1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2013 Olivier Goffart <ogoffart@woboq.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef QOBJECTDEFS_H
#error Do not include qobjectdefs_impl.h directly
#include <QtCore/qnamespace.h>
#endif
#if 0
#pragma qt_sync_skip_header_check
#pragma qt_sync_stop_processing
#endif
QT_BEGIN_NAMESPACE
class QObject;
namespace QtPrivate {
template <typename T> struct RemoveRef { typedef T Type; };
template <typename T> struct RemoveRef<T&> { typedef T Type; };
template <typename T> struct RemoveConstRef { typedef T Type; };
template <typename T> struct RemoveConstRef<const T&> { typedef T Type; };
/*
The following List classes are used to help to handle the list of arguments.
It follow the same principles as the lisp lists.
List_Left<L,N> take a list and a number as a parameter and returns (via the Value typedef,
the list composed of the first N element of the list
*/
// With variadic template, lists are represented using a variadic template argument instead of the lisp way
template <typename...> struct List {};
template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; };
template <typename, typename> struct List_Append;
template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; };
template <typename L, int N> struct List_Left {
typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value;
};
template <typename L> struct List_Left<L, 0> { typedef List<> Value; };
// List_Select<L,N> returns (via typedef Value) the Nth element of the list L
template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; };
template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; };
/*
trick to set the return value of a slot that works even if the signal or the slot returns void
to be used like function(), ApplyReturnValue<ReturnType>(&return_value)
if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it
returns void, the builtin one is used without an error.
*/
template <typename T>
struct ApplyReturnValue {
void *data;
explicit ApplyReturnValue(void *data_) : data(data_) {}
};
template<typename T, typename U>
void operator,(T &&value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U *>(container.data) = std::forward<T>(value);
}
template<typename T>
void operator,(T, const ApplyReturnValue<void> &) {}
/*
The FunctionPointer<Func> struct is a type trait for function pointer.
- ArgumentCount is the number of argument, or -1 if it is unknown
- the Object typedef is the Object of a pointer to member function
- the Arguments typedef is the list of argument (in a QtPrivate::List)
- the Function typedef is an alias to the template parameter Func
- the call<Args, R>(f,o,args) method is used to call that slot
Args is the list of argument of the signal
R is the return type of the signal
f is the function pointer
o is the receiver object
and args is the array of pointer to arguments, as used in qt_metacall
The Functor<Func,N> struct is the helper to call a functor of N argument.
its call function is the same as the FunctionPointer::call function.
*/
template<class T> using InvokeGenSeq = typename T::Type;
template<int...> struct IndexesList { using Type = IndexesList; };
template<int N, class S1, class S2> struct ConcatSeqImpl;
template<int N, int... I1, int... I2>
struct ConcatSeqImpl<N, IndexesList<I1...>, IndexesList<I2...>>
: IndexesList<I1..., (N + I2)...>{};
template<int N, class S1, class S2>
using ConcatSeq = InvokeGenSeq<ConcatSeqImpl<N, S1, S2>>;
template<int N> struct GenSeq;
template<int N> using makeIndexSequence = InvokeGenSeq<GenSeq<N>>;
template<int N>
struct GenSeq : ConcatSeq<N/2, makeIndexSequence<N/2>, makeIndexSequence<N - N/2>>{};
template<> struct GenSeq<0> : IndexesList<>{};
template<> struct GenSeq<1> : IndexesList<0>{};
template<int N>
struct Indexes { using Value = makeIndexSequence<N>; };
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1, IsPointerToMemberFunction = false}; };
template <typename, typename, typename, typename> struct FunctorCall;
template <int... II, typename... SignalArgs, typename R, typename Function>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, Function> {
static void call(Function &f, void **arg) {
f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> {
static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const> {
static void call(SlotRet (Obj::*f)(SlotArgs...) const, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) noexcept> {
static void call(SlotRet (Obj::*f)(SlotArgs...) noexcept, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const noexcept> {
static void call(SlotRet (Obj::*f)(SlotArgs...) const noexcept, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
#endif
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...);
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) const;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...);
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) noexcept>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const noexcept>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) const noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...) noexcept>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...) noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#endif
template<typename Function, int N> struct Functor
{
template <typename SignalArgs, typename R>
static void call(Function &f, void *, void **arg) {
FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
/*
Logic that checks if the underlying type of an enum is signed or not.
