supriya Rao, sxwang, Tae-Hwan Jung, Taehoon Lee, Takeo
Sawada, Taylor Jakobson, Taylor Thornton, Ted Chang, TengLu, terryky,
ThisIsIsaac, ThisIsPIRI, Thomas Deegan, Thomas Hagebols, tianyapiaozi, Till
Hoffmann, Tim Zaman, tomguluson92, Tongxuan Liu, Trent Lo, Trevor Morris,
TungJerry, Tyorden, Uday Bondhugula, v1incent, Vagif, Vasileios Lioutas,
vbvg2008, vcarpani, Vijay Ravichandran, Vikram Tiwari,Viktor Gal, Vishwak
Srinivasan, Vincent, Vishnuvardhan Janapati, Vitor-Alves, Vivek Suryamurthy,
wangsiyu, wateryzephyr, WeberXie, Wei Wang, WeijieSun, Wen-Heng (Jack) Chung,
wenxizhu, Will Battel, William D. Irons, winstonq, wyzhao, Xiaoming (Jason) Cui,
Xiaoquan Kong, Xin, Xinping Wang, Yan Facai (颜发才), Yann-Yy, Yasir Modak,
Yasuhiro Matsumoto, ymodak, Yong Tang, Yongfeng Gu, Younes Khoudli, Yuan Lin,
Yuan (Terry) Tang, Yuchen Ying, Yves-Noel Weweler, zhangyujing, zjjott, zyeric,
王振华 (Zhenhua Wang), 黄鑫
# Release 1.14.0
## Major Features and Improvements
*   This is the first 1.x release containing the compat.v2 module. This module
    is required to allow libraries to publish code which works in both 1.x and
    2.x. After this release, no backwards incompatible changes are allowed in
    the 2.0 Python API.
*   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
    dispatches the best kernel implementation based on CPU vector architecture.
    To disable them, build with --define=tensorflow_mkldnn_contraction_kernel=0.
## Behavioral changes
*   Set default loss reduction as `AUTO` for improving reliability of loss
    scaling with distribution strategy and custom training loops. `AUTO`
    indicates that the reduction option will be determined by the usage context.
    For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used in
    distribution strategy scope, outside of built-in training loops such as
    `tf.keras` `compile` and `fit`, we expect reduction value to be 'None' or
    'SUM'. Using other values will raise an error.
*   Wraps losses passed to the `compile` API (strings and v1 losses) which are
    not instances of v2 `Loss` class in `LossWrapper` class. => All losses will
    now use `SUM_OVER_BATCH_SIZE` reduction as default.
*   Disable `run_eagerly` and distribution strategy if there are symbolic
    tensors added to the model using `add_metric` or `add_loss`.
*   tf.linspace(start, stop, num) now always uses "stop" as last value (for
    num > 1)
*   `ResourceVariable` and `Variable` no longer accepts `constraint` in the
    constructor, nor expose it as a @property.
*   The behavior of tf.gather is now correct when axis=None and batch_dims<0.
*   Only create a GCS directory object if the object does not already exist.
*   In `map_vectorization` optimization, reduce the degree of parallelism in the
    vectorized map node.
*   Bug fix: loss and gradients should now more reliably be correctly scaled
    w.r.t. the global batch size when using a tf.distribute.Strategy.
*   Updating cosine similarity loss - removed the negate sign from cosine
    similarity.
*   DType is no longer convertible to an int. Use dtype.as_datatype_enum instead
    of int(dtype) to get the same result.
*   Changed default for gradient accumulation for TPU embeddings to true.
*   Callbacks now log values in eager mode when a deferred build model is used.
*   Transitive dependencies on :pooling_ops were removed. Some users may need to
    add explicit dependencies on :pooling_ops if they reference the operators
    from that library.
*   tf.keras.optimizers default learning rate changes:
    *   Adadelta: 1.000 to 0.001
    *   Adagrad: 0.01 to 0.001
    *   Adamax: 0.002 to 0.001
    *   NAdam: 0.002 to 0.001
## Bug Fixes and Other Changes
*   Documentation
*   Deprecations and Symbol renames.
    *   Remove unused StringViewVariantWrapper
    *   Delete unused Fingerprint64Map op registration
    *   SignatureDef util functions have been deprecated.
    *   Renamed tf.image functions to remove duplicate "image" where it is
        redundant.
    *   tf.keras.experimental.export renamed to
        tf.keras.experimental.export_saved_model
    *   Standardize the LayerNormalization API by replacing the args `norm_axis`
        and `params_axis` with `axis`.
    *   Tensor::UnsafeCopyFromInternal deprecated in favor Tensor::BitcastFrom
*   Keras & Python API
    *   Add v2 module aliases for:
    *   tf.initializers => tf.keras.initializers
    *   tf.losses => tf.keras.losses & tf.metrics => tf.keras.metrics
    *   tf.optimizers => tf.keras.optimizers
    *   Add tf.keras.layers.AbstractRNNCell as the preferred implementation of
        RNN cell for TF v2. User can use it to implement RNN cell with custom
        behavior.
    *   Adding `clear_losses` API to be able to clear losses at the end of
        forward pass in a custom training loop in eager.
    *   Add support for passing list of lists to the `metrics` param in Keras
        `compile`.
    *   Added top-k to precision and recall to keras metrics.
    *   Adding public APIs for `cumsum` and `cumprod` keras backend functions.
    *   Fix: model.add_loss(symbolic_tensor) should work in ambient eager.
    *   Add name argument to tf.string_split and tf.strings_split
    *   Minor change to SavedModels exported from Keras using
        tf.keras.experimental.export. (SignatureDef key for evaluation mode is
        now "eval" instead of "test"). This will be reverted back to "test" in
        the near future.
    *   Updates binary cross entropy logic in Keras when input is probabilities.
        Instead of converting probabilities to logits, we are using the cross
        entropy formula for probabilities.
    *   Raw TensorFlow functions can now be used in conjunction with the Keras
        Functional API during model creation. This obviates the need for users
        to create Lambda layers in most cases when using the Functional API.
        Like Lambda layers, TensorFlow functions that result in Variable
        creation or assign ops are not supported.
    *   Keras training and validation curves are shown on the same plot.
    *   Introduce `dynamic` constructor argument in Layer and Model, which
        should be set to True when using imperative control flow in the `call`
        method.
    *   Removing of dtype in the constructor of initializers and partition_info
        in call.
*   New ops and improved op functionality
    *   Add OpKernels for some stateless maps
    *   Add v2 APIs for AUCCurve and AUCSummationMethod
        enums. #tf-metrics-convergence
    *   Add tf.math.nextafter op.
    *   Add CompositeTensor base class.
    *   Add tf.linalg.tridiagonal_solve op.
    *   Add opkernel templates for common table operations.
    *   Added support for TFLite in TensorFlow 2.0.
    *   Adds summary trace API for collecting graph and profile information.
    *   Add batch_dims argument to tf.gather.
    *   Add support for `add_metric` in the graph function mode.
    *   Add C++ Gradient for BatchMatMulV2.
    *   Added tf.random.binomial
    *   Added gradient for SparseToDense op.
    *   Add legacy string flat hash map op kernels
    *   Add a ragged size op and register it to the op dispatcher
    *   Add broadcasting support to tf.matmul.
    *   Add ellipsis (...) support for tf.einsum()
    *   Added LinearOperator.adjoint and LinearOperator.H (alias).
    *   Added GPU implementation of tf.linalg.tridiagonal_solve.
    *   Added strings.byte_split
    *   Add RaggedTensor.placeholder()
    *   Add a new "result_type" parameter to tf.strings.split
    *   `add_update` can now be passed a zero-arg callable in order to support
        turning off the update when setting `trainable=False` on a Layer of a
        Model compiled with `run_eagerly=True`.
    *   Add variant wrapper for absl::string_view
    *   Add expand_composites argument to all nest.* methods.
    *   Add pfor converter for Squeeze.
    *   Bug fix for tf.tile gradient
    *   Expose CriticalSection in core as tf.CriticalSection.
    *   Update Fingerprint64Map to use aliases
    *   ResourceVariable support for gather_nd.
    *   ResourceVariable's gather op supports batch dimensions.
    *   Variadic reduce is supported on CPU
    *   Extend tf.function with basic support for CompositeTensors arguments
        (such as SparseTensor and RaggedTensor).
    *   Add templates and interfaces for creating lookup tables
    *   Post-training quantization tool supports quantizing weights shared by
        multiple operations. The models made with versions of this tool will use
        INT8 types for weights and will only be executable interpreters from
        this version onwards.
    *   Malformed gif images could result in an access out of bounds in the
        color palette of the frame. This has been fixed now
    *   image.resize now considers proper pixel centers and has new kernels
        (incl. anti-aliasing).
    *   Added an isotonic regression solver (tf.nn.isotonic_regression).
*   Performance
    *   Turn on MKL-DNN contraction kernels by default. MKL-DNN dynamically
        dispatches the best kernel implementation based on CPU vector
        architecture. To disable them, build with
        --define=tensorflow_mkldnn_contraction_kernel=0.
    *   Support for multi-host ncclAllReduce in Distribution Strategy.
    *   Expose a flag that allows the number of threads to vary across Python
        benchmarks.
*   TensorFlow 2.0 Development
    *   Add v2 sparse categorical crossentropy metric.
    *   Allow non-Tensors through v2 losses.
    *   Add UnifiedGRU as the new GRU implementation for tf2.0. Change the
        default recurrent activation function for GRU from 'hard_sigmoid' to
        'sigmoid', and 'reset_after' to True in 2.0. Historically recurrent
        activation is 'hard_sigmoid' since it is fast than 'sigmoid'. With new
        unified backend between CPU and GPU mode, since the CuDNN kernel is
        using sigmoid, we change the default for CPU mode to sigmoid as well.
        With that, the default GRU will be compatible with both CPU and GPU
        kernel. This will enable user with GPU to use CuDNN kernel by default
        and get a 10x performance boost in training. Note that this is
        checkpoint breaking change. If user want to use their 1.x pre-trained
        checkpoint, please construct the layer with
        GRU(recurrent_activation='hard_sigmoid', reset_after=False) to fallback
        to 1.x behavior.
    *   TF 2.0 - Update metric name to always reflect what the user has given in
        compile. Affects following cases 1. When name is given as
        'accuracy'/'crossentropy' 2. When an aliased function name is used eg.
        'mse' 3. Removing the `weighted` prefix from weighted metric names.
    *   Begin adding Go wrapper for C Eager API
    *   image.resize in 2.0 now supports gradients for the new resize kernels.
    *   removed tf.string_split from v2 API
    *   Expose tf.contrib.proto.* ops in tf.io (they will exist in TF2)
    *   "Updates the TFLiteConverter API in 2.0. Changes from_concrete_function
        to from_concrete_functions."
    *   Enable tf.distribute.experimental.MultiWorkerMirroredStrategy working in
        eager mode.
    *   Support both binary and -1/1 label input in v2 hinge and squared hinge
        losses.
*   TensorFlow Lite
    *   "Adds support for tflite_convert in 2.0."
    *   "Remove lite.OpHint, lite.experimental, and lite.constant from 2.0 API."
*   tf.contrib
    *   Added Neural Turing Implementation as described in
        https://arxiv.org/abs/1807.08518.
    *   Remove tf.contrib.timeseries dependency on TF distributions.
*   tf.data
    *   Add num_parallel_reads and passing in a Dataset containing filenames
        into TextLineDataset and FixedLengthRecordDataset
    *   Going forward we operate in TF 2.0, this change is part of the effort to
        slowly converting XYZDataset to DatasetV2 type which is the official
        version going to be used in TF 2.0 and motivated by some compatibility
        issue found, _BigtableXYZDataset (of type DatasetV2) does not implement
        the _as_variant_tensor() of DatasetV1, when moving contrib.bigtable to
        tensorflow_io. Converting into DatasetV2 removes the overheads to
        maintain V1 while we are moving into TF 2.0.
    *   Add dataset ops to the graph (or create kernels in Eager execution)
        during the python Dataset object creation instead doing it during
        Iterator creation time.
    *   Add support for TensorArrays to tf.data Dataset.
    *   Switching tf.data functions to use `defun`, providing an escape hatch to
        continue using the legacy `Defun`.
*   Toolchains
    *   CUDNN_INSTALL_PATH, TENSORRT_INSTALL_PATH, NCCL_INSTALL_PATH,
        NCCL_HDR_PATH are deprecated. Use TF_CUDA_PATHS instead which supports a
        comma-separated list of base paths that are searched to find CUDA
        libraries and headers.
    *   TF code now resides in `tensorflow_core` and `tensorflow` is just a
        virtual pip package. No code changes are needed for projects using
        TensorFlow, the change is transparent
*   XLA
    *   XLA HLO graphs can be inspected with interactive_graphviz tool now.
*   Estimator
    *   Use tf.compat.v1.estimator.inputs instead of tf.estimator.inputs
    *   Replace contrib references with tf.estimator.experimental.* for apis in
        early_stopping.py
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
1e100, 4d55397500, a6802739, abenmao, Adam Weiss, Ag Ramesh, Alan Du, Albin Joy,
Alex, Aman Patel, Amit, Amit Kumar Jaiswal, Amit Srivastava, Andreas Eberle,
Andy Craze, Anthony Platanios, Armen Poghosov, armenpoghosov, arp95, Arpit Shah,
Ashwin Ramaswami, Aurelien Geron, AuréLien Geron, aweers, awesomealex1, Ayush
Agrawal, Ben Barsdell, Bharat Raghunathan, Bhavani Subramanian, blairhan,
BléNesi Attila, Brandon Carter, candy.dc, Chao Liu, chenchc, chie8842, Christian
Hansen, Christian Sigg, Clayne Robison, crafet, csukuangfj, ctiijima, Dan
Jarvis, Dan Lazewatsky, Daniel Ingram, Daniel Salvadori, Dave Airlie, David
Norman, Dayananda V, Dayananda-V, delock, Denis Khalikov, Deven Desai, Dheeraj
Rajaram Reddy, dmitrievanthony, Donovan Ong, Drew Szurko, Duncan Riach, Dustin
Neighly, Edward Forgacs, EFanZh, Fei Hu, Felix Lemke, Filip Matzner, fo40225,
frreiss, Gautam, gehring, Geoffrey Irving, Grzegorz George Pawelczak, Grzegorz
Pawelczak, Gyoung-Yoon Ryoo, HanGuo97, Hanton Yang, Hari Shankar, hehongliang,
Heungsub Lee, Hoeseong Kim, I-Hong Jhuo, Ilango R, Innovimax, Irene Dea, Jacky
Ko, Jakub Lipinski, Jason Zaman, jcf94, Jeffrey Poznanovic, Jens Elofsson,
Jeroen BéDorf, Jia Qingtong, Jiankang, Joe Q, Joe Quadrino, Joeran Beel, Jonas
Rauber, Jonathan, Jonathan Kyl, Joppe Geluykens, Joseph Friedman, jtressle, jwu,
K Yasaswi Sri Chandra Gandhi, K. Hodges, Kaixi Hou, Karl Lessard, Karl
Weinmeister, Karthik Muthuraman, Kashif Rasul, KDR, Keno Fischer, Kevin Mader,
kjopek, Koan-Sin Tan, kouml, ktaebum, Lakshay Tokas, Laurent Le Brun, Letian
Kang, Li, Guizi, Loo Rong Jie, Lucas Hendren, Lukas Geiger, Luke Han, luxupu,
Ma, Guokai, Mahmoud Abuzaina, Mandar Deshpande, manhyuk, Marco Gaido, Marek
Drozdowski, Mark Collier, Mark Ryan, mars20, Mateusz Chudyk, Matt Conley,
MattConley, mbhuiyan, mdfaijul, Melissa Grueter, Michael KäUfl, MickaëL
Schoentgen, Miguel Morin, Mihail Salnikov, Mike Arpaia, Mike Holcomb, monklof,
Moses Marin, Mshr-H, nammbash, Natalia Gimelshein, Nayana-Ibm, neargye, Neeraj
Pradhan, Nehal J Wani, Nick, Niels Ole Salscheider, Niranjan Hasabnis, nlewycky,
Nuka-137, Nutti, olicht, P Sudeepam, Palmer Lao, Pan Daoxin, Pariksheet Pinjari,
Pavel Samolysov, PENGWA, Pooya Davoodi, R S Nikhil Krishna, Rohit Gupta, Roman
Soldatow, rthadur, Ruizhe, Ryan Jiang, Samantha Andow, Sami Kama, Sana-Damani,
Saurabh Deoras, sdamani, seanshpark, Sebastien Iooss, Serv-Inc, Shahzad Lone,
Shashank Gupta, Shashi, shashvat, shashvatshahi1998, Siju, Siju Samuel,
Snease-Abq, Spencer Schaber, sremedios, srinivasan.narayanamoorthy, Steve Lang,
Steve Nesae, Sumesh Udayakumaran, Supriya Rao, Taylor Jakobson, Taylor Thornton,
Ted Chang, ThisIsPIRI, Thomas Deegan, Thomas Hagebols, tianyapiaozi, Tim Zaman,
tomguluson92, Tongxuan Liu, TungJerry, v1incent, Vagif, vcarpani, Vikram Tiwari,
Vishwak Srinivasan, Vitor-Alves, wangsiyu, wateryzephyr, WeberXie, WeijieSun,
Wen-Heng (Jack) Chung, wenxizhu, Will Battel, William D. Irons, wyzhao, Xin,
Yasuhiro Matsumoto, ymodak, Yong Tang, Younes Khoudli, Yuan Lin, Yves-Noel
Weweler, Zantares, zjjott, 卜居, 王振华 (Wang Zhenhua), 黄鑫
# Release 1.12.3
## Bug Fixes and Other Changes
*   Updates `png_archive` dependency to 1.6.37 to not be affected by
    CVE-2019-7317, CVE-2018-13785, and CVE-2018-14048.
*   Updates `sqlite` dependency to 3.28.0 to not be affected by CVE-2018-20506,
    CVE-2018-20346, and CVE-2018-20505.
# Release 1.12.2
## Bug Fixes and Other Changes
*   Fixes a potential security vulnerability where carefully crafted GIF images
    can produce a null pointer dereference during decoding.
# Release 1.13.0
## Major Features and Improvements
*   TensorFlow Lite has moved from contrib to core. This means that Python
    modules are under `tf.lite` and source code is now under `tensorflow/lite`
    rather than `tensorflow/contrib/lite`.
*   TensorFlow GPU binaries are now built against CUDA 10 and TensorRT 5.0.
*   Support for Python3.7 on all operating systems.
*   Moved NCCL to core.
## Behavioral changes
*   Disallow conversion of python floating types to uint32/64 (matching behavior
    of other integer types) in `tf.constant`.
*   Make the `gain` argument of convolutional orthogonal initializers
    (`convolutional_delta_orthogonal`, `convolutional_orthogonal_1D`,
    `convolutional_orthogonal_2D`, `convolutional_orthogonal_3D`) have
    consistent behavior with the `tf.initializers.orthogonal` initializer, i.e.
    scale the output l2-norm by `gain` and NOT by `sqrt(gain)`. (Note that these
    functions are currently in `tf.contrib` which is not guaranteed backward
    compatible).
## Bug Fixes and Other Changes
*   Documentation
    *   Update the doc with the details about the rounding mode used in
        quantize_and_dequantize_v2.
    *   Clarify that tensorflow::port::InitMain() *should* be called before
        using the TensorFlow library. Programs failing to do this are not
        portable to all platforms.
*   Deprecations and Symbol renames.
    *   Removing deprecations for the following endpoints: `tf.acos`,
        `tf.acosh`, `tf.add`, `tf.as_string`, `tf.asin`, `tf.asinh`, `tf.atan`,
        `tf.atan2`, `tf.atanh`, `tf.cos`, `tf.cosh`, `tf.equal`, `tf.exp`,
        `tf.floor`, `tf.greater`, `tf.greater_equal`, `tf.less`,
        `tf.less_equal`, `tf.log`, `tf.logp1`, `tf.logical_and`,
        `tf.logical_not`, `tf.logical_or`, `tf.maximum`, `tf.minimum`,
        `tf.not_equal`, `tf.sin`, `tf.sinh`, `tf.tan`
    *   Deprecate `tf.data.Dataset.shard`.
    *   Deprecate `saved_model.loader.load` which is replaced by
        `saved_model.load` and `saved_model.main_op`, which will be replaced by
        `saved_model.main_op` in V2.
    *   Deprecate tf.QUANTIZED_DTYPES. The official new symbol is
        tf.dtypes.QUANTIZED_DTYPES.
    *   Update sklearn imports for deprecated packages.
    *   Deprecate `Variable.count_up_to` and `tf.count_up_to` in favor of
        `Dataset.range`.
    *   Export `confusion_matrix` op as `tf.math.confusion_matrix` instead of
        `tf.train.confusion_matrix`.
    *   Add `tf.dtypes.` endpoint for every constant in dtypes.py. Moving
        endpoints in versions.py to corresponding endpoints in `tf.sysconfig.`
        and `tf.version.`. Moving all constants under `tf.saved_model`
        submodules to `tf.saved_model` module. New endpoints are added in V1 and
        V2 but existing endpoint removals are only applied in V2.
    *   Deprecates behavior where device assignment overrides collocation
        constraints inside a collocation context manager.
*   Keras & Python API
    *   Add to Keras functionality analogous to
        `tf.register_tensor_conversion_function`.
    *   Subclassed Keras models can now be saved through
        `tf.contrib.saved_model.save_keras_model`.
    *   `LinearOperator.matmul` now returns a new `LinearOperator`.
*   New ops and improved op functionality
    *   Add a Nearest Neighbor Resize op.
    *   Add an `ignore_unknown` argument to `parse_values` which suppresses
        ValueError for unknown hyperparameter types. Such * Add
        `tf.linalg.matvec` convenience function.
