1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2019 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qbitarray.h"
#include <qalgorithms.h>
#include <qdatastream.h>
#include <qdebug.h>
#include <qendian.h>
#include <string.h>
QT_BEGIN_NAMESPACE
/*!
\class QBitArray
\inmodule QtCore
\brief The QBitArray class provides an array of bits.
\ingroup tools
\ingroup shared
\reentrant
A QBitArray is an array that gives access to individual bits and
provides operators (\l{operator&()}{AND}, \l{operator|()}{OR},
\l{operator^()}{XOR}, and \l{operator~()}{NOT}) that work on
entire arrays of bits. It uses \l{implicit sharing} (copy-on-write)
to reduce memory usage and to avoid the needless copying of data.
The following code constructs a QBitArray containing 200 bits
initialized to false (0):
\snippet code/src_corelib_tools_qbitarray.cpp 0
To initialize the bits to true, either pass \c true as second
argument to the constructor, or call fill() later on.
QBitArray uses 0-based indexes, just like C++ arrays. To access
the bit at a particular index position, you can use operator[]().
On non-const bit arrays, operator[]() returns a reference to a
bit that can be used on the left side of an assignment. For
example:
\snippet code/src_corelib_tools_qbitarray.cpp 1
For technical reasons, it is more efficient to use testBit() and
setBit() to access bits in the array than operator[](). For
example:
\snippet code/src_corelib_tools_qbitarray.cpp 2
QBitArray supports \c{&} (\l{operator&()}{AND}), \c{|}
(\l{operator|()}{OR}), \c{^} (\l{operator^()}{XOR}),
\c{~} (\l{operator~()}{NOT}), as well as
\c{&=}, \c{|=}, and \c{^=}. These operators work in the same way
as the built-in C++ bitwise operators of the same name. For
example:
\snippet code/src_corelib_tools_qbitarray.cpp 3
For historical reasons, QBitArray distinguishes between a null
bit array and an empty bit array. A \e null bit array is a bit
array that is initialized using QBitArray's default constructor.
An \e empty bit array is any bit array with size 0. A null bit
array is always empty, but an empty bit array isn't necessarily
null:
\snippet code/src_corelib_tools_qbitarray.cpp 4
All functions except isNull() treat null bit arrays the same as
empty bit arrays; for example, QBitArray() compares equal to
QBitArray(0). We recommend that you always use isEmpty() and
avoid isNull().
\sa QByteArray, QVector
*/
/*!
\fn QBitArray::QBitArray(QBitArray &&other)
Move-constructs a QBitArray instance, making it point at the same
object that \a other was pointing to.
\since 5.2
*/
/*! \fn QBitArray::QBitArray()
Constructs an empty bit array.
\sa isEmpty()
*/
/*
* QBitArray construction note:
*
* We overallocate the byte array by 1 byte. The first user bit is at
* d.data()[1]. On the extra first byte, we store the difference between the
* number of bits in the byte array (including this byte) and the number of
* bits in the bit array. Therefore, for a non-empty QBitArray, it's always a
* number between 8 and 15. For the empty one, d is the an empty QByteArray and
* *d.constData() is the QByteArray's terminating NUL (0) byte.
*
* This allows for fast calculation of the bit array size:
* inline int size() const { return (d.size() << 3) - *d.constData(); }
*/
/*!
Constructs a bit array containing \a size bits. The bits are
initialized with \a value, which defaults to false (0).
*/
QBitArray::QBitArray(int size, bool value)
: d(size <= 0 ? 0 : 1 + (size + 7)/8, Qt::Uninitialized)
{
Q_ASSERT_X(size >= 0, "QBitArray::QBitArray", "Size must be greater than or equal to 0.");
if (size <= 0)
return;
uchar* c = reinterpret_cast<uchar*>(d.data());
memset(c + 1, value ? 0xff : 0, d.size() - 1);
*c = d.size()*8 - size;
if (value && size && size & 7)
*(c+1+size/8) &= (1 << (size & 7)) - 1;
}
/*! \fn int QBitArray::size() const
Returns the number of bits stored in the bit array.
\sa resize()
*/
/*! \fn int QBitArray::count() const
Same as size().
*/
/*!
If \a on is true, this function returns the number of
1-bits stored in the bit array; otherwise the number
of 0-bits is returned.