Needs an external, explicit check that E is indeed an enum. Works
around the fact that it's undefined behavior to instantiate
std::underlying_type on non-enums (cf. §20.13.7.6 [meta.trans.other]).
*/
template<typename E, typename Enable = void>
struct IsEnumUnderlyingTypeSigned : std::false_type
{
};
template<typename E>
struct IsEnumUnderlyingTypeSigned<E, typename std::enable_if<std::is_enum<E>::value>::type>
: std::integral_constant<bool, std::is_signed<typename std::underlying_type<E>::type>::value>
{
};
/*
Logic that checks if the argument of the slot does not narrow the
argument of the signal when used in list initialization. Cf. §8.5.4.7
[dcl.init.list] for the definition of narrowing.
For incomplete From/To types, there's no narrowing.
*/
template<typename From, typename To, typename Enable = void>
struct AreArgumentsNarrowedBase : std::false_type
{
};
template <typename T>
using is_bool = std::is_same<bool, typename std::decay<T>::type>;
template<typename From, typename To>
struct AreArgumentsNarrowedBase<From, To, typename std::enable_if<sizeof(From) && sizeof(To)>::type>
: std::integral_constant<bool,
(std::is_floating_point<From>::value && std::is_integral<To>::value) ||
(std::is_floating_point<From>::value && std::is_floating_point<To>::value && sizeof(From) > sizeof(To)) ||
((std::is_pointer<From>::value || std::is_member_pointer<From>::value) && QtPrivate::is_bool<To>::value) ||
((std::is_integral<From>::value || std::is_enum<From>::value) && std::is_floating_point<To>::value) ||
(std::is_integral<From>::value && std::is_integral<To>::value
&& (sizeof(From) > sizeof(To)
|| (std::is_signed<From>::value ? !std::is_signed<To>::value
: (std::is_signed<To>::value && sizeof(From) == sizeof(To))))) ||
(std::is_enum<From>::value && std::is_integral<To>::value
&& (sizeof(From) > sizeof(To)
|| (IsEnumUnderlyingTypeSigned<From>::value ? !std::is_signed<To>::value
: (std::is_signed<To>::value && sizeof(From) == sizeof(To)))))
>
{
};
/*
Logic that check if the arguments of the slot matches the argument of the signal.
To be used like this:
Q_STATIC_ASSERT(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value)
*/
template<typename A1, typename A2> struct AreArgumentsCompatible {
static int test(const typename RemoveRef<A2>::Type&);
static char test(...);
static const typename RemoveRef<A1>::Type &dummy();
enum { value = sizeof(test(dummy())) == sizeof(int) };
#ifdef QT_NO_NARROWING_CONVERSIONS_IN_CONNECT
using AreArgumentsNarrowed = AreArgumentsNarrowedBase<typename RemoveRef<A1>::Type, typename RemoveRef<A2>::Type>;
Q_STATIC_ASSERT_X(!AreArgumentsNarrowed::value, "Signal and slot arguments are not compatible (narrowing)");
#endif
};
template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; };
template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; };
// void as a return value
template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; };
template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; };
template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; };
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2>
struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>>
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value };
};
/*
Find the maximum number of arguments a functor object can take and be still compatible with
the arguments from the signal.
Value is the number of arguments, or -1 if nothing matches.
*/
template <typename Functor, typename ArgList> struct ComputeFunctorArgumentCount;
template <typename Functor, typename ArgList, bool Done> struct ComputeFunctorArgumentCountHelper
{ enum { Value = -1 }; };
template <typename Functor, typename First, typename... ArgList>
struct ComputeFunctorArgumentCountHelper<Functor, List<First, ArgList...>, false>
: ComputeFunctorArgumentCount<Functor,
typename List_Left<List<First, ArgList...>, sizeof...(ArgList)>::Value> {};
template <typename Functor, typename... ArgList> struct ComputeFunctorArgumentCount<Functor, List<ArgList...>>
{
template <typename D> static D dummy();
template <typename F> static auto test(F f) -> decltype(((f.operator()((dummy<ArgList>())...)), int()));
static char test(...);
enum {
Ok = sizeof(test(dummy<Functor>())) == sizeof(int),
Value = Ok ? int(sizeof...(ArgList)) : int(ComputeFunctorArgumentCountHelper<Functor, List<ArgList...>, Ok>::Value)
};
};
/* get the return type of a functor, given the signal argument list */
template <typename Functor, typename ArgList> struct FunctorReturnType;
template <typename Functor, typename ... ArgList> struct FunctorReturnType<Functor, List<ArgList...>> {
template <typename D> static D dummy();
typedef decltype(dummy<Functor>().operator()((dummy<ArgList>())...)) Value;
};
// internal base class (interface) containing functions required to call a slot managed by a pointer to function.