    *   `tf.einsum()`raises `ValueError` for unsupported equations like
        `"ii->"`.
    *   Add DCT-I and IDCT-I in `tf.signal.dct` and `tf.signal.idct`.
    *   Add LU decomposition op.
    *   Add quantile loss to gradient boosted trees in estimator.
    *   Add `round_mode` to `QuantizeAndDequantizeV2` op to select rounding
        algorithm.
    *   Add `unicode_encode`, `unicode_decode`, `unicode_decode_with_offsets`,
        `unicode_split`, `unicode_split_with_offset`, and `unicode_transcode`
        ops. Amongst other things, this Op adds the ability to encode, decode,
        and transcode a variety of input text encoding formats into the main
        Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)
    *   Add "unit" attribute to the substr op, which allows obtaining the
        substring of a string containing unicode characters.
    *   Broadcasting support for Ragged Tensors.
    *   `SpaceToDepth` supports uint8 data type.
    *   Support multi-label quantile regression in estimator.
    *   We now use "div" as the default partition_strategy in
        `tf.nn.safe_embedding_lookup_sparse`, `tf.nn.sampled_softmax` and
        `tf.nn.nce_loss`. hyperparameter are ignored.
*   Performance
    *   Improve performance of GPU cumsum/cumprod by up to 300x.
    *   Added support for weight decay in most TPU embedding optimizers,
        including AdamW and MomentumW.
*   TensorFlow 2.0 Development
    *   Add a command line tool to convert to TF2.0, tf_upgrade_v2
    *   Merge `tf.spectral` into `tf.signal` for TensorFlow 2.0.
    *   Change the default recurrent activation function for LSTM from
        'hard_sigmoid' to 'sigmoid' in 2.0. Historically recurrent activation is
        'hard_sigmoid' since it is fast than 'sigmoid'. With new unified backend
        between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we
        change the default for CPU mode to sigmoid as well. With that, the
        default LSTM will be compatible with both CPU and GPU kernel. This will
        enable user with GPU to use CuDNN kernel by default and get a 10x
        performance boost in training. Note that this is checkpoint breaking
        change. If user want to use their 1.x pre-trained checkpoint, please
        construct the layer with LSTM(recurrent_activation='hard_sigmoid') to
        fallback to 1.x behavior.
*   TensorFlow Lite
    *   Move from `tensorflow/contrib/lite` to `tensorflow/lite`.
    *   Add experimental Java API for injecting TensorFlow Lite delegates
    *   Add support for strings in TensorFlow Lite Java API.
*   `tf.contrib`:
    *   Add Apache Ignite Filesystem plugin to support accessing Apache IGFS.
    *   Dropout now takes `rate` argument, `keep_prob` is deprecated.
    *   Estimator occurrences references `tf.contrib.estimator` were changed to
        `tf.estimator`:
    *   `tf.contrib.estimator.BaselineEstimator` with
        `tf.estimator.BaselineEstimator`
    *   `tf.contrib.estimator.DNNLinearCombinedEstimator` with
        `tf.estimator.DNNLinearCombinedEstimator`
    *   `tf.contrib.estimator.DNNEstimator` with `tf.estimator.DNNEstimator`
    *   `tf.contrib.estimator.LinearEstimator` with
        `tf.estimator.LinearEstimator`
    *   `tf.contrib.estimator.InMemoryEvaluatorHook` and
        tf.estimator.experimental.InMemoryEvaluatorHook`.
    *   `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
        `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`.
    *   Expose `tf.distribute.Strategy as the new name for
        tf.contrib.distribute.DistributionStrategy.
    *   Migrate linear optimizer from contrib to core.
    *   Move `tf.contrib.signal` to `tf.signal` (preserving aliases in
        tf.contrib.signal).
    *   Users of `tf.contrib.estimator.export_all_saved_models` and related
        should switch to
        `tf.estimator.Estimator.experimental_export_all_saved_models`.
*   tf.data:
    *   Add `tf.data.experimental.StatsOptions()`, to configure options to
        collect statistics from `tf.data.Dataset` pipeline using
        `StatsAggregator`. Add nested option, `experimental_stats` (which takes
        a `tf.data.experimen tal.StatsOptions` object), to `tf.data.Options`.
        Deprecates `tf.data.experimental.set_stats_agregator`.
    *   Performance optimizations:
    *   Add `tf.data.experimental.OptimizationOptions()`, to configure options
        to enable `tf.data` performance optimizations. Add nested option,
        `experimental_optimization` (which takes a
        `tf.data.experimental.OptimizationOptions` object), to
        `tf.data.Options`. Remove performance optimization options from
        `tf.data.Options`, and add them under
        `tf.data.experimental.OptimizationOptions` instead.
    *   Enable `map_and_batch_fusion` and `noop_elimination` optimizations by
        default. They can be disabled by configuring
        `tf.data.experimental.OptimizationOptions` to set `map_and_batch =
        False` or `noop_elimination = False` respectively. To disable all
        default optimizations, set `apply_default_optimizations = False`.
    *   Support parallel map in `map_and_filter_fusion`.
    *   Disable static optimizations for input pipelines that use non-resource
        `tf.Variable`s.
    *   Add NUMA-aware MapAndBatch dataset.
    *   Deprecate `tf.data.Dataset.make_one_shot_iterator()` in V1, removed it
        from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.
    *   Deprecate `tf.data.Dataset.make_initializable_iterator()` in V1, removed
        it from V2, and added `tf.compat.v1.data.make_initializable_iterator()`.
    *   Enable nested dataset support in core `tf.data` transformations.
    *   For `tf.data.Dataset` implementers: Added
        `tf.data.Dataset._element_structured property` to replace
        `Dataset.output_{types,shapes,classes}`.
    *   Make `num_parallel_calls` of `tf.data.Dataset.interleave` and
        `tf.data.Dataset.map` work in Eager mode.
*   Toolchains
    *   Fixed OpenSSL compatibility by avoiding `EVP_MD_CTX_destroy`.
    *   Added bounds checking to printing deprecation warnings.
    *   Upgraded CUDA dependency to 10.0
    *   To build with Android NDK r14b, add "#include <linux/compiler.h>" to
        android-ndk-r14b/platforms/android-14/arch-*/usr/include/linux/futex.h
    *   Removed `:android_tensorflow_lib_selective_registration*` targets, use
        `:android_tensorflow_lib_lite*` targets instead.
*   XLA
    *   Move `RoundToEven` function to xla/client/lib/math.h.
    *   A new environment variable `TF_XLA_DEBUG_OPTIONS_PASSTHROUGH` set to "1"
        or "true" allows the debug options passed within an XRTCompile op to be
        passed directly to the XLA compilation backend. If such variable is not
        set (service side), only a restricted set will be passed through.
    *   Allow the XRTCompile op to return the ProgramShape resulted form the XLA
        compilation as a second return argument.
    *   XLA HLO graphs can now be rendered as SVG/HTML.
*   Estimator
    *   Replace all occurrences of `tf.contrib.estimator.BaselineEstimator` with
        `tf.estimator.BaselineEstimator`
    *   Replace all occurrences of
        `tf.contrib.estimator.DNNLinearCombinedEstimator` with
        `tf.estimator.DNNLinearCombinedEstimator`
    *   Replace all occurrences of `tf.contrib.estimator.DNNEstimator` with
        `tf.estimator.DNNEstimator`
    *   Replace all occurrences of `tf.contrib.estimator.LinearEstimator` with
        `tf.estimator.LinearEstimator`
    *   Users of `tf.contrib.estimator.export_all_saved_models` and related
        should switch to
        `tf.estimator.Estimator.experimental_export_all_saved_models`.
    *   Update `regression_head` to the new Head API for Canned Estimator V2.
    *   Switch `multi_class_head` to Head API for Canned Estimator V2.
    *   Replace all occurrences of `tf.contrib.estimator.InMemoryEvaluatorHook`
        and `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
        `tf.estimator.experimental.InMemoryEvaluatorHook` and
        `tf.estimator.experimental.make_stop_at_checkpoint_step_hook`
    *   Migrate linear optimizer from contrib to core.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Abhinav Upadhyay, Ag Ramesh, akikaaa, Alexis Louis, Anders Huss, Andreas Madsen,
Andrew Banchich, Andy Craze, Anton Dmitriev, Artem Malykh, Avijit-Nervana,
Balint Cristian, Benjamin Tan Wei Hao, Bhavani Subramanian, Brendan Finan, Brian
Nemsick, Bryan Cutler, By Shen, Cao Zongyan, Castiel, Chris Antaki, Christian
Goll, Cibifang, Clayne Robison, Codrut Grosu, Cong Xu, Dalmo Cirne, Daniel
Hunter, Dougal J. Sutherland, Edvard Fagerholm, EFanZh, Erik Smistad, Evgeniy
Polyakov, Feiyang Chen, franklin5, Fred Reiss, Gautam, gehring, Geoffrey Irving,
George Sterpu, Gitea, Grzegorz George Pawelczak, Guozhong Zhuang, himkt,
Hoeseong Kim, Huan Li (李卓桓), HuiyangFei, hyunyoung, Isaac Burbank, jackonan,
Jacky Ko, Jason Furmanek, Jason Zaman, Javier Luraschi, Jiang,Zhoulong, joaak,
John Lin, Jonathan Wyatt Hoech, josephyearsley, Josh Gordon, Julian Niedermeier,
Karl Lessard, Keno Fischer, lanhin, Leon Graser, leondgarse, Li, Guizi, Li,
Yiqiang, lxl910915, Mahmoud Abuzaina, manhyuk, Marcela Morales Quispe,
margaretmz, Matt Conley, Max Pumperla, mbhuiyan, mdfaijul, Meng, Peng, Michael,
Michael Gielda, mrTsjolder, Muhammad Wildan, neargye, Nehal J Wani, NEWPLAN,
Niranjan Hasabnis, Nutti, olicht, Pan Daoxin, Pedro Monreal, Peng Yu,
pillarpond, Pooya Davoodi, qiezi, Rholais Lii, Richard Yu, Rin Arakaki, Roger
Iyengar, sahilbadyal, Sami Kama, Sandip Giri, Scott Leishman, Serge Panev,
Seunghoon Park, Shafi Dayatar, shengfuintel, Shimin Guo, Siju, silent567, Stefan
Dyulgerov, steven, Tao Wei, Thor Johnsen, Tingbo Lu, tomguluson92, Tongxuan Liu,
Trevor Morris, Ubuntu, Vadim Borisov, vanderliang, wangsiyu, Wen Yun, Wen-Heng
(Jack) Chung, wenxizhu, William D. Irons, Xiaoming (Jason) Cui, Yan Facai (颜发才),
Yanbo Liang, Yaniv Blumenfeld, Yash Gaurkar, Yicheng Fan, Yong Tang, Yongjoon
Lee, Yuan (Terry) Tang, Yuxin Wu, zldrobit
# Release 1.12.0
## Major Features and Improvements
*   Keras models can now be directly exported to the SavedModel
    format(`tf.contrib.saved_model.save_keras_model()`) and used with Tensorflow
    Serving.
*   Keras models now support evaluating with a `tf.data.Dataset`.
*   TensorFlow binaries are built with XLA support linked in by default.
*   Ignite Dataset added to contrib/ignite that allows to work with Apache
    Ignite.
## Bug Fixes and Other Changes
*   tf.data:
    *   tf.data users can now represent, get, and set options of TensorFlow
        input pipelines using `tf.data.Options()`, `tf.data.Dataset.options()`,
        and `tf.data.Dataset.with_options()` respectively.
    *   New `tf.data.Dataset.reduce()` API allows users to reduce a finite
        dataset to a single element using a user-provided reduce function.
    *   New `tf.data.Dataset.window()` API allows users to create finite windows
        of input dataset; when combined with the `tf.data.Dataset.reduce()` API,
        this allows users to implement customized batching.
    *   All C++ code moves to the `tensorflow::data` namespace.
    *   Add support for `num_parallel_calls` to `tf.data.Dataset.interleave`.
*   `tf.contrib`:
    *   Remove `tf.contrib.linalg`. `tf.linalg` should be used instead.
    *   Replace any calls to `tf.contrib.get_signature_def_by_key(metagraph_def,
        signature_def_key)` with
        `meta_graph_def.signature_def[signature_def_key]`. Catching a ValueError
        exception thrown by `tf.contrib.get_signature_def_by_key` should be
        replaced by catching a KeyError exception.
*   `tf.contrib.data`
    *   Deprecate, and replace by tf.data.experimental.
*   Other:
    *   Instead of jemalloc, revert back to using system malloc since it
        simplifies build and has comparable performance.
    *   Remove integer types from `tf.nn.softplus` and `tf.nn.softsign` OpDefs.
        This is a bugfix; these ops were never meant to support integers.
    *   Allow subslicing Tensors with a single dimension.
    *   Add option to calculate string length in Unicode characters.
    *   Add functionality to SubSlice a tensor.
    *   Add searchsorted (ie lower/upper_bound) op.
    *   Add model explainability to Boosted Trees.
    *   Support negative positions for tf.substr.
    *   There was previously a bug in the bijector_impl where the
        _reduce_jacobian_det_over_event does not handle scalar ILDJ
        implementations properly.
    *   In tf eager execution, allow re-entering a GradientTape context.
    *   Add tf_api_version flag. If --define=tf_api_version=2 flag is passed in,
        then bazel will build TensorFlow API version 2.0. Note that TensorFlow
        2.0 is under active development and has no guarantees at this point.
    *   Add additional compression options to TfRecordWriter.
    *   Performance improvements for regex full match operations.
    *   Replace tf.GraphKeys.VARIABLES with `tf.GraphKeys.GLOBAL_VARIABLES`.
    *   Remove unused dynamic learning rate support.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
(David) Siu-Kei Muk, Ag Ramesh, Anton Dmitriev, Artem Sobolev, Avijit-Nervana,
Bairen Yi, Bruno Goncalves, By Shen, candy.dc, Cheng Chen, Clayne Robison,
coder3101, Dao Zhang, Elms, Fei Hu, feiquan, Geoffrey Irving, Guozhong Zhuang,
hellcom, Hoeseong Kim, imsheridan, Jason Furmanek, Jason Zaman, Jenny Sahng,
jiefangxuanyan, Johannes Bannhofer, Jonathan Homer, Koan-Sin Tan, kouml, Loo
Rong Jie, Lukas Geiger, manipopopo, Ming Li, Moritz KröGer, Naurril, Niranjan
Hasabnis, Pan Daoxin, Peng Yu, pengwa, rasmi, Roger Xin, Roland Fernandez, Sami
Kama, Samuel Matzek, Sangjung Woo, Sergei Lebedev, Sergii Khomenko, shaohua,
Shaohua Zhang, Shujian2015, Sunitha Kambhampati, tomguluson92, ViníCius Camargo,
wangsiyu, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Xin Jin, Yan
Facai (颜发才), Yanbo Liang, Yash Katariya, Yong Tang, 在原佐为
# Release 1.11.0
## Major Features and Improvements
*   Nvidia GPU:
    *   Prebuilt binaries are now (as of TensorFlow 1.11) built against cuDNN
        7.2 and TensorRT 4. See updated install guides:
        [Installing TensorFlow on Ubuntu](https://www.tensorflow.org/install/install_linux#tensorflow_gpu_support)
*   Google Cloud TPU:
    *   Experimental tf.data integration for Keras on Google Cloud TPUs.
    *   Experimental / preview support for eager execution on Google Cloud TPUs.
*   DistributionStrategy:
    *   Add multi-GPU DistributionStrategy support in tf.keras. Users can now
        use `fit`, `evaluate` and `predict` to distribute their model on
        multiple GPUs.
    *   Add multi-worker DistributionStrategy and standalone client support in
        Estimator. See
        [README](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute)
        for more details.
*   Add C, C++, and Python functions for querying kernels.
## Breaking Changes
*   Keras:
    *   The default values for tf.keras `RandomUniform`, `RandomNormal`, and
        `TruncatedNormal` initializers have been changed to match those in
        external Keras.
    *   Breaking change: `model.get_config()` on a Sequential model now returns
        a config dictionary (consistent with other Model instances) instead of a
        list of configs for the underlying layers.
## Bug Fixes and Other Changes
*   C++:
    *   Changed the signature of SessionFactory::NewSession so that it can
        return a meaningful error message on failure.
*   tf.data:
    *   Remove `num_parallel_parser_calls` argument from
        `tf.contrib.data.make_csv_dataset()`. [tf.data] Remove
        `num_parallel_parser_calls` argument from
        `tf.contrib.data.make_csv_dataset()`.
    *   `tf.data.Dataset.list_files()` raises an exception at initialization
        time if the argument matches no files.
    *   Renamed BigTable class to BigtableTable for clarity
    *   Document use of the Cloud Bigtable API
    *   Add `tf.contrib.data.reduce_dataset` which can be used to reduce a
        dataset to a single element.
    *   Generalization of `tf.contrib.data.sliding_window_batch`.
*   INC:
    *   Runtime improvements to triangular solve.
*   `tf.contrib`:
    *   Add an `implementation` argument to `tf.keras.layers.LocallyConnected2D`
        and `tf.keras.layers.LocallyConnected1D`. The new mode
        (`implementation=2`) performs forward pass as a single dense matrix
        multiplication, allowing dramatic speedups in certain scenarios (but
        worse performance in others - see docstring). The option also allows to
        use `padding=same`.
    *   Add documentation clarifying the differences between tf.fill and
        tf.constant.
    *   Add experimental IndexedDatasets.
    *   Add selective registration target using the lite proto runtime.
    *   Add simple Tensor and DataType classes to TensorFlow Lite Java
    *   Add support for bitcasting to/from uint32 and uint64.
    *   Added a subclass of Estimator that can be created from a SavedModel
        (SavedModelEstimator).
    *   Adds leaf index modes as an argument.
    *   Allow a different output shape from the input in
        tf.contrib.image.transform.
    *   Change the state_size order of the StackedRNNCell to be natural order.
        To keep the existing behavior, user can add reverse_state_order=True
        when constructing the StackedRNNCells.
    *   Deprecate self.test_session() in favor of self.session() or
        self.cached_session().
    *   Directly import tensor.proto.h (the transitive import will be removed
        from tensor.h soon).
    *   Estimator.train() now supports tf.contrib.summary.\* summaries out of
        the box; each call to .train() will now create a separate tfevents file
        rather than re-using a shared one.
    *   Fix FTRL L2-shrinkage behavior: the gradient from the L2 shrinkage term
        should not end up in the accumulator.
    *   Fix toco compilation/execution on Windows.
    *   GoogleZoneProvider class added to detect which Google Cloud Engine zone
        tensorflow is running in.
    *   It is now safe to call any of the C API's TF_Delete\* functions on
        nullptr.
    *   Log some errors on Android to logcat.
    *   Match FakeQuant numerics in TFLite to improve accuracy of TFLite
        quantized inference models.
    *   Optional bucket location check for the GCS Filesystem.
    *   Performance enhancements for StringSplitOp & StringSplitV2Op.
    *   Performance improvements for regex replace operations.
    *   TFRecordWriter now raises an error if .write() fails.
    *   TPU: More helpful error messages in TPUClusterResolvers.
    *   The legacy_init_op argument to SavedModelBuilder methods for adding
        MetaGraphs has been deprecated. Please use the equivalent main_op
        argument instead. As part of this, we now explicitly check for a single
        main_op or legacy_init_op at the time of SavedModel building, whereas
        the check on main_op was previously only done at load time.
    *   The protocol used for Estimator training is now configurable in
        RunConfig.
    *   Triangular solve performance improvements.
    *   Unify RNN cell interface between TF and Keras. Add new
        get_initial_state() to Keras and TF RNN cell, which will use to replace
        the existing zero_state() method.
    *   Update initialization of variables in Keras.
    *   Updates to "constrained_optimization" in tensorflow/contrib.
    *   boosted trees: adding pruning mode.
    *   tf.train.Checkpoint does not delete old checkpoints by default.
    *   tfdbg: Limit the total disk space occupied by dumped tensor data to 100
        GBytes. Add environment variable `TFDBG_DISK_BYTES_LIMIT` to allow
        adjustment of this upper limit.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Aapeli, adoda, Ag Ramesh, Amogh Mannekote, Andrew Gibiansky, Andy Craze, Anirudh
Koul, Aurelien Geron, Avijit, Avijit-Nervana, Ben, Benjamin H. Myara, bhack,
Brett Koonce, Cao Zongyan, cbockman, cheerss, Chikanaga Tomoyuki, Clayne
Robison, cosine0, Cui Wei, Dan J, David, David Norman, Dmitry Klimenkov, Eliel
Hojman, Florian Courtial, fo40225, formath, Geoffrey Irving, gracehoney,
Grzegorz Pawelczak, Guoliang Hua, Guozhong Zhuang, Herman Zvonimir DošIlović,
HuiyangFei, Jacker, Jan HüNnemeyer, Jason Taylor, Jason Zaman, Jesse,
Jiang,Zhoulong, Jiawei Zhang, Jie, Joe Yearsley, Johannes Schmitz, Jon Perl, Jon
Triebenbach, Jonathan, Jonathan Hseu, Jongmin Park, Justin Shenk, karl@kubx.ca,
Kate Hodesdon, Kb Sriram, Keishi Hattori, Kenneth Blomqvist, Koan-Sin Tan, Li
Liangbin, Li, Yiqiang, Loo Rong Jie, Madiyar, Mahmoud Abuzaina, Mark Ryan, Matt
Dodge, mbhuiyan, melvinljy96, Miguel Mota, Nafis Sadat, Nathan Luehr, naurril,
Nehal J Wani, Niall Moran, Niranjan Hasabnis, Nishidha Panpaliya, npow, olicht,
Pei Zhang, Peng Wang (Simpeng), Peng Yu, Philipp Jund, Pradeep Banavara, Pratik
Kalshetti, qwertWZ, Rakesh Chada, Randy West, Ray Kim, Rholais Lii, Robin
Richtsfeld, Rodrigo Silveira, Ruizhi, Santosh Kumar, Seb Bro, Sergei Lebedev,
sfujiwara, Shaba Abhiram, Shashi, SneakyFish5, Soila Kavulya, Stefan Dyulgerov,
Steven Winston, Sunitha Kambhampati, Surry Shome, Taehoon Lee, Thor Johnsen,
Tristan Rice, TShapinsky, tucan, tucan9389, Vicente Reyes, Vilmar-Hillow, Vitaly
Lavrukhin, wangershi, weidan.kong, weidankong, Wen-Heng (Jack) Chung, William D.
