1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
|
<?xml version="1.0" encoding="UTF-8"?>
<title>Mathematical Expressions and Scripting</title>
<para>QtiPlot supports two different interpreters
for evaluating mathematical expressions and for executing scripts:
<emphasis>muParser</emphasis> and <emphasis>Python</emphasis>.
<emphasis>muParser</emphasis> can be only used for the evaluation of mathematical expressions,
whereas <emphasis>Python</emphasis> can be used to execute scrips.
The default interpreter is <emphasis>muParser</emphasis> therefore if you want to execute scripts you should first
enable the <emphasis>Python</emphasis> scripting engine via the
<link linkend="script-language-cmd">Scripting language dialog</link>.
Also, you can define the default scripting interpreter via the <emphasis>General</emphasis> tab
of the <link linkend="fig-preferences-dialog-1">Preferences dialog</link>.</para>
<sect1 id="sec-muParser">
<title>muParser</title>
<para>The constants _e=e=E and _pi=pi=PI=Pi are defined, as well as the
following fundamental physical constants, operators and functions.
Please note that the fundamental constants cannot be redefined.
Doing so will raise an error message.</para>
<table frame="sides" pgwide="1" tocentry="1">
<title>Predefined Fundamental Physical Constants</title>
<tgroup cols="2">
<colspec align="left" colname="name" colwidth="1*" />
<colspec align="justify" colname="description" colwidth="10*" />
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>c</entry>
<entry>The speed of light in vacuum</entry>
</row>
<row>
<entry>eV</entry>
<entry>The energy of 1 electron volt</entry>
</row>
<row>
<entry>g</entry>
<entry>The standard gravitational acceleration on Earth</entry>
</row>
<row>
<entry>G</entry>
<entry>The gravitational constant</entry>
</row>
<row>
<entry>h</entry>
<entry>Planck's constant</entry>
</row>
<row>
<entry>hbar</entry>
<entry>Planck's constant divided by 2 pi</entry>
</row>
<row>
<entry>k</entry>
<entry>The Boltzmann constant</entry>
</row>
<row>
<entry>Na</entry>
<entry>Avogadro's number</entry>
</row>
<row>
<entry>R0</entry>
<entry>The molar gas constant</entry>
</row>
<row>
<entry>V0</entry>
<entry>The standard gas volume</entry>
</row>
<row>
<entry>Ry</entry>
<entry>The Rydberg constant, in units of energy</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="sides" pgwide="1" tocentry="1">
<title>Supported Mathematical Operators</title>
<tgroup cols="2">
<colspec align="left" colname="name" colwidth="1*" />
<colspec align="justify" colname="description" colwidth="10*" />
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>+</entry>
<entry>Addition</entry>
</row>
<row>
<entry>-</entry>
<entry>Substraction</entry>
</row>
<row>
<entry>*</entry>
<entry>Multiplication</entry>
</row>
<row>
<entry>/</entry>
<entry>Division</entry>
</row>
<row>
<entry>^</entry>
<entry>Exponentiation (raise a to the power of b)</entry>
</row>
<row>
<entry>and</entry>
<entry>logical and (returns 0 or 1)</entry>
</row>
<row>
<entry>or</entry>
<entry>logical or (returns 0 or 1)</entry>
</row>
<row>
<entry>xor</entry>
<entry>logical exclusive or (returns 0 or 1)</entry>
</row>
<row>
<entry><</entry>
<entry>less then (returns 0 or 1)</entry>
</row>
<row>
<entry><=</entry>
<entry>less then or equal (returns 0 or 1)</entry>
</row>
<row>
<entry>==</entry>
<entry>equal (returns 0 or 1)</entry>
</row>
<row>
<entry>>=</entry>
<entry>greater then or equal (returns 0 or 1)</entry>
</row>
<row>
<entry>></entry>
<entry>greater then (returns 0 or 1)</entry>
</row>
<row>
<entry>!=</entry>