*/
int QBitArray::count(bool on) const
{
int numBits = 0;
const quint8 *bits = reinterpret_cast<const quint8 *>(d.data()) + 1;
// the loops below will try to read from *end
// it's the QByteArray implicit NUL, so it will not change the bit count
const quint8 *const end = reinterpret_cast<const quint8 *>(d.end());
while (bits + 7 <= end) {
quint64 v = qFromUnaligned<quint64>(bits);
bits += 8;
numBits += int(qPopulationCount(v));
}
if (bits + 3 <= end) {
quint32 v = qFromUnaligned<quint32>(bits);
bits += 4;
numBits += int(qPopulationCount(v));
}
if (bits + 1 < end) {
quint16 v = qFromUnaligned<quint16>(bits);
bits += 2;
numBits += int(qPopulationCount(v));
}
if (bits < end)
numBits += int(qPopulationCount(bits[0]));
return on ? numBits : size() - numBits;
}
/*!
Resizes the bit array to \a size bits.
If \a size is greater than the current size, the bit array is
extended to make it \a size bits with the extra bits added to the
end. The new bits are initialized to false (0).
If \a size is less than the current size, bits are removed from
the end.
\sa size()
*/
void QBitArray::resize(int size)
{
if (!size) {
d.resize(0);
} else {
int s = d.size();
d.resize(1 + (size+7)/8);
uchar* c = reinterpret_cast<uchar*>(d.data());
if (size > (s << 3))
memset(c + s, 0, d.size() - s);
else if (size & 7)
*(c+1+size/8) &= (1 << (size & 7)) - 1;
*c = d.size()*8 - size;
}
}
/*! \fn bool QBitArray::isEmpty() const
Returns \c true if this bit array has size 0; otherwise returns
false.
\sa size()
*/
/*! \fn bool QBitArray::isNull() const
Returns \c true if this bit array is null; otherwise returns \c false.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 5
Qt makes a distinction between null bit arrays and empty bit
arrays for historical reasons. For most applications, what
matters is whether or not a bit array contains any data,
and this can be determined using isEmpty().
\sa isEmpty()
*/
/*! \fn bool QBitArray::fill(bool value, int size = -1)
Sets every bit in the bit array to \a value, returning true if successful;
otherwise returns \c false. If \a size is different from -1 (the default),
the bit array is resized to \a size beforehand.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 6
\sa resize()
*/
/*!
\overload
Sets bits at index positions \a begin up to (but not including) \a end
to \a value.
\a begin must be a valid index position in the bit array
(0 <= \a begin < size()).
\a end must be either a valid index position or equal to size(), in
which case the fill operation runs until the end of the array
(0 <= \a end <= size()).
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 15
*/
void QBitArray::fill(bool value, int begin, int end)
{
while (begin < end && begin & 0x7)
setBit(begin++, value);
int len = end - begin;
if (len <= 0)
return;
int s = len & ~0x7;
uchar *c = reinterpret_cast<uchar*>(d.data());
memset(c + (begin >> 3) + 1, value ? 0xff : 0, s >> 3);
begin += s;
while (begin < end)
setBit(begin++, value);
}
/*!
\fn const char *QBitArray::bits() const
\since 5.11
Returns a pointer to a dense bit array for this QBitArray. Bits are counted
upwards from the least significant bit in each byte. The number of bits
relevant in the last byte is given by \c{size() % 8}.
\sa fromBits(), size()
*/
/*!
\since 5.11
Creates a QBitArray with the dense bit array located at \a data, with \a
size bits. The byte array at \a data must be at least \a size / 8 (rounded up)
bytes long.
If \a size is not a multiple of 8, this function will include the lowest
\a size % 8 bits from the last byte in \a data.
\sa bits()
*/
QBitArray QBitArray::fromBits(const char *data, qsizetype size)
{
QBitArray result;
if (size == 0)
return result;
qsizetype nbytes = (size + 7) / 8;
result.d = QByteArray(nbytes + 1, Qt::Uninitialized);
char *bits = result.d.data();
memcpy(bits + 1, data, nbytes);
// clear any unused bits from the last byte
if (size & 7)
bits[nbytes] &= 0xffU >> (8 - (size & 7));
*bits = result.d.size() * 8 - size;
return result;
}
/*! \fn bool QBitArray::isDetached() const
\internal
*/
/*! \fn void QBitArray::detach()
\internal
*/
/*! \fn void QBitArray::clear()
Clears the contents of the bit array and makes it empty.
\sa resize(), isEmpty()
*/
/*! \fn void QBitArray::truncate(int pos)
Truncates the bit array at index position \a pos.
If \a pos is beyond the end of the array, nothing happens.
\sa resize()
*/
/*! \fn bool QBitArray::toggleBit(int i)
Inverts the value of the bit at index position \a i, returning the
previous value of that bit as either true (if it was set) or false (if
it was unset).