Irons, Wim Glenn, XFeiF, Yan Facai (颜发才), Yanbo Liang, Yong Tang, Yoshihiro
Yamazaki, Yuan (Terry) Tang, Yuan, Man, zhaoyongke, ÁRon Ricardo Perez-Lopez,
张天启, 张晓飞
# Release 1.10.1
## Bug Fixes and Other Changes
*   `tf.keras`:
    *   Fixing keras on Cloud TPUs. No new binaries will be built for Windows.
# Release 1.10.0
## Major Features And Improvements
*   The `tf.lite` runtime now supports `complex64`.
*   Initial
    [Google Cloud Bigtable integration](https://github.com/tensorflow/tensorflow/tree/r1.10/tensorflow/contrib/bigtable)
    for `tf.data`.
*   Improved local run behavior in `tf.estimator.train_and_evaluate` which does
    not reload checkpoints for evaluation.
*   `RunConfig` now sets device_filters to restrict how workers and PS can
    communicate. This can speed up training and ensure clean shutdowns in some
    situations. But if you have jobs that require communication between workers,
    you will have to set custom session_options in your `RunConfig`.
*   Moved Distributions and Bijectors from `tf.contrib.distributions` to
    [Tensorflow Probability (TFP)](https://github.com/tensorflow/probability).
    `tf.contrib.distributions` is now deprecated and will be removed by the end
    of 2018.
*   Adding new endpoints for existing tensorflow symbols. These endpoints are
    going to be the preferred endpoints going forward and may replace some of
    the existing endpoints in the future. See below for the complete list. New
    symbols have been added to the following modules:
    [`tf.debugging`](https://www.tensorflow.org/versions/master/api_docs/python/tf/debugging),
    [`tf.dtypes`](https://www.tensorflow.org/versions/master/api_docs/python/tf/dtypes),
    [`tf.image`](https://www.tensorflow.org/versions/master/api_docs/python/tf/image),
    [`tf.io`](https://www.tensorflow.org/versions/master/api_docs/python/tf/io),
    [`tf.linalg`](https://www.tensorflow.org/versions/master/api_docs/python/tf/linalg),
    [`tf.manip`](https://www.tensorflow.org/versions/master/api_docs/python/tf/manip),
    [`tf.math`](https://www.tensorflow.org/versions/master/api_docs/python/tf/math),
    [`tf.quantization`](https://www.tensorflow.org/versions/master/api_docs/python/tf/quantization),
    [`tf.strings`](https://www.tensorflow.org/versions/master/api_docs/python/tf/strings)
## Breaking Changes
*   Prebuilt binaries are now (as of TensorFlow 1.10) built against NCCL 2.2 and
    no longer include NCCL in the binary install. TensorFlow usage with multiple
    GPUs and NCCL requires upgrade to
    [NCCL 2.2](https://developer.nvidia.com/nccl). See updated install guides:
    [TensorFlow GPU support](https://www.tensorflow.org/install/gpu) and
    [Build TensorFlow from source](https://www.tensorflow.org/install/source).
*   Starting from TensorFlow 1.11, Windows builds will use Bazel. Therefore, we
    will drop official support for cmake.
## Bug Fixes and Other Changes
*   `tf.data`:
    *   `tf.contrib.data.group_by_reducer()` is now available via the public
        API.
    *   `tf.contrib.data.choose_from_datasets()` is now available via the public
        API.
    *   Adding `drop_remainder` argument to `tf.data.Dataset.batch()` and
        `tf.data.Dataset.padded_batch()`, deprecating
        `tf.contrib.data.batch_and_drop_remainder()` and
        `tf.contrib.data.padded_batch_and_drop_remainder()`.
*   `tf.estimator`:
    *   `Estimator`s now use custom savers included in `EstimatorSpec` scaffolds
        for saving SavedModels during export.
    *   `EstimatorSpec` will now add a default prediction output for export if
        no `export_output` is provided, eliminating the need to explicitly
        include a `PredictOutput` object in the `model_fn` for simple use-cases.
    *   Support sparse_combiner in canned Linear Estimators.
    *   Added batch normalization to `DNNClassifier`, `DNNRegressor`, and
        `DNNEstimator`.
    *   Adding ranking support for boosted trees.
    *   Adding center bias option for boosted trees.
*   Add `synchronization` and `aggregation` args to get_variable(). These args
    will be used for distributed variables.
*   Add `synchronization` and `aggregation` args to the layer `add_weight()`
    API. These args will be used for distributed variables.
*   `tf.losses.*` do not add to the global collection when executing eagerly (to
    avoid leaking memory).
*   Support different summary and checkpoint directories in
    `tf.train.MonitoredTrainingSession()`.
*   Added IndRNN, IndyGRU, and IndyLSTM cells to `tf.contrib.rnn`.
*   Add safe static factory functions for SparseTensor and convert all CHECKs to
    DCHECKs. Using the constructor directly is unsafe and deprecated.
*   Make the Bigtable client connection pool configurable & increase the
    default # of connections for performance.
*   Added derivative of `tf.random_gamma` with respect to the alpha parameter.
*   Added derivative of `tf.igamma(a, x)` and `tf.igammac(a, x)` with respect to
    a.
*   Modified Bessel functions of order zero and one.
*   Add FillTriangular Bijector to create triangular matrices.
*   Added support for Type III DCT, and `tf.spectral.idct(type=2|3)`.
*   Correctly handle CuDNN RNN weight loaded when nest in `TimeDistributed`.
*   Adding per-element weight support for `WALSComputePartialLhsAndRhsOp`.
*   ZerosLike and OnesLike ops treated as constants by Graph Transform Tool.
*   Gamma distribution and the derived distributions (Beta, Dirichlet, Student's
    t, inverse Gamma) now fully reparameterized.
*   Java: Experimental wrapper classes to make graph generation easier. Thanks
    @karllessard and @kbsriram
*   Build & link in secure gRPC components (switch from the insecure grpc
    dependency to secure grpc dependency).
*   Adding new endpoints for existing tensorflow symbols. These endpoints are
    going to be the preferred endpoints going forward and may replace some of
    the existing endpoints in the future. List of new endpoints:
    *   New endpoints in `tf.image` namespace: `tf.image.extract_image_patches`
    *   New endpoints in `tf.debugging` namespace:
        `tf.debugging.check_numerics`, `tf.debugging.is_finite`,
        `tf.debugging.is_inf`, `tf.debugging.is_nan`.
    *   New endpoints in `tf.dtypes` namespace: `tf.dtypes.as_string`.
    *   New endpoints in `tf.io` namespace: `tf.io.decode_base64`,
        `tf.io.decode_compressed`, `tf.io.decode_json_example`,
        `tf.io.decode_raw`, `tf.io.encode_base64`, `tf.io.matching_files`,
        `tf.io.parse_tensor`, `tf.io.read_file,`tf.io.write_file`.
    *   New endpoints in tf.linalg namespace: `tf.linalg.cross`,
        `tf.linalg.tensor_diag` (corresponds to `tf.diag`),
        `tf.linalg.tensor_diag_part` (corresponds to `tf.diag_part`).
    *   New endpoints in tf.manip namespace: `tf.manip.batch_to_space_nd`,
        `tf.manip.gather_nd`, `tf.manip.reshape`, `tf.manip.reverse`,
        `tf.manip.scatter_nd`, `tf.manip.space_to_batch_nd`, `tf.manip.tile`
    *   New endpoints in tf.math namespace: `tf.math.acos`, `tf.math.acosh`,
        `tf.math.add`, `tf.math.asin`, `tf.math.asinh`, `tf.math.atan`,
        `tf.math.atan2`, `tf.math.atanh`, `tf.math.betainc`, `tf.math.ceil`,
        `tf.math.cos`, `tf.math.cosh`, `tf.math.digamma`, `tf.math.equal`,
        `tf.math.erfc`, `tf.math.exp`, `tf.math.expm1`, `tf.math.floor`,
        `tf.math.greater`, `tf.math.greater_equal`, `tf.math.igamma`,
        `tf.math.igammac`, `tf.math.invert_permutation`, `tf.math.less`,
        `tf.math.less_equal`, `tf.math.lgamma`, `tf.math.log`, `tf.math.log1p`,
        `tf.math.logical_and`, `tf.math.logical_not`, `tf.math.logical_or`,
        `tf.math.maximum`, `tf.math.minimum`, `tf.math.not_equal`,
        `tf.math.polygamma`, `tf.math.reciprocal`, `tf.math.rint`,
        `tf.math.rsqrt`, `tf.math.segment_max`, `tf.math.segment_mean`,
        `tf.math.segment_min`, `tf.math.segment_prod`, `tf.math.segment_sum`,
        `tf.math.sin`, `tf.math.sinh`, `tf.math.softplus`, `tf.math.softsign`,
        `tf.math.squared_difference`, `tf.math.tan`,
        `tf.math.unsorted_segment_max`, `tf.math.unsorted_segment_min`,
        `tf.math.unsorted_segment_prod`, `tf.math.unsorted_segment_sum`,
        `tf.math.zeta`.
    *   New endpoints in `tf.quantization` namespace:
        `tf.quantization.dequantize`,
        `tf.quantization.fake_quant_with_min_max_args`,
        `tf.quantization.fake_quant_with_min_max_args_gradient`,
        `tf.quantization.fake_quant_with_min_max_vars`,
        `tf.quantization.fake_quant_with_min_max_vars_gradient`,
        `tf.quantization.fake_quant_with_min_max_vars_per_channel`,
        `tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient`.
    *   New endpoints in tf.strings namespace: `tf.strings.join` (corresponds to
        `tf.string_join`), `tf.strings.regex_replace`, `tf.strings.to_number`
        (corresponds to `tf.string_to_number`), `tf.strings.strip` (corresponds
        to `tf.string_strip`), `tf.strings.substr`, `tf.strings.to_hash_bucket`
        (corresponds to `tf.string_to_hash_bucket`),
        `tf.strings.to_hash_bucket_fast` (corresponds to
        `tf.string_to_hash_bucket_fast`), `tf.strings.to_hash_bucket_strong`
        (corresponds to `tf.string_to_hash_bucket_strong`).
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Ag Ramesh, Alex Wiltschko, Alexander Pantyukhin, Amogh Mannekote, An Jiaoyang,
Andrei Nigmatulin, Andrew Ginns, BjøRn Moholt, Brett Koonce, Chengzhi Chen,
Chinmay Das, Christian Ertler, Christoph Boeddeker, Clayne Robison, Courtial
Florian, ctiijima, Dan Douthit, Dan J, Dan Ringwalt, EFanZh, Emanuele Ballarin,
eqy, Evgeniy Zheltonozhskiy, Freedom" Koan-Sin Tan, FréDéRic Branchaud-Charron,
G K, gracehoney, Guillaume Klein, Guozhong Zhuang, Hsien-Yang Li, hsm207,
ImSheridan, Jayaram Bobba, Jiandong Ruan, Jie, Joel Shor, Jonas Rauber, Jongmin
Baek, jsawruk, Karan Kaw, Karl Lessard, karl@kubx.ca, Kb Sriram, KinmanLam,
leiiwang, Li, Yiqiang, Loo Rong Jie, Mahmoud Abuzaina, Mahmoud Aslan, ManHyuk,
Martin Patz, Martin Zeitler, mktozk, Mohammad Ashraf Bhuiyan, mrTsjolder, Naman
Bhalla, Nick Felt, Nicolas Lopez, Niranjan Hasabnis, Nishidha Panpaliya, Nitish,
nrstott, Nutti, Parag Jain, PeterLee, Philipp Jund, Rach L, Rafal Wojdyla,
Roland Zimmermann, Sergei Lebedev, SneakyFish5, Soila Kavulya, Sriram Veturi,
Steven Schmatz, Taehoon Lee, Tang, Wenyi, Taras Sereda, Ted Chang, Tim Zaman,
Tristan Rice, tucan, vchigrin, Vikram Tiwari, Vincent, WeberXie, William D.
Irons, Yan Facai (颜发才), Yong Tang, Yu Yi, Yuxin Wu, Zé ViníCius
# Release 1.9.0
## Major Features And Improvements
*   Updated docs for `tf.keras`: New Keras-based
    [get started](http://tensorflow.org/versions/r1.9/get_started), and
    [programmers guide page](http://tensorflow.org/versions/r1.9/programmers_guide/keras).
*   Update `tf.keras` to the Keras 2.1.6 API.
*   Added
    [`tf.keras.layers.CuDNNGRU`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNGRU)
    and
    [`tf.keras.layers.CuDNNLSTM`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/keras/layers/CuDNNLSTM)
    layers.
    [Try it](https://colab.sandbox.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb?linkId=53292082).
*   Adding support of core
    [feature columns](https://www.tensorflow.org/get_started/feature_columns)
    and [losses](https://www.tensorflow.org/api_docs/python/tf/losses) to
    [gradient boosted trees estimators](https://github.com/tensorflow/models/tree/master/official/r1/boosted_trees).
*   The
    [python interface](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/lite)
    for the
    [TFLite Optimizing Converter](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/toco/README.md)
    has been expanded, and the command line interface (AKA: `toco`,
    `tflite_convert`) is once again included in the standard `pip` installation.
*   Improved data-loading and text processing with:
    *   [`tf.decode_compressed`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/decode_compressed)
    *   [`tf.string_strip`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/string_strip)
    *   [`tf.strings.regex_full_match`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/strings/regex_full_match)
*   Added experimental support for new pre-made Estimators:
    *   [`tf.contrib.estimator.BaselineEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/BaselineEstimator)
    *   [`tf.contrib.estimator.RNNClassifier`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNEstimator)
    *   [`tf.contrib.estimator.RNNEstimator`](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/estimator/RNNClassifier)
*   The
    [distributions.Bijector](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/distributions/bijectors/Bijector)
    API supports broadcasting for Bijectors with new API changes.
## Breaking Changes
*   If you're opening empty variable scopes; replace `variable_scope('', ...)`
    by `variable_scope(tf.get_variable_scope(), ...)`.
*   Headers used for building custom ops have been moved from
    site-packages/external into site-packages/tensorflow/include/external.
## Bug Fixes and Other Changes
*   `tfe.Network` is deprecated. Please inherit from `tf.keras.Model`.
*   Layered variable names have changed in the following conditions:
    *   Using `tf.keras.layers` with custom variable scopes.
    *   Using `tf.layers` in a subclassed `tf.keras.Model` class. See
        [here](https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/layers)
        for more details
*   `tf.data`:
    *   `Dataset.from_generator()` now accepts an `args` list, in order to
        create nested generators.
    *   `Dataset.list_files()` now produces deterministic results when
        `shuffle=False` or a `seed` is passed.
    *   `tf.contrib.data.sample_from_datasets()` and
        `tf.contrib.data.choose_from_datasets()` make it easier to sample or
        deterministically choose elements from multiple datasets.
    *   `tf.contrib.data.make_csv_dataset()` now supports line breaks in quoted
        strings, and two infrequently used arguments removed.
    *   (C++) `DatasetBase::DebugString()` is now `const`.
    *   (C++) `DatasetBase::MakeIterator()` has been renamed to
        `DatasetBase::MakeIteratorInternal()`.
    *   (C++) `IteratorBase::Initialize()` method was added to support raising
        errors during iterator construction.
*   Eager Execution:
    *   Added the ability to pause recording operations for gradient computation
        via `tf.GradientTape.stop_recording`.
    *   Updated documentation, introductory notebooks.
*   `tf.keras`:
    *   Move Keras code out of _impl folder and remove API files.
    *   `tf.keras.Model.save_weights` now saves in TensorFlow format by default.
    *   Enable dataset iterators to be passed to `tf.keras.Model` training/eval
        methods.
*   TensorFlow Debugger (tfdbg) CLI: fix an issue in which the TensorBoard
    Debugger Plugin could not handle total source file size exceeding gRPC
    message size limit (4 MB).
*   `tf.contrib`:
    *   `tf.contrib.framework.zero_initializer` supports ResourceVariable.
    *   Adding "constrained_optimization" to tensorflow/contrib.
*   Other:
    *   Add GCS Configuration Ops.
    *   Changing signature of `MakeIterator` to enable propagating error status.
    *   KL divergence for two Dirichlet distributions.
    *   More consistent GcsFileSystem behavior for certain reads past EOF.
    *   Update benchmark for tf.scan to match ranges across eager and graph
        modes.
    *   Fixed bug in `tf.reduce_prod gradient` for complex dtypes.
    *   Allow the use of '.' in variables (e.g. "hparams.parse('a.b=1.0')"),
        which would previously raise an error. This will correspond to an
        attribute name with an embedded '.' symbol (e.g. 'a.b'), which can only
        be accessed indirectly (e.g. through getattr and setattr). To set this
        up the user will first need to explicitly add the variable to the hparam
        object (e.g. "hparams.add_hparam(name='a.b', value=0.0)").
    *   Benchmark for tf.scan in graph and eager modes.
    *   Added complex128 support to FFT, FFT2D, FFT3D, IFFT, IFFT2D, and IFFT3D.
    *   Making ids unique in `nn.embedding_lookup_sparse`. This helps to reduce
        RPC calls for looking up the embeddings when there are repeated ids in
        the batch.
    *   Support indicator column in boosted trees.
    *   Prevent `tf.gradients()` from backpropagating through integer tensors.
    *   LinearOperator[1D,2D,3D]Circulant added to `tensorflow.linalg`.
    *   Conv3D, Conv3DBackpropInput, Conv3DBackpropFilter now supports
        arbitrary.
    *   Added `tf.train.Checkpoint` for reading/writing object-based
        checkpoints.
    *   Added LinearOperatorKronecker, a dense-free implementation of the
        Kronecker Product.
    *   Allow LinearOperator to broadcast.
    *   SavedModelBuilder will now deduplicate asset names that point to files
        with the same basename and the same contents. Note that this may result
        in new asset files included in SavedModels in cases where assets with
        the same name but different contents were previously overwriting each
        other.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Abdullah Alrasheed, Achal Shah, Ad-530, ADiegoCAlonso, Aditya Yogi, Ag Ramesh,
akindyakov, Andy Kernahan, Anya Petrova, Aurelien Geron, Ben, Ben Barsdell,
Bhavani-Subramanian, braincodercn, Brett Koonce, Brian Nemsick, Brian Zier,
Bryan Heden, candy.dc, cclauss, Clayne Robison, ctiijima, Dalmo Cirne, David
Norman, David T.H. Kao, DosLin, ekelsen, Elson Rodriguez, Erik Smistad, Felix
Abecassis, Fergal Cotter, fo40225, foo0x29a, Freedom" Koan-Sin Tan, FréDéRic
Branchaud-Charron, gdh1995, Geoffrey Irving, Giuseppe, gracehoney, Guido
Zuidhof, Guillaume Klein, Guozhong Zhuang, Haggai, Harald Husum, imsheridan,
Ivan Zhang, Jan Zikes, Jayaram Bobba, Jesse Benson, Jesse Gumz, Jiajia Li, Jie,
jinghuangintel, Jingwen, jjsjann123, Joe Yearsley, Joel Hestness, Joel Shor,
josephyearsley, Junpeng Lao, Karol M. Langner, Kb Sriram, krantideep95, Krish
Ravindranath, Letian Feng, Loo Rong Jie, Lukas Geiger, Maciej, Mahmoud Abuzaina,
ManHyuk, Mark Ryan, mbhuiyan, Michal Turek, Mostafa Alaa, Myungsung Kwak, Nand
Dalal, Nehal J Wani, Neil Tenenholtz, ngc92, Nicholas Nadeau, P.Eng., Avs,
Niranjan Hasabnis, P-Hidringer, Paul Van Eck, Peng Yu, Qing Zhao, Qingying Chen,
Quanlong, Rajendra Arora, Rholais Lii, rmanyari, Robin Richtsfeld, Russell
Klopfer, Sagi, Sam Sendelbach, Sandeep N Gupta, Sandip Giri, Sarah Edkins, Scott
Tseng, Sdalbsoo, Sergii Khomenko, Seungwoo Choi (Biggie), Seyed Majid Azimi,
Shaoning Zeng, shengfuintel, Siu Kei, Muk, Smit Shilu, soonson, Stefan Schweter,
Sukhwan Kim, Sunitha Kambhampati, Taehoon Lee, tamimaddari82, Tang, Wenyi, Ted
Chang, u2takey, Utkarsh Upadhyay, Vadim Markovtsev, voegtlel, Wai Hon Law,
wangsiyu, Wenhao Hu, wenhao.hu, William D. Irons, Yan Facai (颜发才), Yanbo Liang,
Yihong Wang, Yilei (Dolee) Yang, Yong Tang, Yuan (Terry) Tang
# Release 1.8.0
## Major Features And Improvements
*   Can now pass `tf.contrib.distribute.MirroredStrategy()` to
    `tf.estimator.RunConfig()` to run an Estimator model on multiple GPUs on one
    machine.
*   Add `tf.contrib.data.prefetch_to_device()`, which supports prefetching to
    GPU memory.
*   Added Gradient Boosted Trees as pre-made Estimators: BoostedTreesClassifier,
    BoostedTreesRegressor.