<entry>not equal (returns 0 or 1)</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="sides" pgwide="1" tocentry="1">
<title>Mathematical Functions</title>
<tgroup cols="2">
<colspec align="left" colname="name" colwidth="1*" />
<colspec align="justify" colname="description" colwidth="10*" />
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>abs(x)</entry>
<entry>absolute value of x</entry>
</row>
<row>
<entry>acos(x)</entry>
<entry>inverse cosinus</entry>
</row>
<row>
<entry>acosh(x)</entry>
<entry>inverse hyperbolic cosinus</entry>
</row>
<row>
<entry>asin(x)</entry>
<entry>inverse sinus</entry>
</row>
<row>
<entry>asinh(x)</entry>
<entry>inverse hyperbolic sinus</entry>
</row>
<row>
<entry>atan(x)</entry>
<entry>inverse tangent</entry>
</row>
<row>
<entry>atanh(x)</entry>
<entry>inverse hyperbolic tangent</entry>
</row>
<row>
<entry>avg(x1,x2,x3,...)</entry>
<entry>average value, this command accept a list of arguments
separated by commas</entry>
</row>
<row>
<entry>bessel_j0(x)</entry>
<entry>Regular cylindrical Bessel function of zeroth order,
J<subscript>0</subscript>(x).</entry>
</row>
<row>
<entry>bessel_j1(x)</entry>
<entry>Regular cylindrical Bessel function of first order,
J<subscript>1</subscript>(x).</entry>
</row>
<row>
<entry>bessel_jn(x,n)</entry>
<entry>Regular cylindrical Bessel function of
n<superscript>th</superscript> order,
J<subscript>n</subscript>(x).</entry>
</row>
<row>
<entry>bessel_y0(x)</entry>
<entry>Irregular cylindrical Bessel function of zeroth order,
Y<subscript>0</subscript>(x) for x>0.</entry>
</row>
<row>
<entry>bessel_y1(x)</entry>
<entry>Irregular cylindrical Bessel function of first order,
Y<subscript>1</subscript>(x) for x>0.</entry>
</row>
<row>
<entry>bessel_yn(x,n)</entry>
<entry>Irregular cylindrical Bessel function of
n<superscript>th</superscript> order,
Y<subscript>n</subscript>(x) for x>0.</entry>
</row>
<row>
<entry>beta (a,b)</entry>
<entry>Computes the Beta Function, B(a,b) =
Gamma(a)*Gamma(b)/Gamma(a+b) for a > 0 and b > 0.</entry>
</row>
<row>
<entry>cos(x)</entry>
<entry>cosinus of x</entry>
</row>
<row>
<entry>cosh(x)</entry>
<entry>hyperbolic cosinus of x</entry>
</row>
<row>
<entry>erf(x)</entry>
<entry>error function of x</entry>
</row>
<row>
<entry>erfc(x)</entry>
<entry>Complementary error function erfc(x) = 1 -
erf(x).</entry>
</row>
<row>
<entry>erfz(x)</entry>
<entry>The Gaussian probability density function Z(x).</entry>
</row>
<row>
<entry>erfq(x)</entry>
<entry>The upper tail of the Gaussian probability function
Q(x).</entry>
</row>
<row>
<entry>exp(x)</entry>
<entry>Exponential function: e raised to the power of x.</entry>
</row>
<row>
<entry>gamma(x)</entry>
<entry>Computes the Gamma function, subject to x not being a
negative integer</entry>
</row>
<row>
<entry>gammaln(x)</entry>
<entry>Computes the logarithm of the Gamma function, subject to
x not a being negative integer. For x<0, log(|Gamma(x)|) is
returned.</entry>
</row>
<row>
<entry>hazard(x)</entry>
<entry>Computes the hazard function for the normal distribution
h(x) = erfz(x)/erfq(x).</entry>
</row>
<row>
<entry>ln(x)</entry>
<entry>natural logarythm of x</entry>
</row>
<row>
<entry>log(x)</entry>
<entry>decimal logarythm of x</entry>
</row>
<row>
<entry>log2(x)</entry>
<entry>base 2 logarythm of x</entry>
</row>
<row>
<entry>min(x1,x2,x3,...)</entry>
<entry>Minimum of the list of arguments</entry>
</row>
<row>
<entry>max(x1,x2,x3,...)</entry>
<entry>Maximum of the list of arguments</entry>
</row>
<row>
<entry>rint(x)</entry>
<entry>Round to nearest integer.</entry>
</row>
<row>
<entry>sign(x)</entry>
<entry>Sign function: -1 if x<0; 1 if x>0.</entry>
</row>
<row>