class QSlotObjectBase {
QAtomicInt m_ref;
// don't use virtual functions here; we don't want the
// compiler to create tons of per-polymorphic-class stuff that
// we'll never need. We just use one function pointer.
typedef void (*ImplFn)(int which, QSlotObjectBase* this_, QObject *receiver, void **args, bool *ret);
const ImplFn m_impl;
protected:
enum Operation {
Destroy,
Call,
Compare,
NumOperations
};
public:
explicit QSlotObjectBase(ImplFn fn) : m_ref(1), m_impl(fn) {}
inline int ref() noexcept { return m_ref.ref(); }
inline void destroyIfLastRef() noexcept
{ if (!m_ref.deref()) m_impl(Destroy, this, nullptr, nullptr, nullptr); }
inline bool compare(void **a) { bool ret = false; m_impl(Compare, this, nullptr, a, &ret); return ret; }
inline void call(QObject *r, void **a) { m_impl(Call, this, r, a, nullptr); }
protected:
~QSlotObjectBase() {}
private:
Q_DISABLE_COPY_MOVE(QSlotObjectBase)
};
// implementation of QSlotObjectBase for which the slot is a pointer to member function of a QObject
// Args and R are the List of arguments and the return type of the signal to which the slot is connected.
template<typename Func, typename Args, typename R> class QSlotObject : public QSlotObjectBase
{
typedef QtPrivate::FunctionPointer<Func> FuncType;
Func function;
static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret)
{
switch (which) {
case Destroy:
delete static_cast<QSlotObject*>(this_);
break;
case Call:
FuncType::template call<Args, R>(static_cast<QSlotObject*>(this_)->function, static_cast<typename FuncType::Object *>(r), a);
break;
case Compare:
*ret = *reinterpret_cast<Func *>(a) == static_cast<QSlotObject*>(this_)->function;
break;
case NumOperations: ;
}
}
public:
explicit QSlotObject(Func f) : QSlotObjectBase(&impl), function(f) {}
};
// implementation of QSlotObjectBase for which the slot is a functor (or lambda)
// N is the number of arguments
// Args and R are the List of arguments and the return type of the signal to which the slot is connected.
template<typename Func, int N, typename Args, typename R> class QFunctorSlotObject : public QSlotObjectBase
{
typedef QtPrivate::Functor<Func, N> FuncType;
Func function;
static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret)
{
switch (which) {
case Destroy:
delete static_cast<QFunctorSlotObject*>(this_);
break;
case Call:
FuncType::template call<Args, R>(static_cast<QFunctorSlotObject*>(this_)->function, r, a);
break;
case Compare: // not implemented
case NumOperations:
Q_UNUSED(ret);
}
}
public:
explicit QFunctorSlotObject(Func f) : QSlotObjectBase(&impl), function(std::move(f)) {}
};
// typedefs for readability for when there are no parameters
template <typename Func>
using QSlotObjectWithNoArgs = QSlotObject<Func,
QtPrivate::List<>,
typename QtPrivate::FunctionPointer<Func>::ReturnType>;
template <typename Func, typename R>
using QFunctorSlotObjectWithNoArgs = QFunctorSlotObject<Func, 0, QtPrivate::List<>, R>;
template <typename Func>
using QFunctorSlotObjectWithNoArgsImplicitReturn = QFunctorSlotObjectWithNoArgs<Func, typename QtPrivate::FunctionPointer<Func>::ReturnType>;
}
QT_END_NAMESPACE
|