*   Add 3rd generation pipeline config for Cloud TPUs which improves performance
    and usability.
*   `tf.contrib.bayesflow` is moving out to it's own repo.
*   Added `tf.contrib.{proto,rpc}` to allow generic proto parsing and RPC
    communication<sup>[1](#rpc-issue)</sup>.
## Bug Fixes and Other Changes
*   `tf.data`:
    *   Add `tf.contrib.data.prefetch_to_device`, which enables prefetching
        dataset elements to GPU memory.
    *   Add `tf.contrib.data.AUTOTUNE`, which allows the tf.data runtime to
        automatically tune the prefetch buffer sizes based on your system and
        environment.
    *   Add `tf.contrib.data.make_csv_dataset` for building datasets of CSV
        files.
*   Eager Execution:
    *   With eager execution Datasets can now be used as standard python
        iterators (`for batch in dataset:`). Both `Dataset.__iter__()` and
        `Dataset.make_one_shot_iterator()` can now be used to create iterators
        when eager execution is enabled.
    *   Automatic device placement has been enabled (i.e., use a GPU if
        available automatically, without requiring an explicit `with
        tf.device(“/gpu:0”)`) (Fixes #14133)
    *   `tf.GradientTape` has moved out of contrib.
*   `tf.keras`:
    *   Added the fashion mnist dataset.
    *   New data preprocessing functions: `image/random_brightness`,
        `sequence/TimeseriesGenerator`, and `text/hashing_trick`.
*   Accelerated Linear Algebra (XLA):
    *   Select and scatter in reference util and evaluator now use
        lexicographical order to break ties.
*   TensorFlow Debugger (tfdbg) CLI:
    *   During tensor-filter operations, allow exclusion of nodes by regular
        expressions.
    *   Fix spurious background colors in some text terminals.
*   `tf.contrib`:
    *   Add meta-distribution BatchReshape which reshapes batch dimensions.
    *   `tf.contrib.layers.recompute_grad` works for explicit gradient
        checkpointing on TPU.
    *   Add `tf.contrib.framework.argsort`.
    *   Allow `DNNBoostedTreeCombinedEstimator` to work with core versions of
        feature columns and losses.
    *   Add non-linear image warping ops: `tf.contrib.image.sparse_image_warp`,
        `tf.contrib.image.dense_image_warp`, and
        `tf.contrib.image.interpolate_spline`.
    *   Fix bug in `tf.contrib.opt.MultitaskOptimizerWrapper` where types of
        tensors were mismatched.
*   Other:
    *   Low-level graph construction now calls the TensorFlow C API. This change
        should be invisible to most users, but can be disabled by setting the
        environment variable `TF_C_API_GRAPH_CONSTRUCTION=0` in this release.
        Future releases will remove the ability to disable this change. Please
        [file a bug](https://github.com/tensorflow/tensorflow/issues/new) if you
        find yourself using this escape hatch.
    *   Add description of shapes and a pointer to tutorial notebook in
        `tf.distributions.Distribution`.
    *   Update scatter operations:
    *   Add `tf.scatter_min` and `tf.scatter_max`
    *   Extend scatter operations to work with a scalar update parameter.
    *   Move cuDNN RNN ops to core for use in TensorFlow codebase only.
    *   Add `float64` support for `Conv2d`, `Conv2dBackpropInput`, and
        `Conv2dBackpropFilter`.
    *   Add `float64` support for `AvgPool`/`AvgPoolGrad`.
    *   Make graph name scope thread local so that they work correctly in
        multi-threaded environments.
    *   Update nsync synchronization library to avoid slow primitives on Linux.
    *   Removed need to put nsync/public on C include path when building custom
        ops.
    *   Add `tf.image.psnr`, `tf.image.ssim`, `tf.image.ssim_multiscale`,
        `tf.image.image_gradients`, `tf.image.sobel_edges`.
    *   Add links to https://js.tensorflow.org.
    *   Fix non-uniformity of orthogonal matrices.
    *   Fix bug where multi-image Estimator eval summaries were not displayed
        correctly.
<a name="rpc-issue"><sup>1</sup></a> The cancellation logic of the RPC op
contains a concurrency error. A fix has been submitted to master and will be
part of the next release.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4d55397500, Aghasy, Alan Du, Alan Lee, Alan Yee, Alex Wiltschko, Animesh
Karnewar, Ankit Gupta, Anton Matosov, Aris L, Ben Barsdell, Brent Yi, Brett
Koonce, Carl Thomé, cbockman, Chikanaga Tomoyuki, Chris Tava, CéDric Deltheil,
Dahan Gong, Dalmo Cirne, Daniel Erenrich, David Norman, DavidNorman, Edd
Wilder-James, Fanjin Zeng, Felix Abecassis, fo40225, George Sterpu, Giovanni
Terlingen, Gor Baghdasaryan, Guillaume Klein, Hanchen Li, Ilya Polenov, Jakub
Kolodziejczyk, Jason Sadler, Jayaram Bobba, Jerry Liu, jinghuangintel, Jiongyan
Zhang (张炯衍), Joel Shor, Jong Wook Kim, Julian Eisenschlos, Karl Lessard, Krish
Ravindranath, Loo Rong Jie, Lukas Geiger, Luke Iwanski, Mahmoud Abuzaina,
ManHyuk, Marvin Richter, Maximilian Mitchell, Mohammad Ashraf Bhuiyan, msofka,
Mustafa Kasap, Nathan Burnham, Nathan Luehr, Naveen Marri, ngc92, nio1814, Oleg
Zabluda, Ou Changkun, Panos Ipeirotis, Paul Van Eck, Peter Lee, Piotr Czapla,
qjivy, Rholais Lii, Rodrigo Formigone, Russell Klopfer, ryantimjohn, Sang Han,
SebastiáN RamíRez, shengfuintel, Siby Jose Plathottam, Silver Chan, Stanislaw
Antol, Taehoon Lee, Tarang Chugh, Ted Chang, Thomas Bastiani, Xian Xu, Xiaoming
(Jason) Cui, Yan Facai (颜发才), yaox12, Yashal Shakti Kanungo, Yong Tang, Yuan
(Terry) Tang, Yuxin Wu, Ziyue(Louis) Lu
# Release 1.7.0
## Major Features And Improvements
*   Eager mode is moving out of contrib, try `tf.enable_eager_execution()`.
*   Graph rewrites emulating fixed-point quantization compatible with TensorFlow
    Lite, supported by new `tf.contrib.quantize` package.
*   Easily customize gradient computation with `tf.custom_gradient`.
*   [TensorBoard Debugger Plugin](https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/debugger/README.md),
    the graphical user interface (GUI) of TensorFlow Debugger (tfdbg), is now in
    alpha.
*   Experimental support for reading a sqlite database as a `Dataset` with new
    `tf.contrib.data.SqlDataset`.
*   Distributed Mutex / CriticalSection added to
    `tf.contrib.framework.CriticalSection`.
*   Better text processing with `tf.regex_replace`.
*   Easy, efficient sequence input with
    `tf.contrib.data.bucket_by_sequence_length`
*   Initial support for `tf.contrib.tensorrt` that enables native TensorRT in
    TensorFlow.
## Bug Fixes and Other Changes
*   Accelerated Linear Algebra (XLA):
    *   Add `MaxPoolGradGrad` support for XLA
    *   CSE pass from Tensorflow is now disabled in XLA.
*   `tf.data`:
    *   `tf.data.Dataset`
    *   Add support for building C++ Dataset op kernels as external libraries,
        using the `tf.load_op_library()` mechanism.
    *   `Dataset.list_files()` now shuffles its output by default.
    *   `Dataset.shuffle(..., seed=tf.constant(0, dtype=tf.int64))` now yields
        the same sequence of elements as `Dataset.shuffle(..., seed=0)`.
    *   Add `num_parallel_reads` argument to `tf.data.TFRecordDataset`.
*   `tf.contrib`:
    *   `tf.contrib.bayesflow.halton_sequence` now supports randomization.
    *   Add support for scalars in `tf.contrib.all_reduce`.
    *   Add `effective_sample_size` to `tf.contrib.bayesflow.mcmc_diagnostics`.
    *   Add `potential_scale_reduction` to
        `tf.contrib.bayesflow.mcmc_diagnostics`.
    *   Add `BatchNormalization`, `Kumaraswamy` bijectors.
    *   Deprecate `tf.contrib.learn`. Please check contrib/learn/README.md for
        instructions on how to convert existing code.
    *   `tf.contrib.data`
    *   Remove deprecated `tf.contrib.data.Dataset`, `tf.contrib.data.Iterator`,
        `tf.contrib.data.FixedLengthRecordDataset`,
        `tf.contrib.data.TextLineDataset`, and `tf.contrib.data.TFRecordDataset`
        classes.
    *   Added `bucket_by_sequence_length`, `sliding_window_batch`, and
        `make_batched_features_dataset`
    *   Remove unmaintained `tf.contrib.ndlstm`. You can find it externally at
        https://github.com/tmbarchive/tfndlstm.
    *   Moved most of `tf.contrib.bayesflow` to its own repo: `tfp`
*   Other:
    *   tf.py_func now reports the full stack trace if an exception occurs.
    *   Integrate `TPUClusterResolver` with GKE's integration for Cloud TPUs.
    *   Add a library for statistical testing of samplers.
    *   Add Helpers to stream data from the GCE VM to a Cloud TPU.
    *   Integrate ClusterResolvers with TPUEstimator.
    *   Unify metropolis_hastings interface with HMC kernel.
    *   Move LIBXSMM convolutions to a separate --define flag so that they are
        disabled by default.
    *   Fix `MomentumOptimizer` lambda.
    *   Reduce `tfp.layers` boilerplate via programmable docstrings.
    *   Add `auc_with_confidence_intervals`, a method for computing the AUC and
        confidence interval with linearithmic time complexity.
    *   `regression_head` now accepts customized link function, to satisfy the
        usage that user can define their own link function if the
        `array_ops.identity` does not meet the requirement.
    *   Fix `initialized_value` and `initial_value` behaviors for
        `ResourceVariables` created from `VariableDef` protos.
    *   Add TensorSpec to represent the specification of Tensors.
    *   Constant folding pass is now deterministic.
    *   Support `float16` `dtype` in `tf.linalg.*`.
    *   Add `tf.estimator.export.TensorServingInputReceiver` that allows
        `tf.estimator.Estimator.export_savedmodel` to pass raw tensors to model
        functions.
## Deprecations
*   TensorFlow 1.7 may be the last time we support Cuda versions below 8.0.
    Starting with TensorFlow 1.8 release, 8.0 will be the minimum supported
    version.
*   TensorFlow 1.7 may be the last time we support cuDNN versions below 6.0.
    Starting with TensorFlow 1.8 release, 6.0 will be the minimum supported
    version.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4d55397500, Abe, Alistair Low, Andy Kernahan, Appledore, Ben, Ben Barsdell,
Boris Pfahringer, Brad Wannow, Brett Koonce, Carl Thomé, cclauss, Chengzhi Chen,
Chris Drake, Christopher Yeh, Clayne Robison, Codrut Grosu, Daniel Trebbien,
Danny Goodman, David Goodwin, David Norman, Deron Eriksson, Donggeon Lim, Donny
Viszneki, DosLin, DylanDmitri, Francisco Guerrero, Fred Reiss, gdh1995,
Giuseppe, Glenn Weidner, gracehoney, Guozhong Zhuang, Haichen "Hc" Li, Harald
Husum, harumitsu.nobuta, Henry Spivey, hsm207, Jekyll Song, Jerome, Jiongyan
Zhang, jjsjann123, John Sungjin Park, Johnson145, JoshVarty, Julian Wolff, Jun
Wang, June-One, Kamil Sindi, Kb Sriram, Kdavis-Mozilla, Kenji, lazypanda1,
Liang-Chi Hsieh, Loo Rong Jie, Mahesh Bhosale, MandarJKulkarni, ManHyuk, Marcus
Ong, Marshal Hayes, Martin Pool, matthieudelaro, mdfaijul, mholzel, Michael
Zhou, Ming Li, Minmin Sun, Myungjoo Ham, MyungsungKwak, Naman Kamra, Peng Yu,
Penghao Cen, Phil, Raghuraman-K, resec, Rohin Mohanadas, Sandeep N Gupta, Scott
Tseng, seaotterman, Seo Sanghyeon, Sergei Lebedev, Ted Chang, terrytangyuan, Tim
H, tkunic, Tod, vihanjain, Yan Facai (颜发才), Yin Li, Yong Tang, Yukun Chen,
Yusuke Yamada
# Release 1.6.0
## Breaking Changes
*   Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
*   Prebuilt binaries will use AVX instructions. This may break TF on older
    CPUs.
## Major Features And Improvements
*   New Optimizer internal API for non-slot variables. Descendants of
    AdamOptimizer that access _beta[12]_power will need to be updated.
*   `tf.estimator.{FinalExporter,LatestExporter}` now export stripped
    SavedModels. This improves forward compatibility of the SavedModel.
*   FFT support added to XLA CPU/GPU.
## Bug Fixes and Other Changes
*   Documentation updates:
    *   Added a second version of Getting Started, which is aimed at ML
        newcomers.
    *   Clarified documentation on `resize_images.align_corners` parameter.
    *   Additional documentation for TPUs.
*   Google Cloud Storage (GCS):
    *   Add client-side throttle.
    *   Add a `FlushCaches()` method to the FileSystem interface, with an
        implementation for GcsFileSystem.
*   Other:
    *   Add `tf.contrib.distributions.Kumaraswamy`.
    *   `RetryingFileSystem::FlushCaches()` calls the base FileSystem's
        `FlushCaches()`.
    *   Add `auto_correlation` to distributions.
    *   Add `tf.contrib.distributions.Autoregressive`.
    *   Add SeparableConv1D layer.
    *   Add convolutional Flipout layers.
    *   When both inputs of `tf.matmul` are bfloat16, it returns bfloat16,
        instead of float32.
    *   Added `tf.contrib.image.connected_components`.
    *   Add `tf.contrib.framework.CriticalSection` that allows atomic variable
        access.
    *   Output variance over trees predictions for classifications tasks.
    *   For `pt` and `eval` commands, allow writing tensor values to filesystem
        as numpy files.
    *   gRPC: Propagate truncated errors (instead of returning gRPC internal
        error).
    *   Augment `parallel_interleave` to support 2 kinds of prefetching.
    *   Improved XLA support for C64-related ops log, pow, atan2, tanh.
    *   Add probabilistic convolutional layers.
## API Changes
*   Introducing `prepare_variance` boolean with default setting to False for
    backward compatibility.
*   Move `layers_dense_variational_impl.py` to `layers_dense_variational.py`.
## Known Bugs
*   Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
    `CUDA_ILLEGAL_ADDRESS` failures.
    Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA
    9 and CUDA 9.1 sometimes does not properly compute the carry bit when
    decomposing 64-bit address calculations with large offsets (e.g. `load [x +
    large_constant]`) into 32-bit arithmetic in SASS.
    As a result, these versions of `ptxas` miscompile most XLA programs which
    use more than 4GB of temp memory. This results in garbage results and/or
    `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
    A fix in CUDA 9.1.121 is expected in late February 2018. We do not expect a
    fix for CUDA 9.0.x. Until the fix is available, the only workaround is to
    [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
    or disable XLA:GPU.
    TensorFlow will print a warning if you use XLA:GPU with a known-bad version
    of CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4d55397500, Ag Ramesh, Aiden Scandella, Akimasa Kimura, Alex Rothberg, Allen
Goodman, amilioto, Andrei Costinescu, Andrei Nigmatulin, Anjum Sayed, Anthony
Platanios, Anush Elangovan, Armando Fandango, Ashish Kumar Ram, Ashwini Shukla,
Ben, Bhavani Subramanian, Brett Koonce, Carl Thomé, cclauss, Cesc, Changming
Sun, Christoph Boeddeker, Clayne Robison, Clemens Schulz, Clint (Woonhyuk Baek),
codrut3, Cole Gerdemann, Colin Raffel, Daniel Trebbien, Daniel Ylitalo, Daniel
Zhang, Daniyar, Darjan Salaj, Dave Maclachlan, David Norman, Dong--Jian,
dongsamb, dssgsra, Edward H, eladweiss, elilienstein, Eric Lilienstein, error.d,
Eunji Jeong, fanlu, Florian Courtial, fo40225, Fred, Gregg Helt, Guozhong
Zhuang, Hanchen Li, hsm207, hyunyoung2, ImSheridan, Ishant Mrinal Haloi, Jacky
Ko, Jay Young, Jean Flaherty, Jerome, JerrikEph, Jesse Kinkead, jfaath, Jian
Lin, jinghuangintel, Jiongyan Zhang, Joel Hestness, Joel Shor, Johnny Chan,
Julian Niedermeier, Julian Wolff, JxKing, K-W-W, Karl Lessard, Kasper Marstal,
Keiji Ariyama, Koan-Sin Tan, Loki Der Quaeler, Loo Rong Jie, Luke Schaefer, Lynn
Jackson, ManHyuk, Matt Basta, Matt Smith, Matthew Schulkind, Michael,
michaelkhan3, Miguel Piedrafita, Mikalai Drabovich, Mike Knapp, mjwen, mktozk,
Mohamed Aly, Mohammad Ashraf Bhuiyan, Myungjoo Ham, Naman Bhalla, Namrata-Ibm,
Nathan Luehr, nathansilberman, Netzeband, Niranjan Hasabnis, Omar Aflak, Ozge
Yalcinkaya, Parth P Panchal, patrickzzy, Patryk Chrabaszcz, Paul Van Eck, Paweł
Kapica, Peng Yu, Philip Yang, Pierre Blondeau, Po-Hsien Chu, powderluv, Puyu
Wang, Rajendra Arora, Rasmus, Renat Idrisov, resec, Robin Richtsfeld, Ronald
Eddy Jr, Sahil Singh, Sam Matzek, Sami Kama, sandipmgiri, Santiago Castro, Sayed
Hadi Hashemi, Scott Tseng, Sergii Khomenko, Shahid, Shengpeng Liu, Shreyash
Sharma, Shrinidhi Kl, Simone Cirillo, simsicon, Stanislav Levental,
starsblinking, Stephen Lumenta, Steven Hickson, Su Tang, Taehoon Lee, Takuya
Wakisaka, Ted Chang, Ted Ying, Tijmen Verhulsdonck, Timofey Kondrashov, vade,
vaibhav, Valentin Khrulkov, vchigrin, Victor Costan, Viraj Navkal, Vivek Rane,
wagonhelm, Yan Facai (颜发才), Yanbo Liang, Yaroslav Bulatov, yegord, Yong Tang,
Yoni Tsafir, yordun, Yuan (Terry) Tang, Yuxin Wu, zhengdi, Zhengsheng Wei, 田传武
# Release 1.5.0
## Breaking Changes
*   Prebuilt binaries are now built against CUDA 9.0 and cuDNN 7.
*   Starting from 1.6 release, our prebuilt binaries will use AVX instructions.
    This may break TF on older CPUs.
## Major Features And Improvements
*   [Eager execution](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/contrib/eager)
    preview version is now available.
*   [TensorFlow Lite](https://github.com/tensorflow/tensorflow/tree/r1.5/tensorflow/lite)
    dev preview is now available.
*   CUDA 9.0 and cuDNN 7 support.
*   Accelerated Linear Algebra (XLA):
    *   Add `complex64` support to XLA compiler.
    *   `bfloat` support is now added to XLA infrastructure.
    *   Make `ClusterSpec` propagation work with XLA devices.
    *   Use a deterministic executor to generate XLA graph.
*   `tf.contrib`:
    *   `tf.contrib.distributions`:
    *   Add `tf.contrib.distributions.Autoregressive`.
    *   Make `tf.contrib.distributions` QuadratureCompound classes support batch
    *   Infer `tf.contrib.distributions.RelaxedOneHotCategorical` `dtype` from
        arguments.
    *   Make `tf.contrib.distributions` quadrature family parameterized by
        `quadrature_grid_and_prob` vs `quadrature_degree`.
    *   `auto_correlation` added to `tf.contrib.distributions`
    *   Add `tf.contrib.bayesflow.layers`, a collection of probabilistic
        (neural) layers.
    *   Add `tf.contrib.bayesflow.halton_sequence`.
    *   Add `tf.contrib.data.make_saveable_from_iterator.`
    *   Add `tf.contrib.data.shuffle_and_repeat`.
    *   Add new custom transformation: `tf.contrib.data.scan()`.
    *   `tf.contrib.distributions.bijectors`:
    *   Add `tf.contrib.distributions.bijectors.MaskedAutoregressiveFlow`.
    *   Add `tf.contrib.distributions.bijectors.Permute`.
    *   Add `tf.contrib.distributions.bijectors.Gumbel`.
    *   Add `tf.contrib.distributions.bijectors.Reshape`.
    *   Support shape inference (i.e., shapes containing -1) in the Reshape
        bijector.
*   Add `streaming_precision_recall_at_equal_thresholds,` a method for computing
    streaming precision and recall with `O(num_thresholds + size of
    predictions)` time and space complexity.
*   Change `RunConfig` default behavior to not set a random seed, making random
    behavior independently random on distributed workers. We expect this to
    generally improve training performance. Models that do rely on determinism
    should set a random seed explicitly.
*   Replaced the implementation of `tf.flags` with `absl.flags`.
*   Add support for `CUBLAS_TENSOR_OP_MATH` in fp16 GEMM
*   Add support for CUDA on NVIDIA Tegra devices
## Bug Fixes and Other Changes
*   Documentation updates:
    *   Clarified that you can only install TensorFlow on 64-bit machines.
    *   Added a short doc explaining how `Estimator`s save checkpoints.
    *   Add documentation for ops supported by the `tf2xla` bridge.
    *   Fix minor typos in the doc of `SpaceToDepth` and `DepthToSpace`.