If the previous value was 0, the new value will be 1. If the
previous value was 1, the new value will be 0.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
\sa setBit(), clearBit()
*/
/*! \fn bool QBitArray::testBit(int i) const
Returns \c true if the bit at index position \a i is 1; otherwise
returns \c false.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
\sa setBit(), clearBit()
*/
/*! \fn bool QBitArray::setBit(int i)
Sets the bit at index position \a i to 1.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
\sa clearBit(), toggleBit()
*/
/*! \fn void QBitArray::setBit(int i, bool value)
\overload
Sets the bit at index position \a i to \a value.
*/
/*! \fn void QBitArray::clearBit(int i)
Sets the bit at index position \a i to 0.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
\sa setBit(), toggleBit()
*/
/*! \fn bool QBitArray::at(int i) const
Returns the value of the bit at index position \a i.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
\sa operator[]()
*/
/*! \fn QBitRef QBitArray::operator[](int i)
Returns the bit at index position \a i as a modifiable reference.
\a i must be a valid index position in the bit array (i.e., 0 <=
\a i < size()).
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 7
The return value is of type QBitRef, a helper class for QBitArray.
When you get an object of type QBitRef, you can assign to
it, and the assignment will apply to the bit in the QBitArray
from which you got the reference.
The functions testBit(), setBit(), and clearBit() are slightly
faster.
\sa at(), testBit(), setBit(), clearBit()
*/
/*! \fn bool QBitArray::operator[](int i) const
\overload
*/
/*! \fn QBitRef QBitArray::operator[](uint i)
\overload
*/
/*! \fn bool QBitArray::operator[](uint i) const
\overload
*/
/*! \fn QBitArray::QBitArray(const QBitArray &other)
Constructs a copy of \a other.
This operation takes \l{constant time}, because QBitArray is
\l{implicitly shared}. This makes returning a QBitArray from a
function very fast. If a shared instance is modified, it will be
copied (copy-on-write), and that takes \l{linear time}.
\sa operator=()
*/
/*! \fn QBitArray &QBitArray::operator=(const QBitArray &other)
Assigns \a other to this bit array and returns a reference to
this bit array.
*/
/*! \fn QBitArray &QBitArray::operator=(QBitArray &&other)
\since 5.2
Moves \a other to this bit array and returns a reference to
this bit array.
*/
/*! \fn void QBitArray::swap(QBitArray &other)
\since 4.8
Swaps bit array \a other with this bit array. This operation is very
fast and never fails.
*/
/*! \fn bool QBitArray::operator==(const QBitArray &other) const
Returns \c true if \a other is equal to this bit array; otherwise
returns \c false.
\sa operator!=()
*/
/*! \fn bool QBitArray::operator!=(const QBitArray &other) const
Returns \c true if \a other is not equal to this bit array;
otherwise returns \c false.
\sa operator==()
*/
/*!
Performs the AND operation between all bits in this bit array and
\a other. Assigns the result to this bit array, and returns a
reference to it.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 8
\sa operator&(), operator|=(), operator^=(), operator~()
*/
QBitArray &QBitArray::operator&=(const QBitArray &other)
{
resize(qMax(size(), other.size()));
uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
const uchar *a2 = reinterpret_cast<const uchar*>(other.d.constData()) + 1;
int n = other.d.size() -1 ;
int p = d.size() - 1 - n;
while (n-- > 0)
*a1++ &= *a2++;
while (p-- > 0)
*a1++ = 0;
return *this;
}
/*!
Performs the OR operation between all bits in this bit array and
\a other. Assigns the result to this bit array, and returns a
reference to it.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 9
\sa operator|(), operator&=(), operator^=(), operator~()
*/
QBitArray &QBitArray::operator|=(const QBitArray &other)
{
resize(qMax(size(), other.size()));
uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1;
int n = other.d.size() - 1;
while (n-- > 0)
*a1++ |= *a2++;
return *this;
}
/*!
Performs the XOR operation between all bits in this bit array and
\a other. Assigns the result to this bit array, and returns a
reference to it.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 10
\sa operator^(), operator&=(), operator|=(), operator~()
*/
QBitArray &QBitArray::operator^=(const QBitArray &other)
{
resize(qMax(size(), other.size()));
uchar *a1 = reinterpret_cast<uchar*>(d.data()) + 1;
const uchar *a2 = reinterpret_cast<const uchar *>(other.d.constData()) + 1;
int n = other.d.size() - 1;
while (n-- > 0)
*a1++ ^= *a2++;
return *this;
}
/*!
Returns a bit array that contains the inverted bits of this bit
array.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 11
\sa operator&(), operator|(), operator^()
*/
QBitArray QBitArray::operator~() const
{
int sz = size();
QBitArray a(sz);
const uchar *a1 = reinterpret_cast<const uchar *>(d.constData()) + 1;
uchar *a2 = reinterpret_cast<uchar*>(a.d.data()) + 1;
int n = d.size() - 1;
while (n-- > 0)
*a2++ = ~*a1++;
if (sz && sz%8)
*(a2-1) &= (1 << (sz%8)) - 1;
return a;
}
/*!