    *   Updated documentation comments in `mfcc_mel_filterbank.h` and `mfcc.h`
        to clarify that the input domain is squared magnitude spectra and the
        weighting is done on linear magnitude spectra (sqrt of inputs).
    *   Change `tf.contrib.distributions` docstring examples to use `tfd` alias
        rather than `ds`, `bs`.
    *   Fix docstring typos in `tf.distributions.bijectors.Bijector`.
    *   `tf.assert_equal` no longer raises `ValueError.` It now raises
        `InvalidArgumentError,` as documented.
    *   Update Getting Started docs and API intro.
*   Google Cloud Storage (GCS):
    *   Add userspace DNS caching for the GCS client.
    *   Customize request timeouts for the GCS filesystem.
    *   Improve GCS filesystem caching.
*   Bug Fixes:
    *   Fix bug where partitioned integer variables got their wrong shapes.
        Before
    *   Fix correctness bug in CPU and GPU implementations of Adadelta.
    *   Fix a bug in `import_meta_graph`'s handling of partitioned variables
        when importing into a scope. WARNING: This may break loading checkpoints
        of graphs with partitioned variables saved after using
        `import_meta_graph` with a non-empty `import_scope` argument.
    *   Fix bug in offline debugger which prevented viewing events.
    *   Added the `WorkerService.DeleteWorkerSession` method to the gRPC
        interface, to fix a memory leak. Ensure that your master and worker
        servers are running the same version of TensorFlow to avoid
        compatibility issues.
    *   Fix bug in peephole implementation of BlockLSTM cell.
    *   Fix bug by casting dtype of `log_det_jacobian` to match `log_prob` in
        `TransformedDistribution`.
    *   Fix a bug in `import_meta_graph`'s handling of partitioned variables
        when
    *   Ensure `tf.distributions.Multinomial` doesn't underflow in `log_prob`.
        Before this change, all partitions of an integer variable were
        initialized with the shape of the unpartitioned variable; after this
        change they are initialized correctly.
*   Other:
    *   Add necessary shape util support for bfloat16.
    *   Add a way to run ops using a step function to MonitoredSession.
    *   Add `DenseFlipout` probabilistic layer.
    *   A new flag `ignore_live_threads` is available on train. If set to
        `True`, it will ignore threads that remain running when tearing down
        infrastructure after successfully completing training, instead of
        throwing a RuntimeError.
    *   Restandardize `DenseVariational` as simpler template for other
        probabilistic layers.
    *   `tf.data` now supports `tf.SparseTensor` components in dataset elements.
    *   It is now possible to iterate over `Tensor`s.
    *   Allow `SparseSegmentReduction` ops to have missing segment IDs.
    *   Modify custom export strategy to account for multidimensional sparse
        float splits.
    *   `Conv2D`, `Conv2DBackpropInput`, `Conv2DBackpropFilter` now supports
        arbitrary dilations with GPU and cuDNNv6 support.
    *   `Estimator` now supports `Dataset`: `input_fn` can return a `Dataset`
        instead of `Tensor`s.
    *   Add `RevBlock`, a memory-efficient implementation of reversible residual
        layers.
    *   Reduce BFCAllocator internal fragmentation.
    *   Add `cross_entropy` and `kl_divergence` to
        `tf.distributions.Distribution`.
    *   Add `tf.nn.softmax_cross_entropy_with_logits_v2` which enables backprop
        w.r.t. the labels.
    *   GPU back-end now uses `ptxas` to compile generated PTX.
    *   `BufferAssignment`'s protocol buffer dump is now deterministic.
    *   Change embedding op to use parallel version of `DynamicStitch`.
    *   Add support for sparse multidimensional feature columns.
    *   Speed up the case for sparse float columns that have only 1 value.
    *   Allow sparse float splits to support multivalent feature columns.
    *   Add `quantile` to `tf.distributions.TransformedDistribution`.
    *   Add `NCHW_VECT_C` support for `tf.depth_to_space` on GPU.
    *   Add `NCHW_VECT_C` support for `tf.space_to_depth` on GPU.
## API Changes
*   Rename `SqueezeDims` attribute to `Axis` in C++ API for Squeeze op.
*   `Stream::BlockHostUntilDone` now returns Status rather than bool.
*   Minor refactor: move stats files from `stochastic` to `common` and remove
    `stochastic`.
## Known Bugs
*   Using XLA:GPU with CUDA 9 and CUDA 9.1 results in garbage results and/or
    `CUDA_ILLEGAL_ADDRESS` failures.
    Google discovered in mid-December 2017 that the PTX-to-SASS compiler in CUDA
    9 and CUDA 9.1 sometimes does not properly compute the carry bit when
    decomposing 64-bit address calculations with large offsets (e.g. `load [x +
    large_constant]`) into 32-bit arithmetic in SASS.
    As a result, these versions of `ptxas` miscompile most XLA programs which
    use more than 4GB of temp memory. This results in garbage results and/or
    `CUDA_ERROR_ILLEGAL_ADDRESS` failures.
    A fix in CUDA 9.1.121 is expected in late February 2018. We do not expect a
    fix for CUDA 9.0.x. Until the fix is available, the only workaround is to
    [downgrade](https://developer.nvidia.com/cuda-toolkit-archive) to CUDA 8.0.x
    or disable XLA:GPU.
    TensorFlow will print a warning if you use XLA:GPU with a known-bad version
    of CUDA; see e00ba24c4038e7644da417ddc639169b6ea59122.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Adam Zahran, Ag Ramesh, Alan Lee, Alan Yee, Alex Sergeev, Alexander, Amir H.
Jadidinejad, Amy, Anastasios Doumoulakis, Andrei Costinescu, Andrei Nigmatulin,
Anthony Platanios, Anush Elangovan, arixlin, Armen Donigian, ArtëM Sobolev,
Atlas7, Ben Barsdell, Bill Prin, Bo Wang, Brett Koonce, Cameron Thomas, Carl
Thomé, Cem Eteke, cglewis, Changming Sun, Charles Shenton, Chi-Hung, Chris
Donahue, Chris Filo Gorgolewski, Chris Hoyean Song, Chris Tava, Christian Grail,
Christoph Boeddeker, cinqS, Clayne Robison, codrut3, concerttttt, CQY, Dan
Becker, Dan Jarvis, Daniel Zhang, David Norman, dmaclach, Dmitry Trifonov,
Donggeon Lim, dongpilYu, Dr. Kashif Rasul, Edd Wilder-James, Eric Lv, fcharras,
Felix Abecassis, FirefoxMetzger, formath, FredZhang, Gaojin Cao, Gary Deer,
Guenther Schmuelling, Hanchen Li, Hanmin Qin, hannesa2, hyunyoung2, Ilya
Edrenkin, Jackson Kontny, Jan, Javier Luraschi, Jay Young, Jayaram Bobba, Jeff,
Jeff Carpenter, Jeremy Sharpe, Jeroen BéDorf, Jimmy Jia, Jinze Bai, Jiongyan
Zhang, Joe Castagneri, Johan Ju, Josh Varty, Julian Niedermeier, JxKing, Karl
Lessard, Kb Sriram, Keven Wang, Koan-Sin Tan, Kyle Mills, lanhin, LevineHuang,
Loki Der Quaeler, Loo Rong Jie, Luke Iwanski, LáSzló Csomor, Mahdi Abavisani,
Mahmoud Abuzaina, ManHyuk, Marek ŠUppa, MathSquared, Mats Linander, Matt Wytock,
Matthew Daley, Maximilian Bachl, mdymczyk, melvyniandrag, Michael Case, Mike
Traynor, miqlas, Namrata-Ibm, Nathan Luehr, Nathan Van Doorn, Noa Ezra, Nolan
Liu, Oleg Zabluda, opensourcemattress, Ouwen Huang, Paul Van Eck, peisong, Peng
Yu, PinkySan, pks, powderluv, Qiao Hai-Jun, Qiao Longfei, Rajendra Arora, Ralph
Tang, resec, Robin Richtsfeld, Rohan Varma, Ryohei Kuroki, SaintNazaire, Samuel
He, Sandeep Dcunha, sandipmgiri, Sang Han, scott, Scott Mudge, Se-Won Kim, Simon
Perkins, Simone Cirillo, Steffen Schmitz, Suvojit Manna, Sylvus, Taehoon Lee,
Ted Chang, Thomas Deegan, Till Hoffmann, Tim, Toni Kunic, Toon Verstraelen,
Tristan Rice, Urs KöSter, Utkarsh Upadhyay, Vish (Ishaya) Abrams, Winnie Tsang,
Yan Chen, Yan Facai (颜发才), Yi Yang, Yong Tang, Youssef Hesham, Yuan (Terry)
Tang, Zhengsheng Wei, zxcqwe4906, 张志豪, 田传武
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 1.4.1
## Bug Fixes and Other Changes
*   `LinearClassifier` fix.
# Release 1.4.0
## Major Features And Improvements
*   `tf.keras` is now part of the core TensorFlow API.
*   [`tf.data`](http://tensorflow.org/guide/data) is now part of the core
    TensorFlow API.
    *   The API is now subject to backwards compatibility guarantees.
    *   For a guide to migrating from the `tf.contrib.data` API, see the
        [README](https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/contrib/data/README.md).
    *   Major new features include `Dataset.from_generator()` (for building an
        input pipeline from a Python generator), and the `Dataset.apply()`
        method for applying custom transformation functions.
    *   Several custom transformation functions have been added, including
        `tf.contrib.data.batch_and_drop_remainder()` and
        `tf.contrib.data.sloppy_interleave()`.
*   Add `train_and_evaluate` for simple distributed `Estimator` training.
*   Add `tf.spectral.dct` for computing the DCT-II.
*   Add Mel-Frequency Cepstral Coefficient support to `tf.contrib.signal` (with
    GPU and gradient support).
*   Add a self-check on `import tensorflow` for Windows DLL issues.
*   Add NCHW support to `tf.depth_to_space` on GPU.
*   TensorFlow Debugger (tfdbg):
    *   Add `eval` command to allow evaluation of arbitrary Python/numpy
        expressions in tfdbg command-line interface. See
        [Debugging TensorFlow Programs](https://www.tensorflow.org/guide/debugger)
        for more details.
    *   Usability improvement: The frequently used tensor filter
        `has_inf_or_nan` is now added to `Session` wrappers and hooks by
        default. So there is no need for clients to call
        `.add_tensor_filter(tf_debug.has_inf_or_nan)` anymore.
*   SinhArcsinh (scalar) distribution added to `contrib.distributions`.
*   Make `GANEstimator` opensource.
*   `Estimator.export_savedmodel()` now includes all valid serving signatures
    that can be constructed from the Serving Input Receiver and all available
    ExportOutputs. For instance, a classifier may provide regression- and
    prediction-flavored outputs, in addition to the classification-flavored one.
    Building signatures from these allows TF Serving to honor requests using the
    different APIs (Classify, Regress, and Predict). Furthermore,
    `serving_input_receiver_fn()` may now specify alternative subsets of nodes
    that may act as inputs. This allows, for instance, producing a prediction
    signature for a classifier that accepts raw `Tensors` instead of a
    serialized `tf.Example`.
*   Add `tf.contrib.bayesflow.hmc`.
*   Add `tf.contrib.distributions.MixtureSameFamily`.
*   Make `Dataset.shuffle()` always reshuffles after each iteration by default.
*   Add `tf.contrib.bayesflow.metropolis_hastings`.
*   Add `log_rate` parameter to `tf.contrib.distributions.Poisson`.
*   Extend `tf.contrib.distributions.bijector` API to handle some non-injective
    transforms.
*   Java:
    *   Generics (e.g., `Tensor<Integer>`) for improved type-safety (courtesy
        @andrewcmyers).
    *   Support for multi-dimensional string tensors.
    *   Support loading of custom operations (e.g. many in `tf.contrib`) on
        Linux and OS X
*   All our prebuilt binaries have been built with CUDA 8 and cuDNN 6. We
    anticipate releasing TensorFlow 1.5 with CUDA 9 and cuDNN 7.
## Bug Fixes and Other Changes
*   `tf.nn.rnn_cell.DropoutWrapper` is now more careful about dropping out LSTM
    states. Specifically, it no longer ever drops the `c` (memory) state of an
    `LSTMStateTuple`. The new behavior leads to proper dropout behavior for
    LSTMs and stacked LSTMs. This bug fix follows recommendations from published
    literature, but is a behavioral change. State dropout behavior may be
    customized via the new `dropout_state_filter_visitor` argument.
*   Removed `tf.contrib.training.python_input`. The same behavior, in a more
    flexible and reproducible package, is available via the new
    `tf.contrib.data.Dataset.from_generator` method!
*   Fix `tf.contrib.distributions.Affine` incorrectly computing
    log-det-jacobian.
*   Fix `tf.random_gamma` incorrectly handling non-batch, scalar draws.
*   Resolved a race condition in TensorForest TreePredictionsV4Op.
*   Google Cloud Storage file system, Amazon S3 file system, and Hadoop file
    system support are now default build options.
*   Custom op libraries must link against libtensorflow_framework.so (installed
    at `tf.sysconfig.get_lib()`).
*   Change `RunConfig` default behavior to not set a random seed, making random
    behavior independently random on distributed workers. We expect this to
    generally improve training performance. Models that do rely on determinism
    should set a random seed explicitly.
## Breaking Changes to the API
*   The signature of the `tf.contrib.data.rejection_resample()` function has
    been changed. It now returns a function that can be used as an argument to
    `Dataset.apply()`.
*   Remove `tf.contrib.data.Iterator.from_dataset()` method. Use
    `Dataset.make_initializable_iterator()` instead.
*   Remove seldom used and unnecessary `tf.contrib.data.Iterator.dispose_op()`.
*   Reorder some TF-GAN loss functions in a non-backwards compatible way.
## Known Issues
*   In Python 3, `Dataset.from_generator()` does not support Unicode strings.
    You must convert any strings to bytes objects before yielding them from the
    generator.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4d55397500, Abdullah Alrasheed, abenmao, Adam Salvail, Aditya Dhulipala, Ag
Ramesh, Akimasa Kimura, Alan Du, Alan Yee, Alexander, Amit Kushwaha, Amy, Andrei
Costinescu, Andrei Nigmatulin, Andrew Erlichson, Andrew Myers, Andrew Stepanov,
Androbin, AngryPowman, Anish Shah, Anton Daitche, Artsiom Chapialiou, asdf2014,
Aseem Raj Baranwal, Ash Hall, Bart Kiers, Batchu Venkat Vishal, ben, Ben
Barsdell, Bill Piel, Carl Thomé, Catalin Voss, Changming Sun, Chengzhi Chen, Chi
Zeng, Chris Antaki, Chris Donahue, Chris Oelmueller, Chris Tava, Clayne Robison,
Codrut, Courtial Florian, Dalmo Cirne, Dan J, Darren Garvey, David
Kristoffersson, David Norman, David RöThlisberger, DavidNorman, Dhruv, DimanNe,
Dorokhov, Duncan Mac-Vicar P, EdwardDixon, EMCP, error.d, FAIJUL, Fan Xia,
Francois Xavier, Fred Reiss, Freedom" Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang,
Guenther Schmuelling, Guo Yejun (郭叶军), Hans Gaiser, HectorSVC, Hyungsuk Yoon,
James Pruegsanusak, Jay Young, Jean Wanka, Jeff Carpenter, Jeremy Rutman, Jeroen
BéDorf, Jett Jones, Jimmy Jia, jinghuangintel, jinze1994, JKurland, Joel
Hestness, joetoth, John B Nelson, John Impallomeni, John Lawson, Jonas, Jonathan
Dekhtiar, joshkyh, Jun Luan, Jun Mei, Kai Sasaki, Karl Lessard, karl@kubx.ca, Kb
Sriram, Kenichi Ueno, Kevin Slagle, Kongsea, Lakshay Garg, lhlmgr, Lin Min,
liu.guangcong, Loki Der Quaeler, Louie Helm, lucasmoura, Luke Iwanski, Lyndon
White, Mahmoud Abuzaina, Marcel Puyat, Mark Aaron Shirley, Michele Colombo,
MtDersvan, Namrata-Ibm, Nathan Luehr, Naurril, Nayana Thorat, Nicolas Lopez,
Niranjan Hasabnis, Nolan Liu, Nouce, Oliver Hennigh, osdamv, Patrik Erdes,
Patryk Chrabaszcz, Pavel Christof, Penghao Cen, postBG, Qingqing Cao, Qingying
Chen, qjivy, Raphael, Rasmi, raymondxyang, Renze Yu, resec, Roffel, Ruben
Vereecken, Ryohei Kuroki, sandipmgiri, Santiago Castro, Scott Kirkland, Sean
Vig, Sebastian Raschka, Sebastian Weiss, Sergey Kolesnikov, Sergii Khomenko,
Shahid, Shivam Kotwalia, Stuart Berg, Sumit Gouthaman, superzerg, Sven Mayer,
tetris, Ti Zhou, Tiago Freitas Pereira, Tian Jin, Tomoaki Oiki, Vaibhav Sood,
vfdev, Vivek Rane, Vladimir Moskva, wangqr, Weber Xie, Will Frey, Yan Facai
(颜发才), yanivbl6, Yaroslav Bulatov, Yixing Lao, Yong Tang, youkaichao, Yuan
(Terry) Tang, Yue Zhang, Yuxin Wu, Ziming Dong, ZxYuan, 黄璞
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 1.3.0
See also
[TensorBoard 0.1.4](https://github.com/tensorflow/tensorboard/releases/tag/0.1.4)
release notes.
## Major Features and Improvements
*   Added canned estimators to Tensorflow library. List of added estimators:
    *   `DNNClassifier`
    *   `DNNRegressor`
    *   `LinearClassifier`
    *   `LinearRegressor`
    *   `DNNLinearCombinedClassifier`
    *   `DNNLinearCombinedRegressor`.
*   All our prebuilt binaries have been built with cuDNN 6. We anticipate
    releasing TensorFlow 1.4 with cuDNN 7.
*   `import tensorflow` now goes much faster.
*   Adds a file cache to the GCS filesystem with configurable max staleness for
    file contents. This permits caching of file contents across close/open
    boundaries.
*   Added an axis parameter to `tf.gather`.
*   Added a `constant_values` keyword argument to `tf.pad`.
*   Adds `Dataset.interleave` transformation.
*   Add `ConcatenateDataset` to concatenate two datasets.
*   Added Mobilenet support to TensorFlow for Poets training script.
*   Adds a block cache to the GCS filesystem with configurable block size and
    count.
*   SinhArcSinh bijector added.
*   Added `Dataset.list_files` API.
*   Introduces new operations and Python bindings for the Cloud TPU.
*   Adding TensorFlow-iOS CocoaPod for symmetry with tensorflow-android.
*   Introduces base implementations of ClusterResolvers.
*   Unify memory representations of TensorShape and PartialTensorShape. As a
    consequence, tensors now have a maximum of 254 dimensions, not 255.
*   Changed references to LIBXSMM to use version 1.8.1.
*   TensorFlow Debugger (tfdbg):
    *   Display summaries of numeric tensor values with the `-s` flag to command
        `print_tensor` or `pt`.
    *   Display feed values with the `print_feed` or `pf` command and clickable
        links in the curses UI.
    *   Runtime profiler at the op level and the Python source line level with
        the `run -p` command.
*   Initial release of the statistical distribution library `tf.distributions`.
*   GPU kernels and speed improvements for unary `tf.where` and `tf.nn.top_k`.
*   Monotonic Attention wrappers added to `tf.contrib.seq2seq`.
*   Added `tf.contrib.signal`, a library for signal processing primitives.
*   Added `tf.contrib.resampler`, containing CPU and GPU ops for differentiable
    resampling of images.
## Breaking Changes to the API
*   `tf.RewriterConfig` was removed from the Python API after being available in
    1.2 release candidates (it was never in an actual release). Graph rewriting
    is still available, just not as `tf.RewriterConfig`. Instead add an explicit
    import.
*   Breaking change to `tf.contrib.data.Dataset` APIs that expect a nested
    structure. Lists are now converted to `tf.Tensor` implicitly. You may need
    to change uses of lists to tuples in existing code. In addition, dicts are
    now supported as a nested structure.
## Changes to contrib APIs
*   Adds tf.contrib.nn.rank_sampled_softmax_loss, a sampled-softmax variant that
    can improve rank loss.
*   `tf.contrib.metrics`.{streaming_covariance,streaming_pearson_correlation}
    modified to return nan when they have seen less or equal to 1 unit of
    weight.
*   Adds time series models to contrib. See contrib/timeseries/README.md for
    details.
*   Adds FULLY_CONNECTED Op to tensorflow/lite/schema.fbs
## Known Issues
*   Tensorflow_gpu compilation fails with Bazel 0.5.3.
## Bug Fixes and Other Changes
*   Fixes `strides` and `begin` dtype mismatch when slicing using int64 Tensor
    index in python.
*   Improved convolution padding documentation.
*   Add a tag constant, gpu, to present graph with GPU support.
*   `saved_model.utils` now support SparseTensors transparently.
*   A more efficient implementation of non-max suppression.
*   Add support for the shrinkage-type L2 to FtrlOptimizer in addition to the
    online L2 it already supports.
*   Fix negative variance in moments calculation.
*   Expand UniqueOp Benchmark Tests to cover more collision cases.
*   Improves stability of GCS filesystem on Mac.
*   Add time estimation to HloCostAnalysis.
*   Fixed the bug in Estimator that params in constructor was not a deepcopy of
    the user provided one. This bugs inadvertently enabled user to mutate the
    params after the creation of Estimator, leading to potentially undefined
    behavior.
*   Added None check for save_path in `saver.restore`.
*   Register devices under their legacy names in device_mgr to ease the
    transition to clusterspec-propagated configurations.
*   VectorExponential added to distributions.
*   Add a bitwise module with bitwise_and, bitwise_or, bitwise_xor, and invert
    functions.
*   Add fixed-grid ODE integration routines.
*   Allow passing bounds to ScipyOptimizerInterface.
*   Correctness fixes for fft_length parameter to `tf.spectral.rfft` &
    `tf.spectral.irfft`.
*   Exported model signatures using the 'predict' method will no longer have
    their input and output keys silently ignored and rewritten to 'inputs' and
    'outputs'. If a model was exported with different names before 1.2, and is
    now served with tensorflow/serving, it will accept requests using 'inputs'
    and 'outputs'. Starting at 1.2, such a model will accept the keys specified
    during export. Therefore, inference requests using 'inputs' and 'outputs'
    may start to fail. To fix this, either update any inference clients to send
    requests with the actual input and output keys used by the trainer code, or
    conversely, update the trainer code to name the input and output Tensors
    'inputs' and 'outputs', respectively. Signatures using the 'classify' and
    'regress' methods are not affected by this change; they will continue to
    standardize their input and output keys as before.
*   Add in-memory caching to the Dataset API.
*   Set default end_of_sequence variable in datasets iterators to false.
*   [Performance] Increase performance of `tf.layers.conv2d` when setting
    use_bias=True by 2x by using nn.bias_add.
*   Update iOS examples to use CocoaPods, and moved to tensorflow/examples/ios.
*   Adds a family= attribute in `tf.summary` ops to allow controlling the tab
    name used in Tensorboard for organizing summaries.
*   When GPU is configured, do not require --config=cuda, instead, automatically
    build for GPU if this is requested in the configure script.
*   Fix incorrect sampling of small probabilities in CPU/GPU multinomial.
*   Add a list_devices() API on sessions to list devices within a cluster.
    Additionally, this change augment the ListDevices master API to support
    specifying a session.
*   Allow uses of over-parameterized separable convolution.
*   TensorForest multi-regression bug fix.
*   Framework now supports armv7, cocoapods.org now displays correct page.
*   Script to create iOS framework for CocoaPods.
*   Android releases of TensorFlow are now pushed to jcenter for easier
    integration into apps. See
    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/android/inference_interface/README.md
    for more details.
*   TensorFlow Debugger (tfdbg):
    *   Fixed a bug that prevented tfdbg from functioning with multi-GPU setups.
    *   Fixed a bug that prevented tfdbg from working with
        `tf.Session.make_callable`.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4F2E4A2E, Adriano Carmezim, Adrià Arrufat, Alan Yee, Alex Lattas, Alex Rothberg,
Alexandr Baranezky, Ali Siddiqui, Andreas Solleder, Andrei Costinescu, Andrew
Hundt, Androbin, Andy Kernahan, Anish Shah, Anthony Platanios, Arvinds-Ds, b1rd,
Baptiste Arnaud, Ben Mabey, Benedikt Linse, Beomsu Kim, Bo Wang, Boyuan Deng,
Brett Koonce, Bruno Rosa, Carl Thomé, Changming Sun, Chase Roberts, Chirag
Bhatia, Chris Antaki, Chris Hoyean Song, Chris Tava, Christos Nikolaou, Croath
Liu, cxx, Czxck001, Daniel Ylitalo, Danny Goodman, Darren Garvey, David
Brailovsky, David Norman, DavidNorman, davidpham87, ddurham2, Dhruv, DimanNe,
Drew Hintz, Dustin Tran, Earthson Lu, ethiraj, Fabian Winnen, Fei Sun, Freedom"
Koan-Sin Tan, Fritz Obermeyer, Gao, Xiang, Gautam, Guenther Schmuelling, Gyu-Ho
Lee, Hauke Brammer, horance, Humanity123, J Alammar, Jayeol Chun, Jeroen BéDorf,
Jianfei Wang, jiefangxuanyan, Jing Jun Yin, Joan Puigcerver, Joel Hestness,
Johannes Mayer, John Lawson, Johnson145, Jon Malmaud, Jonathan
Alvarez-Gutierrez, Juang, Yi-Lin, Julian Viereck, Kaarthik Sivashanmugam, Karl
Lessard, karl@kubx.ca, Kevin Carbone, Kevin Van Der Burgt, Kongsea, ksellesk,
lanhin, Lef Ioannidis, Liangliang He, Louis Tiao, Luke Iwanski, LáSzló Csomor,
magixsno, Mahmoud Abuzaina, Marcel Hlopko, Mark Neumann, Maxwell Paul Brickner,
mdfaijul, MichaëL Defferrard, Michał JastrzęBski, Michele Colombo, Mike Brodie,
Mosnoi Ion, mouradmourafiq, myPrecious, Nayana Thorat, Neeraj Kashyap, Nelson
Liu, Niranjan Hasabnis, Olivier Moindrot, orome, Pankaj Gupta, Paul Van Eck,
peeyush18, Peng Yu, Pierre, preciousdp11, qjivy, Raingo, raoqiyu, ribx, Richard
S. Imaoka, Rishabh Patel, Robert Walecki, Rockford Wei, Ryan Kung, Sahil Dua,
Sandip Giri, Sayed Hadi Hashemi, sgt101, Shitian Ni, Shuolongbj, Siim PõDer,
Simon Perkins, sj6077, SOLARIS, Spotlight0xff, Steffen Eberbach, Stephen Fox,
superryanguo, Sven Mayer, Tapan Prakash, Tiago Morais Morgado, Till Hoffmann, Tj
Rana, Vadim Markovtsev, vhasanov, Wei Wu, windead, Yan (Asta) Li, Yan Chen, Yann
Henon, Yi Wang, Yong Tang, yorkie, Yuan (Terry) Tang, Yuxin Wu, zhengjiajin,
zhongzyd, 黄璞
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 1.2.1
## Bug Fixes and Other Changes
*   Updating markdown version required to >= 2.6.8.
*   Support tensors as dropout rates again, by removing the min(max(..))
# Release 1.2.0
## Major Features and Improvements
*   Python 3.6 support on Windows.
*   Added `tf.layers.conv3d_transpose` layer for spatio temporal deconvolution.
*   Added `tf.Session.make_callable()`, which provides a lower overhead means of
    running a similar step multiple times.
*   Added libverbs-based RDMA support to contrib (courtesy @junshi15 from
    Yahoo).
*   Bring `tf.feature_column.*` into the API. Non-deprecated functionality from
    `tf.contrib.layers.*` is moved to `tf.feature_column.*` with cosmetic
    changes.
*   `RNNCell` objects now subclass `tf.layers.Layer`. The strictness described
    in the TensorFlow 1.1 release is gone: The first time an RNNCell is used, it
    caches its scope. All future uses of the RNNCell will reuse variables from
    that same scope. This is a breaking change from the behavior of RNNCells in
    TensorFlow versions <= 1.0.1. TensorFlow 1.1 had checks in place to ensure
    old code works correctly with the new semantics; this version allows more
    flexible uses of RNNCell but can lead to subtle errors if using code meant
    for TensorFlow <= 1.0.1. For example, writing: `MultiRNNCell([lstm] * 5)`
    will now build a 5-layer LSTM stack where each layer shares the **same**
    parameters. To get 5 layers each with their own parameters, write:
    `MultiRNNCell([LSTMCell(...) for _ in range(5)])`. If at all unsure, first
    test your code with TF 1.1; ensure it raises no errors, and then upgrade to
    TF 1.2.
*   RNNCells' variable names have been renamed for consistency with Keras
    layers. Specifically, the previous variable names "weights" and "biases"
    have been changed to "kernel" and "bias", respectively. This may cause
    backward incompatibility with regard to your old checkpoints containing such
    RNN cells, in which case you can use the tool
    [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
    to convert the variable names in your old checkpoints.
*   Many of the RNN functions and classes that were in the `tf.nn` namespace
    before the 1.0 release and which were moved to `tf.contrib.rnn` have now
    been moved back to the core namespace. This includes `RNNCell`, `LSTMCell`,
    `GRUCell`, and a number of other cells. These now reside in `tf.nn.rnn_cell`
    (with aliases in `tf.contrib.rnn` for backwards compatibility). The original
    `tf.nn.rnn` function is now `tf.nn.static_rnn`, and the bidirectional static
    and state saving static rnn functions are also now back in the `tf.nn`
    namespace.
    Notable exceptions are the `EmbeddingWrapper`, `InputProjectionWrapper` and
    `OutputProjectionWrapper`, which will slowly be moved to deprecation in
    `tf.contrib.rnn`. These are inefficient wrappers that should often be
    replaced by calling `embedding_lookup` or `layers.dense` as pre- or post-
    processing of the rnn. For RNN decoding, this functionality has been
    replaced with an alternative API in `tf.contrib.seq2seq`.
*   Intel MKL Integration
    (https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture).
    Intel developed a number of optimized deep learning primitives: In addition
    to matrix multiplication and convolution, these building blocks include:
    Direct batched convolution Pooling: maximum, minimum, average Normalization:
    LRN, batch normalization Activation: rectified linear unit (ReLU) Data
    manipulation: multi-dimensional transposition (conversion), split, concat,
    sum and scale.
*   TensorForest Estimator now supports SavedModel export for serving.
*   Support client-provided ClusterSpec's and propagate them to all workers to
    enable the creation of dynamic TensorFlow clusters.
*   TensorFlow C library now available for Windows.
*   We released a new open-source version of TensorBoard.
*   [`SavedModel CLI`](https://www.tensorflow.org/versions/master/guide/saved_model_cli)
    tool available to inspect and execute MetaGraph in SavedModel
*   Android releases of TensorFlow are now pushed to jcenter for easier
    integration into apps. See
    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/android/inference_interface/README.md
    for more details.
## Deprecations
*   TensorFlow 1.2 may be the last time we build with cuDNN 5.1. Starting with
    TensorFlow 1.3, we will try to build all our prebuilt binaries with cuDNN
    6.0. While we will try to keep our source code compatible with cuDNN 5.1, it
    will be best effort.
## Breaking Changes to the API
*   `org.tensorflow.contrib.android.TensorFlowInferenceInterface` now throws
    exceptions where possible and has simplified method signatures.
## Changes to contrib APIs
*   Added `tf.contrib.util.create_example`.
*   Added bilinear interpolation to `tf.contrib.image`.
*   Add `tf.contrib.stateless` for random ops with custom seed control.
*   MultivariateNormalFullCovariance added to contrib/distributions/
*   tensorflow/contrib/rnn undergoes RNN cell variable renaming for consistency
    with Keras layers. Specifically, the previous variable names "weights" and
    "biases" are changed to "kernel" and "bias", respectively. This may cause
    backward incompatibility with regard to your old checkpoints containing such
    RNN cells, in which case you can use the
    [checkpoint_convert script](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/tools/checkpoint_convert.py)
    to convert the variable names in your old checkpoints.
*   Added `tf.contrib.kernel_methods` module with Ops and estimators for primal
    (explicit) kernel methods in TensorFlow.
## Bug Fixes and Other Changes
*   In python, `Operation.get_attr` on type attributes returns the Python DType
    version of the type to match expected get_attr documentation rather than the
    protobuf enum.
*   tensorflow/contrib/rnn undergoes RNN cell variable renaming for consistency
    with Keras layers. Specifically, the previous variable names "weights" and
    "biases" are changed to "kernel" and "bias", respectively.
*   Changed MIN_SDK version to 8.0 when building iOS libraries.
*   Fixed LIBXSMM integration.
*   Make decode_jpeg/decode_png/decode_gif handle all formats, since users
    frequently try to decode an image as the wrong type.
*   Improve implicit broadcasting lowering.
*   Improving stability of GCS/BigQuery clients by a faster retrying of stale
    transmissions.
*   Remove OpKernelConstruction::op_def() as part of minimizing proto
    dependencies.
*   VectorLaplaceDiag distribution added.
*   Android demo no longer requires libtensorflow_demo.so to run
    (libtensorflow_inference.so still required)
*   Added `categorical_column_with_vocabulary_file`.
*   Introduce ops for batching/unbatching tensors across Session::Run() calls.
*   Add tf.log_sigmoid(x) = tf.log(tf.sigmoid(x)) = -tf.nn.softplus(-x).
*   Changed hooks lists to immutable tuples, and now allow any iterable for the
    associated arguments.
*   Introduce TFDecorator.
*   Added an Mfcc op for speech feature generation.
*   Improved DirectSession::Run() overhead and error checking. Feeding a value
    of the wrong type will now synchronously raise an INVALID_ARGUMENT error
    instead of asynchronously raising an INTERNAL error. Code that depends on
    the (undefined) behavior when feeding a tensor of the wrong type may need to
    be updated.
*   Added unreduced NONE, and reduced MEAN options for losses. Removed
    "WEIGHTED_" prefix from other Reduction constants.
*   assertAllClose now handles dicts.
*   Added Gmock matcher for HloInstructions.
*   Add var name to errors on variable restore.
*   Added an AudioSpectrogram op for audio feature generation.
*   Added `reduction` arg to losses.
*   `tf.placeholder` can represent scalar shapes and partially known.
*   Remove estimator_spec(mode) argument.
*   Added an AudioSpectrogram op for audio feature generation.
*   TensorBoard disables all runs by default if there are more than 40 runs.
*   Removed old doc generator code.
*   GCS file system integration now supports domain buckets, e.g
    gs://bucket.domain.com/path.
*   Add `tf.summary.text` for outputting text to TensorBoard.
*   The "run" command of tfdbg's command-line interface now supports filtering
    of tensors by node name, op type and tensor dtype.
*   `tf.string_to_number` now supports int64 and float64 outputs.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
4F2E4A2E, Aaron Schumacher, Abhi Agg, admcrae, Adriano Carmezim, Adrià Arrufat,
agramesh1, Akimitsu Seo, Alan Mosca, Alex Egg, Alex Rothberg, Alexander
Heinecke, Alexander Matyasko, Alexandr Baranezky, Alexandre Caulier, Ali
Siddiqui, Anand Venkat, Andrew Hundt, Androbin, Anmol Sharma, Arie, Arno Leist,
Arron Cao, AuréLien Geron, Bairen Yi, Beomsu Kim, Carl Thomé, cfperez, Changming
Sun, Corey Wharton, critiqjo, Dalei Li, Daniel Rasmussen, Daniel Trebbien, DaríO
Hereñú, David Eng, David Norman, David Y. Zhang, Davy Song, ddurham2, Deepak
Subburam, Dmytro Kyrychuk, Dominic Rossi, Dominik SchlöSser, Dustin Tran,
Eduardo Pinho, Egil Martinsson, Elliot Saba, Eric Bigelow, Erik Smistad, Evan
Klitzke, Fabrizio Milo, Falcon Dai, Fei Gao, FloopCZ, Fung Lam, Gautam,
GBLin5566, Greg Peatfield, Gu Wang, Guenther Schmuelling, Hans Pabst, Harun
Gunaydin, Huaizheng, Ido Shamay, Ikaro Silva, Ilya Edrenkin, Immexxx, James
Mishra, Jamie Cooke, Jay Young, Jayaram Bobba, Jianfei Wang, jinghua2, Joey
Meyer, John Maidens, Jonghoon Jin, Julian Villella, Jun Kim, Jun Shi, Junwei
Pan, jyegerlehner, Karan Desai, Karel Van De Plassche, Kb Sriram,
KhabarlakKonstantin, Koan-Sin Tan, krivard, Kwotsin, Leandro Gracia Gil, Li
Chen, Liangliang He, Louie Helm, lspvic, Luiz Henrique Soares, LáSzló Csomor,
Mark Wong, Mathew Wicks, Matthew Rahtz, Maxwell Paul Brickner, Michael Hofmann,
Miguel Flores Ruiz De Eguino, MikeTam1021, Mortada Mehyar, Mycosynth, Namnamseo,
Nate Harada, Neven Miculinic, Nghia Tran, Nick Lyu, Niranjan Hasabnis, Nishidha,
Oleksii Kuchaiev, Oyesh Mann Singh, Panmari, Patrick, Paul Van Eck, Piyush
Chaudhary, Quim Llimona, Raingo, Richard Davies, Ruben Vereecken, Sahit
Chintalapudi, Sam Abrahams, Santiago Castro, Scott Sievert, Sean O'Keefe,
Sebastian Schlecht, Shane, Shubhankar Deshpande, Spencer Schaber, Sunyeop Lee,
t13m, td2014, Thomas H. P. Andersen, Toby Petty, Umang Mehta, Vadim Markovtsev,
Valentin Iovene, Vincent Zhao, Vit Stepanovs, Vivek Rane, Vu Pham,
wannabesrevenge, weipingpku, wuhaixutab, wydwww, Xiang Gao, Xiaolin Lin,
xiaoyaozhuzi, Yaroslav Bulatov, Yi Liu, Yoshihiro Sugi, Yuan (Terry) Tang,
Yuming Wang, Yuxin Wu, Zader Zheng, Zhaojun Zhang, zhengjiajin, ZhipengShen,
Ziming Dong, zjj2wry
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 1.1.0
## Major Features and Improvements
*   Added Java API support for Windows.
*   Added `tf.spectral` module. Moved existing FFT ops to `tf.spectral` while
    keeping an alias in the old location (`tf.*`).
*   Added 1D, 2D and 3D Fourier transform ops for real signals to `tf.spectral`.
*   Added a `tf.bincount` function.
*   Added Keras 2 API to contrib.
*   Added a new lightweight queue-like object - `RecordInput`.
*   Added `tf.contrib.image.compose_transforms` function.
*   Bring `tf.estimator.*` into the API. Non-deprecated functionality from
    `tf.contrib.learn.Estimator` is moved to `tf.estimator.Estimator` with
    cosmetic changes.
*   Docker images: TF images on gcr.io and Docker Hub are upgraded to
    ubuntu:16.04.
*   Added the following features to TensorFlow Debugger (tfdbg):
    *   Ability to inspect Python source file against TF ops and tensors
        (command `print_source` / `ps`)
    *   New navigation bar in Curses-based UI
    *   NodeStepper (command `invoke_stepper`) now uses intermediate tensor
        dumps. It also uses `TensorHandles` as direct feeds during successive
        `cont` calls for improved performance and reduced memory consumption.
*   Initial release of installation guides for Java, C, and Go.
*   Added Text Dashboard to TensorBoard.
## Deprecations
*   TensorFlow 1.1.0 will be the last time we release a binary with Mac GPU
    support. Going forward, we will stop testing on Mac GPU systems. We continue
    to welcome patches that maintain Mac GPU support, and we will try to keep
    the Mac GPU build working.
## Changes to contrib APIs
*   The behavior of RNNCells is now stricter due to the transition towards
    making RNNCells act more like Keras layers.
    *   If an RNNCell is used twice in two different variable scopes, an error
        is raised describing how to avoid this behavior.
    *   If an RNNCell is used in a variable scope with existing conflicting
        variables, an error is raised showing that the RNNCell must be
        constructed with argument `reuse=True`.
*   Deprecated contrib/distributions `pmf`, `pdf`, `log_pmf`, `log_pdf`.
*   Moved `bayesflow.special_math` to distributions.
*   `tf.contrib.tensor_forest.python.tensor_forest.RandomForestDeviceAssigner`
    removed.
*   Changed some MVN classes and parameters:
    *   `tf.contrib.distributions.MultivariateNormalFull` replaced by
        `tf.contrib.distributions.MultivariateNormalTriL`.
    *   `tf.contrib.distributions.MultivariateNormalCholesky` replaced by
        `tf.contrib.distributions.MultivariateNormalTriL`
    *   `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev`
        replaced by
        `tf.contrib.distributions.MultivariateNormalDiagWithSoftplusScale`
    *   `tf.contrib.distributions.MultivariateNormalDiag` arguments changed from
        `mu`, `diag_stddev` to `log`, `scale_diag`.
    *   `tf.contrib.distributions.MultivariateNormalDiagPlusVDVT` removed.
    *   `tf.contrib.distributions.MultivariateNormalDiagPlusLowRank` added.
## Bug Fixes and Other Changes
*   Java: Support for loading models exported using the SavedModel API (courtesy
    @EronWright).
*   Go: Added support for incremental graph execution.
*   Fix a bug in the WALS solver when single-threaded.
*   Added support for integer sparse feature values in
    `tf.contrib.layers.sparse_column_with_keys`.
*   Fixed `tf.set_random_seed(0)` to be deterministic for all ops.
*   Stability improvements for the GCS file system support.
*   Improved TensorForest performance.
*   Added support for multiple filename globs in `tf.matching_files`.
*   `LogMessage` now includes a timestamp as beginning of a message.
*   Added MultiBox person detector example standalone binary.
*   Android demo: Makefile build functionality added to build.gradle to fully
    support building TensorFlow demo in Android on Windows.
*   Android demo: read MultiBox priors from txt file rather than protobuf.
*   Added colocation constraints to `StagingArea`.
*   `sparse_matmul_op` reenabled for Android builds.
*   Restrict weights rank to be the same as the broadcast target, to avoid
    ambiguity on broadcast rules.
*   Upgraded libxsmm to 1.7.1 and applied other changes for performance and
    memory usage.
*   Fixed bfloat16 integration of LIBXSMM sparse mat-mul.
*   Improved performance and reduce memory usage by allowing ops to forward
    input buffers to output buffers and perform computations in-place.
*   Improved the performance of CPU assignment for strings.
*   Speed up matrix * vector multiplication and matrix * matrix with unknown
    shapes.
*   C API: Graph imports now support input remapping, control dependencies, and
    returning imported nodes (see `TF_GraphImportGraphDefWithReturnOutputs()`)
*   Multiple C++ API updates.
*   Multiple TensorBoard updates including:
    *   Users can now view image summaries at various sampled steps (instead of
        just the last step).
    *   Bugs involving switching runs as well as the image dashboard are fixed.
    *   Removed data download links from TensorBoard.
    *   TensorBoard uses a relative data directory, for easier embedding.