\relates QBitArray
Returns a bit array that is the AND of the bit arrays \a a1 and \a
a2.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 12
\sa {QBitArray::}{operator&=()}, {QBitArray::}{operator|()}, {QBitArray::}{operator^()}
*/
QBitArray operator&(const QBitArray &a1, const QBitArray &a2)
{
QBitArray tmp = a1;
tmp &= a2;
return tmp;
}
/*!
\relates QBitArray
Returns a bit array that is the OR of the bit arrays \a a1 and \a
a2.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 13
\sa QBitArray::operator|=(), operator&(), operator^()
*/
QBitArray operator|(const QBitArray &a1, const QBitArray &a2)
{
QBitArray tmp = a1;
tmp |= a2;
return tmp;
}
/*!
\relates QBitArray
Returns a bit array that is the XOR of the bit arrays \a a1 and \a
a2.
The result has the length of the longest of the two bit arrays,
with any missing bits (if one array is shorter than the other)
taken to be 0.
Example:
\snippet code/src_corelib_tools_qbitarray.cpp 14
\sa {QBitArray}{operator^=()}, {QBitArray}{operator&()}, {QBitArray}{operator|()}
*/
QBitArray operator^(const QBitArray &a1, const QBitArray &a2)
{
QBitArray tmp = a1;
tmp ^= a2;
return tmp;
}
/*!
\class QBitRef
\inmodule QtCore
\reentrant
\brief The QBitRef class is an internal class, used with QBitArray.
\internal
The QBitRef is required by the indexing [] operator on bit arrays.
It is not for use in any other context.
*/
/*! \fn QBitRef::QBitRef (QBitArray& a, int i)
Constructs a reference to element \a i in the QBitArray \a a.
This is what QBitArray::operator[] constructs its return value
with.
*/
/*! \fn QBitRef::operator bool() const
Returns the value referenced by the QBitRef.
*/
/*! \fn bool QBitRef::operator!() const
\internal
*/
/*! \fn QBitRef& QBitRef::operator= (const QBitRef& v)
Sets the value referenced by the QBitRef to that referenced by
QBitRef \a v.
*/
/*! \fn QBitRef& QBitRef::operator= (bool v)
\overload
Sets the value referenced by the QBitRef to \a v.
*/
/*****************************************************************************
QBitArray stream functions
*****************************************************************************/
#ifndef QT_NO_DATASTREAM
/*!
\relates QBitArray
Writes bit array \a ba to stream \a out.
\sa {Serializing Qt Data Types}{Format of the QDataStream operators}
*/
QDataStream &operator<<(QDataStream &out, const QBitArray &ba)
{
quint32 len = ba.size();
out << len;
if (len > 0)
out.writeRawData(ba.d.constData() + 1, ba.d.size() - 1);
return out;
}
/*!
\relates QBitArray
Reads a bit array into \a ba from stream \a in.
\sa {Serializing Qt Data Types}{Format of the QDataStream operators}
*/
QDataStream &operator>>(QDataStream &in, QBitArray &ba)
{
ba.clear();
quint32 len;
in >> len;
if (len == 0) {
ba.clear();
return in;
}
const quint32 Step = 8 * 1024 * 1024;
quint32 totalBytes = (len + 7) / 8;
quint32 allocated = 0;
while (allocated < totalBytes) {
int blockSize = qMin(Step, totalBytes - allocated);
ba.d.resize(allocated + blockSize + 1);
if (in.readRawData(ba.d.data() + 1 + allocated, blockSize) != blockSize) {
ba.clear();
in.setStatus(QDataStream::ReadPastEnd);
return in;
}
allocated += blockSize;
}
int paddingMask = ~((0x1 << (len & 0x7)) - 1);
if (paddingMask != ~0x0 && (ba.d.constData()[ba.d.size() - 1] & paddingMask)) {
ba.clear();
in.setStatus(QDataStream::ReadCorruptData);
return in;
}
*ba.d.data() = ba.d.size() * 8 - len;
return in;
}
#endif // QT_NO_DATASTREAM
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QBitArray &array)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QBitArray(";
for (int i = 0; i < array.size();) {
if (array.testBit(i))
dbg << '1';
else
dbg << '0';
i += 1;
if (!(i % 4) && (i < array.size()))
dbg << ' ';
}
dbg << ')';
return dbg;
}
#endif
/*!
\fn DataPtr &QBitArray::data_ptr()
\internal
*/
/*!
\typedef QBitArray::DataPtr
\internal
*/
QT_END_NAMESPACE
|