    *   TensorBoard automatically ignores outliers for domain calculation, and
        formats proportional values consistently.
*   Multiple tfdbg bug fixes:
    *   Fixed Windows compatibility issues.
    *   Command history now persists across runs.
    *   Bug fix in graph validation related to `tf.while_loops`.
*   Java Maven fixes for bugs with Windows installation.
*   Backport fixes and improvements from external keras.
*   Keras config file handling fix.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
A. Besir Kurtulmus, Adal Chiriliuc, @akash, Alec-Desouza, Alex Rothberg, Alex
Sergeev, Alexander Heinecke, Allen Guo, Andreas Madsen, Ankesh Anand, Anton
Loss, @Aravind, @Arie, Ashutosh Das, AuréLien Geron, Bairen Yi, @bakunyo, Ben
Visser, Brady Zhou, Calpa Liu, Changming Sun, Chih Cheng Liang, Christopher
Berner, Clark Zinzow, @Conchylicultor, Dan Ellis, Dan J, Dan Jarvis, Daniel
Ylitalo, Darren Garvey, David Norman, David Truong, @DavidNorman, Dimitar
Pavlov, Dmitry Persiyanov, @Eddie, @elirex, Erfan Noury, Eron Wright, Evgeny
Mazovetskiy, Fabrizio (Misto) Milo, @fanlu, Fisher Coder, Florian Courtial,
Franck Dernoncourt, Gagan Goel, Gao, Xiang, @Gautam, Gefu Tang, @guilherme,
@guschmue, Hannah Provenza, Hans Pabst, @hartb, Hsiao Yi, Huazuo Gao, Igor
ChorążEwicz, Ivan Smirnov, Jakub Kolodziejczyk, Jason Gavris, Jason Morton, Jay
Young, Jayaram Bobba, Jeremy Sawruk, Jiaming Liu, Jihun Choi, @jiqiu, Joan
Thibault, John C F, Jojy George Varghese, Jon Malmaud, Julian Berman, Julian
Niedermeier, Junpeng Lao, Kai Sasaki, @Kankroc, Karl Lessard, Kyle Bostelmann,
@Lezcano, Li Yi, Luo Yun, @lurker, Mahmoud-Abuzaina, Mandeep Singh, Marek
Kolodziej, Mark Szepieniec, Martial Hue, Medhat Omr, Memo Akten, Michael Gharbi,
MichaëL Defferrard, Milan Straka, @MircoT, @mlucool, Muammar Ibn Faisal, Nayana
Thorat, @nghiattran, Nicholas Connor, Nikolaas Steenbergen, Niraj Patel,
Niranjan Hasabnis, @Panmari, Pavel Bulanov, Philip Pries Henningsen, Philipp
Jund, @polonez, Prayag Verma, Rahul Kavi, Raphael Gontijo Lopes, @rasbt, Raven
Iqqe, Reid Pryzant, Richard Shin, Rizwan Asif, Russell Kaplan, Ryo Asakura,
RüDiger Busche, Saisai Shao, Sam Abrahams, @sanosay, Sean Papay, @seaotterman,
@selay01, Shaurya Sharma, Sriram Narayanamoorthy, Stefano Probst, @taknevski,
@tbonza, @teldridge11, Tim Anglade, Tomas Reimers, Tomer Gafner, Valentin
Iovene, Vamsi Sripathi, Viktor Malyi, Vit Stepanovs, Vivek Rane, Vlad Firoiu,
@wangg12, @will, Xiaoyu Tao, Yaroslav Bulatov, Yi Liu, Yuan (Terry) Tang,
@Yufeng, Yuming Wang, Yuxin Wu, Zafar Takhirov, Ziming Dong
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 1.0.1
## Bug Fixes and Other Changes
*   Change GraphConstructor to not increase the version when importing, but
    instead take the min of all versions.
*   Google Cloud Storage fixes.
*   Removed `tf.core` and `tf.python` modules from the API. These were never
    intended to be exposed. Please use the same objects through top-level `tf`
    module instead.
# Release 1.0.0
## Major Features and Improvements
*   XLA (experimental): initial release of
    [XLA](https://www.tensorflow.org/versions/master/experimental/xla/), a
    domain-specific compiler for TensorFlow graphs, that targets CPUs and GPUs.
*   TensorFlow Debugger (tfdbg): command-line interface and API.
*   New python 3 docker images added.
*   Made pip packages pypi compliant. TensorFlow can now be installed by `pip
    install tensorflow` command.
*   Several python API calls have been changed to resemble NumPy more closely.
*   Android: person detection + tracking demo implementing Scalable Object
    Detection using Deep Neural Networks.
*   New (experimental)
    [Java API](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/java).
*   Add new Android image stylization demo based on "A Learned Representation
    For Artistic Style", and add YOLO object detector support.
## Breaking Changes to the API
To help you upgrade your existing TensorFlow Python code to match the API
changes below, we have prepared a
[conversion script](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/compatibility).
* TensorFlow/models have been moved to a separate github repository. * Division
and modulus operators (/, //, %) now match Python (flooring) semantics. This
applies to `tf.div` and `tf.mod` as well. To obtain forced integer truncation
based behaviors you can use `tf.truncatediv` and `tf.truncatemod`. *
`tf.divide()` is now the recommended division function. `tf.div()` will remain,
but its semantics do not respond to Python 3 or `from future` mechanisms. *
tf.reverse() now takes indices of axes to be reversed. E.g. `tf.reverse(a,
[True, False, True])` must now be written as `tf.reverse(a, [0, 2])`.
`tf.reverse_v2()` will remain until 1.0 final. * `tf.mul`, `tf.sub` and `tf.neg`
are deprecated in favor of `tf.multiply`, `tf.subtract` and `tf.negative`. *
`tf.pack` and `tf.unpack` are deprecated in favor of `tf.stack` and
`tf.unstack`. * `TensorArray.pack` and `TensorArray.unpack` are getting
deprecated in favor of `TensorArray.stack` and `TensorArray.unstack`. * The
following Python functions have had their arguments changed to use `axis` when
referring to specific dimensions. We have kept the old keyword arguments for
compatibility currently, but we will be removing them well before the final 1.0.
* `tf.argmax`: `dimension` becomes `axis` * `tf.argmin`: `dimension` becomes
`axis` * `tf.count_nonzero`: `reduction_indices` becomes `axis` *
`tf.expand_dims`: `dim` becomes `axis` * `tf.reduce_all`: `reduction_indices`
becomes `axis` * `tf.reduce_any`: `reduction_indices` becomes `axis` *
`tf.reduce_join`: `reduction_indices` becomes `axis` * `tf.reduce_logsumexp`:
`reduction_indices` becomes `axis` * `tf.reduce_max`: `reduction_indices`
becomes `axis` * `tf.reduce_mean`: `reduction_indices` becomes `axis` *
`tf.reduce_min`: `reduction_indices` becomes `axis` * `tf.reduce_prod`:
`reduction_indices` becomes `axis` * `tf.reduce_sum`: `reduction_indices`
becomes `axis` * `tf.reverse_sequence`: `batch_dim` becomes `batch_axis`,
`seq_dim` becomes `seq_axis` * `tf.sparse_concat`: `concat_dim` becomes `axis` *
`tf.sparse_reduce_sum`: `reduction_axes` becomes `axis` *
`tf.sparse_reduce_sum_sparse`: `reduction_axes` becomes `axis` *
`tf.sparse_split`: `split_dim` becomes `axis` * `tf.listdiff` has been renamed
to `tf.setdiff1d` to match NumPy naming. * `tf.inv` has been renamed to be
`tf.reciprocal` (component-wise reciprocal) to avoid confusion with `np.inv`
which is matrix inversion * tf.round now uses banker's rounding (round to even)
semantics to match NumPy. * `tf.split` now takes arguments in a reversed order
and with different keywords. In particular, we now match NumPy order as
`tf.split(value, num_or_size_splits, axis)`. * `tf.sparse_split` now takes
arguments in reversed order and with different keywords. In particular we now
match NumPy order as `tf.sparse_split(sp_input, num_split, axis)`. NOTE: we have
temporarily made `tf.sparse_split` require keyword arguments. * `tf.concat` now
takes arguments in reversed order and with different keywords. In particular we
now match NumPy order as `tf.concat(values, axis, name)`. *
`tf.image.decode_jpeg` by default uses the faster DCT method, sacrificing a
little fidelity for improved speed. One can revert to the old behavior by
specifying the attribute `dct_method='INTEGER_ACCURATE'`. * `tf.complex_abs` has
been removed from the Python interface. `tf.abs` supports complex tensors and
should be used instead. * In the C++ API (in tensorflow/cc), Input, Output, etc.
have moved from the tensorflow::ops namespace to tensorflow. *
Template.`var_scope` property renamed to `.variable_scope` *
SyncReplicasOptimizer is removed and SyncReplicasOptimizerV2 renamed to
SyncReplicasOptimizer. * `tf.zeros_initializer()` and `tf.ones_initializer()`
now return a callable that must be called with initializer arguments, in your
code replace `tf.zeros_initializer` with `tf.zeros_initializer()`. *
`SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`. Same for
`SparseTensorValue.shape`. * Replace tf.scalar_summary, tf.histogram_summary,
tf.audio_summary, tf.image_summary with tf.summary.scalar, tf.summary.histogram,
tf.summary.audio, tf.summary.image, respectively. The new summary ops take name
rather than tag as their first argument, meaning summary ops now respect
TensorFlow name scopes. * Replace tf.train.SummaryWriter and
tf.train.SummaryWriterCache with tf.summary.FileWriter and
tf.summary.FileWriterCache. * Removes RegisterShape from public API. Use C++
shape function registration instead. * Deprecated `_ref` dtypes from the python
API. * In the C++ API (in tensorflow/cc), Input, Output, etc. have moved from
the tensorflow::ops namespace to tensorflow. * Change arg order for
`{softmax,sparse_softmax,sigmoid}_cross_entropy_with_logits` to be (labels,
predictions), and force use of named args. * tf.nn.rnn_cell.* and most functions
in tf.nn.rnn.* (with the exception of dynamic_rnn and raw_rnn) are temporarily
in tf.contrib.rnn. They will be moved back into core for TF 1.2. *
`tf.nn.sampled_softmax_loss` and `tf.nn.nce_loss` have both changed their API
such that you need to switch the `inputs, labels` to `labels, inputs`
parameters. * The shape keyword argument of the `SparseTensor` constructor
changes its name to `dense_shape` between Tensorflow 0.12 and Tensorflow 1.0.
## Bug Fixes and Other Changes
*   Numerous C++ API updates.
*   New op: `parallel_stack`.
*   Introducing common tf io compression options constants for
    RecordReader/RecordWriter.
*   Add `sparse_column_with_vocabulary_file`, to specify a feature column that
    transform string features to IDs, where the mapping is defined by a
    vocabulary file.
*   Added `index_to_string_table` which returns a lookup table that maps indices
    to strings.
*   Add `string_to_index_table`, which returns a lookup table that matches
    strings to indices.
*   Add a `ParallelForWithWorkerId` function.
*   Add `string_to_index_table`, which returns a lookup table that matches
    strings to indices.
*   Support restore session from checkpoint files in v2 in
    `contrib/session_bundle`.
*   Added a tf.contrib.image.rotate function for arbitrary angles.
*   Added `tf.contrib.framework.filter_variables` as a convenience function to
    filter lists of variables based on regular expressions.
*   `make_template()` takes an optional `custom_getter_ param`.
*   Added comment about how existing directories are handled by
    `recursive_create_dir`.
*   Added an op for QR factorizations.
*   Divides and mods in Python API now use flooring (Python) semantics.
*   Android: pre-built libs are now built nightly.
*   Android: cmake/gradle build for TensorFlow Inference library under
    `contrib/android/cmake`
*   Android: Much more robust Session initialization code.
*   Android: TF stats now exposed directly in demo and log when debug mode is
    active
*   Android: new/better README.md documentation
*   saved_model is available as `tf.saved_model`.
*   Empty op is now stateful.
*   Improve speed of scatter_update on the cpu for ASSIGN operations.
*   Change `reduce_join` to treat `reduction_indices` in the same way as other
    `reduce_` ops.
*   Move `TensorForestEstimator` to `contrib/tensor_forest`.
*   Enable compiler optimizations by default and allow configuration in
    configure.
*   `tf.divide` now honors the name field.
*   Make metrics weight broadcasting more strict.
*   Add new queue-like `StagingArea` and new ops: `stage` and `unstage`.
*   Enable inplace update ops for strings on CPU. Speed up string concat.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Aaron Hu, Abhishek Aggarwal, Adam Michael, Adriano Carmezim, @AfirSraftGarrier,
Alexander Novikov, Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Hundt,
Anish Shah, Anton Loss, @b0noI, @BoyuanJiang, Carl Thomé, Chad Kennedy, Comic
Chang, Connor Braa, Daniel N. Lang, Daniel Trebbien, @danielgordon10, Darcy Liu,
Darren Garvey, Dmitri Lapin, Eron Wright, Evan Cofer, Fabrizio Milo, Finbarr
Timbers, Franck Dernoncourt, Garrett Smith, @guschmue, Hao Wei, Henrik Holst,
Huazuo Gao, @Ian, @Issac, Jacob Israel, Jangsoo Park, Jin Kim, Jingtian Peng,
John Pope, Kye Bostelmann, Liangliang He, Ling Zhang, Luheng He, Luke Iwanski,
@lvli, Michael Basilyan, Mihir Patel, Mikalai Drabovich, Morten Just, @newge,
Nick Butlin, Nishant Shukla, Pengfei Ni, Przemyslaw Tredak, @rasbt, @Ronny,
Rudolf Rosa, @RustingSword, Sam Abrahams, Sam Putnam, @SeongAhJo, Shi Jiaxin,
@skavulya, Steffen MüLler, @TheUSER123, @tiriplicamihai, @vhasanov, Victor
Costan, Vit Stepanovs, Wangda Tan, Wenjian Huang, Xingdong Zuo, Yaroslav
Bulatov, Yota Toyama, Yuan (Terry) Tang, Yuxin Wu
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.12.0
## Major Features and Improvements
*   TensorFlow now builds and runs on Microsoft Windows (tested on Windows 10,
    Windows 7, and Windows Server 2016). Supported languages include Python (via
    a pip package) and C++. CUDA 8.0 and cuDNN 5.1 are supported for GPU
    acceleration. Known limitations include: It is not currently possible to
    load a custom op library. The GCS and HDFS file systems are not currently
    supported. The following ops are not currently implemented: Dequantize,
    QuantizeAndDequantize, QuantizedAvgPool,
    QuantizedBatchNomWithGlobalNormalization, QuantizedBiasAdd, QuantizedConcat,
    QuantizedConv2D, QuantizedMatmul, QuantizedMaxPool,
    QuantizeDownAndShrinkRange, QuantizedRelu, QuantizedRelu6, QuantizedReshape,
    QuantizeV2, RequantizationRange, and Requantize.
*   Go: Experimental API in Go to create and execute graphs
    (https://godoc.org/github.com/tensorflow/tensorflow/tensorflow/go)
*   New checkpoint format becomes the default in `tf.train.Saver`. Old V1
    checkpoints continue to be readable; controlled by the `write_version`
    argument, `tf.train.Saver` now by default writes out in the new V2 format.
    It significantly reduces the peak memory required and latency incurred
    during restore.
*   Added a new library for library of matrix-free (iterative) solvers for
    linear equations, linear least-squares, eigenvalues and singular values in
    tensorflow/contrib/solvers. Initial version has lanczos bidiagonalization,
    conjugate gradients and CGLS.
*   Added gradients for `matrix_solve_ls` and `self_adjoint_eig`.
*   Large cleanup to add second order gradient for ops with C++ gradients and
    improve existing gradients such that most ops can now be differentiated
    multiple times.
*   Added a solver for ordinary differential equations,
    `tf.contrib.integrate.odeint`.
*   New contrib module for tensors with named axes, `tf.contrib.labeled_tensor`.
*   Visualization of embeddings in TensorBoard.
## Breaking Changes to the API
*   `BusAdjacency` enum replaced with a protocol buffer `DeviceLocality`. PCI
    bus indexing now starts from 1 instead of 0, and `bus_id==0` is used where
    previously `BUS_ANY` was used.
*   `Env::FileExists` and `FileSystem::FileExists` now return a
    tensorflow::Status instead of a bool. Any callers to this function can be
    converted to a bool by adding .ok() to the call.
*   The C API type `TF_SessionWithGraph` has been renamed to `TF_Session`,
    indicating its preferred use in language bindings for TensorFlow. What was
    previously `TF_Session` has been renamed to `TF_DeprecatedSession`.
*   Renamed `TF_Port` to `TF_Output` in the C API.
*   Removes RegisterShape from public API. Use C++ shape function registration
    instead. indexing now starts from 1 instead of 0, and `bus_id==0` is used
    where previously `BUS_ANY` was used.
*   Most RNN cells and RNN functions now use different variable scopes to be
    consistent with layers (`tf.contrib.layers`). This means old checkpoints
    written using this code will not load after this change without providing
    `Saver` a list of variable renames. Examples of variable scope changes
    include `RNN` -> `rnn` in `tf.nn.rnn`, `tf.nn.dynamic_rnn` and moving from
    `Linear/Matrix` -> `weights` and `Linear/Bias` -> `biases` in most RNN
    cells.
*   Deprecated tf.select op. tf.where should be used instead.
*   `SparseTensor.shape` has been renamed to `SparseTensor.dense_shape`. Same
    for `SparseTensorValue.shape`.
*   `Env::FileExists` and `FileSystem::FileExists` now return a
    `tensorflow::Status` instead of a bool. Any callers to this function can be
    converted to a bool by adding `.ok()` to the call.
*   C API: Type `TF_SessionWithGraph` has been renamed to `TF_Session`,
    indicating its preferred use in language bindings for TensorFlow. What was
    previously `TF_Session` has been renamed to `TF_DeprecatedSession`.
*   C API: Renamed `TF_Port` to `TF_Output`.
*   C API: The caller retains ownership of `TF_Tensor` objects provided to
    `TF_Run`, `TF_SessionRun`, `TF_SetAttrTensor` etc.
*   Renamed `tf.image.per_image_whitening()` to
    `tf.image.per_image_standardization()`
*   Move Summary protobuf constructors to `tf.summary` submodule.
*   Deprecate `histogram_summary`, `audio_summary`, `scalar_summary`,
    `image_summary`, `merge_summary`, and `merge_all_summaries`.
*   Combined `batch_*` and regular version of linear algebra and FFT ops. The
    regular op now handles batches as well. All `batch_*` Python interfaces were
    removed.
*   `tf.all_variables`, `tf.VARIABLES` and `tf.initialize_all_variables` renamed
    to `tf.global_variables`, `tf.GLOBAL_VARIABLES` and
    `tf.global_variables_initializer` respectively.
*   `tf.zeros_initializer()` and `tf.ones_initializer()` now return a callable
    that must be called with initializer arguments, in your code replace
    `tf.zeros_initializer` with `tf.zeros_initializer()`
## Bug Fixes and Other Changes
*   Use threadsafe version of `lgamma` function.
*   Fix `tf.sqrt` handling of negative arguments.
*   Fixed bug causing incorrect number of threads to be used for multi-threaded
    benchmarks.
*   Performance optimizations for `batch_matmul` on multi-core CPUs.
*   Improve trace, `matrix_set_diag`, `matrix_diag_part` and their gradients to
    work for rectangular matrices.
*   Support for SVD of complex valued matrices.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
@a7744hsc, Abhi Agg, @admcrae, Adriano Carmezim, Aki Sukegawa, Alex Kendall,
Alexander Rosenberg Johansen, @amcrae, Amlan Kar, Andre Simpelo, Andreas Eberle,
Andrew Hundt, Arnaud Lenglet, @b0noI, Balachander Ramachandran, Ben Barsdell,
Ben Guidarelli, Benjamin Mularczyk, Burness Duan, @c0g, Changming Sun, @chanis,
Corey Wharton, Dan J, Daniel Trebbien, Darren Garvey, David Brailovsky, David
Jones, Di Zeng, @DjangoPeng, Dr. Kashif Rasul, @drag0, Fabrizio (Misto) Milo,
FabríCio Ceschin, @fp, @Ghedeon, @guschmue, Gökçen Eraslan, Haosdent Huang,
Haroen Viaene, Harold Cooper, Henrik Holst, @hoangmit, Ivan Ukhov, Javier
Dehesa, Jingtian Peng, Jithin Odattu, Joan Pastor, Johan Mathe, Johannes Mayer,
Jongwook Choi, Justus Schwabedal, Kai Wolf, Kamil Hryniewicz, Kamran Amini,
Karen Brems, Karl Lattimer, @kborer, Ken Shirriff, Kevin Rose, Larissa Laich,
Laurent Mazare, Leonard Lee, Liang-Chi Hsieh, Liangliang He, Luke Iwanski, Marek
Kolodziej, Moustafa Alzantot, @MrQianjinsi, @nagachika, Neil Han, Nick Meehan,
Niels Ole Salscheider, Nikhil Mishra, @nschuc, Ondrej Skopek, OndřEj Filip,
@OscarDPan, Pablo Moyano, Przemyslaw Tredak, @qitaishui, @Quarazy, @raix852,
Philipp Helo, Sam Abrahams, @SriramRamesh, Till Hoffmann, Tushar Soni, @tvn,
@tyfkda, Uwe Schmidt, Victor Villas, Vit Stepanovs, Vladislav Gubarev,
@wujingyue, Xuesong Yang, Yi Liu, Yilei Yang, @youyou3, Yuan (Terry) Tang,
Yuming Wang, Zafar Takhirov, @zhongyuk, Ziming Dong, @guotong1988
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.11.0
## Major Features and Improvements
*   CUDA 8 support.
*   cuDNN 5 support.
*   HDFS Support.
*   Adds Fused LSTM support via cuDNN 5 in `tensorflow/contrib/cudnn_rnn`.
*   Improved support for NumPy style basic slicing including non-1 strides,
    ellipses, newaxis, and negative indices. For example complicated expressions
    like `foo[1, 2:4, tf.newaxis, ..., :-3:-1, :]` are now supported. In
    addition we have preliminary (non-broadcasting) support for sliced
    assignment to variables. In particular one can write
    `var[1:3].assign([1,11,111])`.
*   Deprecated `tf.op_scope` and `tf.variable_op_scope` in favor of a unified
    `tf.name_scope` and `tf.variable_scope`. The new argument order of
    `tf.variable_scope` is incompatible with previous versions.
*   Introducing `core/util/tensor_bundle` module: a module to efficiently
    serialize/deserialize tensors to disk. Will be used in TF's new checkpoint
    format.
*   Added tf.svd for computing the singular value decomposition (SVD) of dense
    matrices or batches of matrices (CPU only).
*   Added gradients for eigenvalues and eigenvectors computed using
    `self_adjoint_eig` or `self_adjoint_eigvals`.
*   Eliminated `batch_*` methods for most linear algebra and FFT ops and
    promoted the non-batch version of the ops to handle batches of matrices.
*   Tracing/timeline support for distributed runtime (no GPU profiler yet).
*   C API gives access to inferred shapes with `TF_GraphGetTensorNumDims` and
    `TF_GraphGetTensorShape`.
*   Shape functions for core ops have moved to C++ via
    `REGISTER_OP(...).SetShapeFn(...)`. Python shape inference RegisterShape
    calls use the C++ shape functions with `common_shapes.call_cpp_shape_fn`. A
    future release will remove `RegisterShape` from python.
## Bug Fixes and Other Changes
*   Documentation now includes operator overloads on Tensor and Variable.
*   `tensorflow.__git_version__` now allows users to identify the version of the
    code that TensorFlow was compiled with. We also have
    `tensorflow.__git_compiler__` which identifies the compiler used to compile
    TensorFlow's core.
*   Improved multi-threaded performance of `batch_matmul`.
*   LSTMCell, BasicLSTMCell, and MultiRNNCell constructors now default to
    `state_is_tuple=True`. For a quick fix while transitioning to the new
    default, simply pass the argument `state_is_tuple=False`.
*   DeviceFactory's AddDevices and CreateDevices functions now return a Status
    instead of void.
*   Int32 elements of list(type) arguments are no longer placed in host memory
    by default. If necessary, a list(type) argument to a kernel can be placed in
    host memory using a HostMemory annotation.
*   `uniform_unit_scaling_initializer()` no longer takes a `full_shape` arg,
    instead relying on the partition info passed to the initializer function
    when it's called.
*   The NodeDef protocol message is now defined in its own file `node_def.proto`
    `instead of graph.proto`.
*   `ops.NoGradient` was renamed `ops.NotDifferentiable`. `ops.NoGradient` will
    be removed soon.
*   `dot.h` / DotGraph was removed (it was an early analysis tool prior to
    TensorBoard, no longer that useful). It remains in history should someone
    find the code useful.
*   re2 / regexp.h was removed from being a public interface of TF. Should users
    need regular expressions, they should depend on the RE2 library directly
    rather than via TensorFlow.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Abid K, @afshinrahimi, @AidanGG, Ajay Rao, Aki Sukegawa, Alex Rothberg,
Alexander Rosenberg Johansen, Andrew Gibiansky, Andrew Thomas, @Appleholic,
Bastiaan Quast, Ben Dilday, Bofu Chen, Brandon Amos, Bryon Gloden, Cissp®,
@chanis, Chenyang Liu, Corey Wharton, Daeyun Shin, Daniel Julius Lasiman, Daniel
Waterworth, Danijar Hafner, Darren Garvey, Denis Gorbachev, @DjangoPeng,
Egor-Krivov, Elia Palme, Eric Platon, Fabrizio Milo, Gaetan Semet, Georg
Nebehay, Gu Wang, Gustav Larsson, @haosdent, Harold Cooper, Hw-Zz, @ichuang,
Igor Babuschkin, Igor Macedo Quintanilha, Ilya Edrenkin, @ironhead, Jakub
Kolodziejczyk, Jennifer Guo, Jihun Choi, Jonas Rauber, Josh Bleecher Snyder,
@jpangburn, Jules Gagnon-Marchand, Karen Brems, @kborer, Kirill Bobyrev, Laurent
Mazare, Longqi Yang, Malith Yapa, Maniteja Nandana, Martin Englund, Matthias
Winkelmann, @mecab, Mu-Ik Jeon, Nand Dalal, Niels Ole Salscheider, Nikhil
Mishra, Park Jiin, Pieter De Rijk, @raix852, Ritwik Gupta, Sahil Sharma,
Sangheum Hwang, @SergejsRk, Shinichiro Hamaji, Simon Denel, @Steve,
@suiyuan2009, Tiago Jorge, Tijmen Tieleman, @tvn, @tyfkda, Wang Yang, Wei-Ting
Kuo, Wenjian Huang, Yan Chen, @YenChenLin, Yuan (Terry) Tang, Yuncheng Li,
Yunfeng Wang, Zack Polizzi, @zhongzyd, Ziming Dong, @perhapszzy
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.10.0
## Major Features and Improvements
*   Added support for C++ shape inference
*   Added graph-construction C API
*   Major revision to the graph-construction C++ API
*   Support makefile build for iOS
*   Added Mac GPU support
*   Full version of TF-Slim available as `tf.contrib.slim`
*   Added k-Means clustering and WALS matrix factorization
## Bug Fixes and Other Changes
*   Allow gradient computation for scalar values.
*   Performance improvements for gRPC
*   Improved support for fp16
*   New high-level ops in tf.contrib. {layers,metrics}
*   New features for TensorBoard, such as shape display, exponential smoothing
*   Faster and more stable Google Cloud Storage (GCS) filesystem support
*   Support for zlib compression and decompression for TFRecordReader and
    TFRecordWriter
*   Support for reading (animated) GIFs
*   Improved support for SparseTensor
*   Added support for more probability distributions (Dirichlet, Beta,
    Bernoulli, etc.)
*   Added Python interfaces to reset resource containers.
*   Many bugfixes and performance improvements
*   Many documentation fixes
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Alex Rothberg, Andrew Royer, Austin Marshall, @BlackCoal, Bob Adolf, Brian
Diesel, Charles-Emmanuel Dias, @chemelnucfin, Chris Lesniewski, Daeyun Shin,
Daniel Rodriguez, Danijar Hafner, Darcy Liu, Kristinn R. Thórisson, Daniel
Castro, Dmitry Savintsev, Kashif Rasul, Dylan Paiton, Emmanuel T. Odeke, Ernest
Grzybowski, Gavin Sherry, Gideon Dresdner, Gregory King, Harold Cooper,
@heinzbeinz, Henry Saputra, Huarong Huo, Huazuo Gao, Igor Babuschkin, Igor
Macedo Quintanilha, Ivan Ukhov, James Fysh, Jan Wilken Dörrie, Jihun Choi,
Johnny Lim, Jonathan Raiman, Justin Francis, @lilac, Li Yi, Marc Khoury, Marco
Marchesi, Max Melnick, Micael Carvalho, @mikowals, Mostafa Gazar, Nico Galoppo,
Nishant Agrawal, Petr Janda, Yuncheng Li, @raix852, Robert Rose,
@Robin-des-Bois, Rohit Girdhar, Sam Abrahams, satok16, Sergey Kishchenko, Sharkd
Tu, @shotat, Siddharth Agrawal, Simon Denel, @sono-bfio, SunYeop Lee, Thijs
Vogels, @tobegit3hub, @Undo1, Wang Yang, Wenjian Huang, Yaroslav Bulatov, Yuan
Tang, Yunfeng Wang, Ziming Dong
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.9.0
## Major Features and Improvements
*   Python 3.5 support and binaries
*   Added iOS support
*   Added support for processing on GPUs on MacOS
*   Added makefile for better cross-platform build support (C API only)
*   fp16 support and improved complex128 support for many ops
*   Higher level functionality in contrib. {layers,losses,metrics,learn}
*   More features to Tensorboard
*   Improved support for string embedding and sparse features
*   The RNN api is finally "official" (see, e.g., `tf.nn.dynamic_rnn`,
    `tf.nn.rnn`, and the classes in `tf.nn.rnn_cell`).
*   TensorBoard now has an Audio Dashboard, with associated audio summaries.
## Bug Fixes and Other Changes
*   Turned on CuDNN Autotune.
*   Added support for using third-party Python optimization algorithms
    (contrib.opt).
*   Google Cloud Storage filesystem support.
*   HDF5 support
*   Add support for 3d convolutions and pooling.
*   Update gRPC release to 0.14.
*   Eigen version upgrade.
*   Switch to eigen thread pool
*   `tf.nn.moments()` now accepts a `shift` argument. Shifting by a good
    estimate of the mean improves numerical stability. Also changes the behavior
    of the `shift` argument to `tf.nn.sufficient_statistics()`.
*   Performance improvements
*   Many bugfixes
*   Many documentation fixes
*   TensorBoard fixes: graphs with only one data point, Nan values, reload
    button and auto-reload, tooltips in scalar charts, run filtering, stable
    colors
*   Tensorboard graph visualizer now supports run metadata. Clicking on nodes
    while viewing a stats for a particular run will show runtime statistics,
    such as memory or compute usage. Unused nodes will be faded out.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Aaron Schumacher, Aidan Dang, Akihiko ITOH, Aki Sukegawa, Arbit Chen, Aziz Alto,
Danijar Hafner, Erik Erwitt, Fabrizio Milo, Felix Maximilian Möller, Henry
Saputra, Sung Kim, Igor Babuschkin, Jan Zikes, Jeremy Barnes, Jesper Steen
Møller, Johannes Mayer, Justin Harris, Kashif Rasul, Kevin Robinson, Loo Rong
Jie, Lucas Moura, Łukasz Bieniasz-Krzywiec, Mario Cho, Maxim Grechkin, Michael
Heilman, Mostafa Rahmani, Mourad Mourafiq, @ninotoshi, Orion Reblitz-Richardson,
Yuncheng Li, @raoqiyu, Robert DiPietro, Sam Abrahams, Sebastian Raschka,
Siddharth Agrawal, @snakecharmer1024, Stephen Roller, Sung Kim, SunYeop Lee,
Thijs Vogels, Till Hoffmann, Victor Melo, Ville Kallioniemi, Waleed Abdulla,
Wenjian Huang, Yaroslav Bulatov, Yeison Rodriguez, Yuan Tang, Yuxin Wu,
@zhongzyd, Ziming Dong, Zohar Jackson
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.8.0
## Major Features and Improvements
*   Added a distributed runtime using GRPC
*   Move skflow to `contrib/learn`
*   Better linear optimizer in `contrib/linear_optimizer`
*   Random forest implementation in `contrib/tensor_forest`
*   CTC loss and decoders in `contrib/ctc`
*   Basic support for `half` data type
*   Better support for loading user ops (see examples in `contrib/`)
*   Allow use of (non-blocking) Eigen threadpool with
    `TENSORFLOW_USE_EIGEN_THREADPOOL` define
*   Add an extension mechanism for adding network file system support
*   TensorBoard displays metadata stats (running time, memory usage and device
    used) and tensor shapes
## Bug Fixes and Other Changes
*   Utility for inspecting checkpoints
*   Basic tracing and timeline support
*   Allow building against cuDNN 5 (not incl. RNN/LSTM support)
*   Added instructions and binaries for ProtoBuf library with fast serialization
    and without 64MB limit
*   Added special functions
*   `bool`-strictness: Tensors have to be explicitly compared to `None`
*   Shape strictness: all fed values must have a shape that is compatible with
    the tensor they are replacing
*   Exposed `tf.while_loop` (deprecated `control_flow_ops.While`)
*   run() now takes RunOptions and RunMetadata, which enable timing stats
*   Fixed lots of potential overflow problems in op kernels
*   Various performance improvements, especially for RNNs and convolutions
*   Many bugfixes
*   Nightly builds, tutorial tests, many test improvements
*   New examples: transfer learning and deepdream ipython notebook
*   Added tutorials, many documentation fixes.
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Abhinav Upadhyay, Aggelos Avgerinos, Alan Wu, Alexander G. de G. Matthews,
Aleksandr Yahnev, @amchercashin, Andy Kitchen, Aurelien Geron, Awni Hannun,
@BanditCat, Bas Veeling, Cameron Chen, @cg31, Cheng-Lung Sung, Christopher
Bonnett, Dan Becker, Dan Van Boxel, Daniel Golden, Danijar Hafner, Danny
Goodman, Dave Decker, David Dao, David Kretch, Dongjoon Hyun, Dustin Dorroh,
@e-lin, Eurico Doirado, Erik Erwitt, Fabrizio Milo, @gaohuazuo, Iblis Lin, Igor
Babuschkin, Isaac Hodes, Isaac Turner, Iván Vallés, J Yegerlehner, Jack Zhang,
James Wexler, Jan Zikes, Jay Young, Jeff Hodges, @jmtatsch, Johnny Lim, Jonas
Meinertz Hansen, Kanit Wongsuphasawat, Kashif Rasul, Ken Shirriff, Kenneth
Mitchner, Kenta Yonekura, Konrad Magnusson, Konstantin Lopuhin, @lahwran,
@lekaha, @liyongsea, Lucas Adams, @makseq, Mandeep Singh, @manipopopo, Mark
Amery, Memo Akten, Michael Heilman, Michael Peteuil, Nathan Daly, Nicolas
Fauchereau, @ninotoshi, Olav Nymoen, @panmari, @papelita1234, Pedro Lopes,
Pranav Sailesh Mani, RJ Ryan, Rob Culliton, Robert DiPietro, @ronrest, Sam
Abrahams, Sarath Shekkizhar, Scott Graham, Sebastian Raschka, Sung Kim, Surya
Bhupatiraju, Syed Ahmed, Till Hoffmann, @timsl, @urimend, @vesnica, Vlad Frolov,
Vlad Zagorodniy, Wei-Ting Kuo, Wenjian Huang, William Dmitri Breaden Madden,
Wladimir Schmidt, Yuan Tang, Yuwen Yan, Yuxin Wu, Yuya Kusakabe, @zhongzyd,
@znah.
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.7.1
## Bug Fixes and Other Changes
*   Added gfile.Open and gfile.Copy, used by input_data.py.
*   Fixed Saver bug when MakeDirs tried to create empty directory.
*   GPU Pip wheels are built with cuda 7.5 and cudnn-v4, making them required
    for the binary releases. Lower versions of cuda/cudnn can be supported by
    installing from sources and setting the options during ./configure
*   Fix dataset encoding example for Python3 (@danijar)
*   Fix PIP installation by not packaging protobuf as part of wheel, require
    protobuf 3.0.0b2.
*   Fix Mac pip installation of numpy by requiring pip >= 1.10.1.
*   Improvements and fixes to Docker image.
# Release 0.7.0
## Major Features and Improvements
*   Allow using any installed Cuda >= 7.0 and cuDNN >= R2, and add support for
    cuDNN R4
*   Added a `contrib/` directory for unsupported or experimental features,
    including higher level `layers` module
*   Added an easy way to add and dynamically load user-defined ops
*   Built out a good suite of tests, things should break less!
*   Added `MetaGraphDef` which makes it easier to save graphs with metadata
*   Added assignments for "Deep Learning with TensorFlow" udacity course
## Bug Fixes and Other Changes
*   Added a versioning framework for `GraphDef`s to ensure compatibility
*   Enforced Python 3 compatibility
*   Internal changes now show up as sensibly separated commits
*   Open-sourced the doc generator
*   Un-fork Eigen
*   Simplified the `BUILD` files and cleaned up C++ headers
*   TensorFlow can now be used as a submodule in another bazel build
*   New ops (e.g., `*fft`, `*_matrix_solve`)
*   Support for more data types in many ops
*   Performance improvements
*   Various bugfixes
*   Documentation fixes and improvements
## Breaking Changes to the API
*   `AdjustContrast` kernel deprecated, new kernel `AdjustContrastv2` takes and
    outputs float only. `adjust_contrast` now takes all data types.
*   `adjust_brightness`'s `delta` argument is now always assumed to be in
    `[0,1]` (as is the norm for images in floating point formats), independent
    of the data type of the input image.
*   The image processing ops do not take `min` and `max` inputs any more,
    casting safety is handled by `saturate_cast`, which makes sure over- and
    underflows are handled before casting to data types with smaller ranges.
*   For C++ API users: `IsLegacyScalar` and `IsLegacyVector` are now gone from
    `TensorShapeUtils` since TensorFlow is scalar strict within Google (for
    example, the shape argument to `tf.reshape` can't be a scalar anymore). The
    open source release was already scalar strict, so outside Google `IsScalar`
    and `IsVector` are exact replacements.
*   The following files are being removed from `tensorflow/core/public/`:
    *   `env.h` -> `../platform/env.h`
    *   `status.h` -> `../lib/core/status.h`
    *   `tensor.h` -> `../framework/tensor.h`
    *   `tensor_shape.h` -> `../framework/tensor_shape.h`
    *   `partial_tensor_shape.h` -> `../framework/partial_tensor_shape.h`
    *   `tensorflow_server.h` deleted
*   For C++ API users: `TensorShape::ShortDebugString` has been renamed to
    `DebugString`, and the previous `DebugString` behavior is gone (it was
    needlessly verbose and produced a confusing empty string for scalars).
*   `GraphOptions.skip_common_subexpression_elimination` has been removed. All
    graph optimizer options are now specified via
    `GraphOptions.OptimizerOptions`.
*   `ASSERT_OK` / `EXPECT_OK` macros conflicted with external projects, so they
    were renamed `TF_ASSERT_OK`, `TF_EXPECT_OK`. The existing macros are
    currently maintained for short-term compatibility but will be removed.
*   The non-public `nn.rnn` and the various `nn.seq2seq` methods now return just
    the final state instead of the list of all states.
*   `tf.scatter_update` now no longer guarantees that lexicographically largest
    index be used for update when duplicate entries exist.
*   `tf.image.random_crop(image, [height, width])` is now `tf.random_crop(image,
    [height, width, depth])`, and `tf.random_crop` works for any rank (not just
    3-D images). The C++ `RandomCrop` op has been replaced with pure Python.
*   Renamed `tf.test.GetTempDir` and `tf.test.IsBuiltWithCuda` to
    `tf.test.get_temp_dir` and `tf.test.is_built_with_cuda` for PEP-8
    compatibility.
*   `parse_example`'s interface has changed, the old interface is accessible in
    `legacy_parse_example` (same for related functions).
*   New `Variable`s are not added to the same collection several times even if a
    list with duplicates is passed to the constructor.
*   The Python API will now properly set the `list` member of `AttrValue` in
    constructed `GraphDef` messages for empty lists. The serialization of some
    graphs will change, but the change is both forwards and backwards
    compatible. It will break tests that compare a generated `GraphDef` to a
    golden serialized `GraphDef` (which is discouraged).
## Thanks to our Contributors
This release contains contributions from many people at Google, as well as:
Akiomi Kamakura, Alex Vig, Alexander Rosenberg Johansen, Andre Cruz, Arun Ahuja,
Bart Coppens, Bernardo Pires, Carl Vondrick, Cesar Salgado, Chen Yu, Christian
Jauvin, Damien Aymeric, Dan Vanderkam, Denny Britz, Dongjoon Hyun, Eren Güven,
Erik Erwitt, Fabrizio Milo, G. Hussain Chinoy, Jim Fleming, Joao Felipe Santos,
Jonas Meinertz Hansen, Joshi Rekha, Julian Viereck, Keiji Ariyama, Kenton Lee,
Krishna Sankar, Kristina Chodorow, Linchao Zhu, Lukas Krecan, Mark Borgerding,
Mark Daoust, Moussa Taifi, Nathan Howell, Naveen Sundar Govindarajulu, Nick
Sweeting, Niklas Riekenbrauck, Olivier Grisel, Patrick Christ, Povilas
Liubauskas, Rainer Wasserfuhr, Romain Thouvenin, Sagan Bolliger, Sam Abrahams,
Taehoon Kim, Timothy J Laurent, Vlad Zavidovych, Yangqing Jia, Yi-Lin Juang,
Yuxin Wu, Zachary Lipton, Zero Chen, Alan Wu, @brchiu, @emmjaykay, @jalammar,
@Mandar-Shinde, @nsipplswezey, @ninotoshi, @panmari, @prolearner and
@rizzomichaelg.
We are also grateful to all who filed issues or helped resolve them, asked and
answered questions, and were part of inspiring discussions.
# Release 0.6.0
## Major Features and Improvements
*   Python 3.3+ support via changes to python codebase and ability to specify
    python version via ./configure.
*   Some improvements to GPU performance and memory usage:
    [convnet benchmarks](https://github.com/soumith/convnet-benchmarks/issues/66)
    roughly equivalent with native cudnn v2 performance. Improvements mostly due
    to moving to 32-bit indices, faster shuffling kernels. More improvements to
    come in later releases.
## Bug Fixes
*   Lots of fixes to documentation and tutorials, many contributed by the
    public.
*   271 closed issues on github issues.
## Backwards-Incompatible Changes
*   `tf.nn.fixed_unigram_candidate_sampler` changed its default 'distortion'
    attribute from 0.0 to 1.0. This was a bug in the original release that is
    now fixed.
*   added DeterministicRandomTestTool to migration_utils.py. This is useful when
    you are migrating from TF 1.x to TF2 and need to make sure your computation
    is still happening correctly along the way. See the
    [validating correctness migration guide](https://www.tensorflow.org/guide/migrate/validate_correctness)
    for more info.
# Release 0.5.0
Initial release of TensorFlow.
 
     |