<entry>sin(x)</entry>
<entry>sinus of x</entry>
</row>
<row>
<entry>sinh(x)</entry>
<entry>hyperblic sinus of x</entry>
</row>
<row>
<entry>sqrt(x)</entry>
<entry>square root of x</entry>
</row>
<row>
<entry>tan(x)</entry>
<entry>tangent of x</entry>
</row>
<row>
<entry>tanh(x)</entry>
<entry>hyperbolic tangent of x</entry>
</row>
</tbody>
</tgroup>
</table>
<table frame="sides" pgwide="1" tocentry="1">
<title>Non-Mathematical Functions</title>
<tgroup cols="2">
<colspec align="left" colname="name" colwidth="1*" />
<colspec align="justify" colname="description" colwidth="10*" />
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>cell(a,b)</entry>
<entry>In the contex of a matrix, returns the value at row a and column b.
In the context of a table, returns the value at column a and row b (remember that tables use column logic).
Everywhere else, this function is undefined.
</entry>
</row>
<row>
<entry>col(c)</entry>
<entry>Only works in the context of a table.
Returns the value at column c and row i (the current row) in the context table.
c can either be the column's number, or its name in doublequotes.
</entry>
</row>
<row>
<entry>if(e1,e2,e3)</entry>
<entry>if e1 is true, e2 is executed else e3 is
executed.</entry>
</row>
<row>
<entry>tablecol(t,c)</entry>
<entry>Only works in the context of a table.
Returns the value at column c and row i (the current row) in the table t.
t is the table's name in doublequotes, c is either the column's number or its name in doublequotes.
</entry>
</row>
</tbody>
</tgroup>
</table>
</sect1>
<sect1 id="Python">
<title>Python</title>
<para>This module provides bindings to the <ulink
url="http://www.python.org">Python</ulink> programming language. Basic
usage in the context of QtiPlot will be discussed below, but for more
in-depth information on the language itself, please refer to its excellent
<ulink url="http://www.python.org/doc">documentation</ulink>.</para>
<sect2 id="Python-init">
<title>The Initialization File</title>
<para>This file allows you to customize the Python environment, import
modules and define functions and classes that will be available in all
of your projects. The default initialization file shipped with QtiPlot
imports Python's <link linkend="Python-functions">standard math
functions</link> as well as (if available) special functions from
<ulink url="http://www.scipy.org">SciPy</ulink>, the symbolic mathematics
library <ulink url="http://www.sympy.org/">SymPy</ulink>
and helper functions for <ulink url="http://rpy.sourceforge.net/rpy2.html">RPy2</ulink>.
Also, it creates some handy shortcuts, like
<userinput>table("table1")</userinput> for
<userinput>qti.app.table("table1")</userinput>.</para>
<para>When activating Python support, QtiPlot searches the initialization file in a
default folder, which can be customized via the <emphasis>File Locations</emphasis> tab
of the <link linkend="fig-preferences-dialog-13">Preferences dialog</link>.
If the initialization file is not found, QtiPlot will issue a warning and
<emphasis>muParser</emphasis> will be kept as the default interpreter.</para>
<para>Files ending in .pyc are compiled versions of the .py source files
and therefore load a bit faster. The compiled version will be used if
the source file is older or nonexistent. Otherwise, QtiPlot will try to
compile the source file (if you've got write permissions for the output
file).</para>
</sect2>
<sect2>
<title>Python Basics</title>
<para>Mathematical expressions work largely as expected. However,
there's one caveat, especially when switching from muParser (which has
been used exclusively in previous versions of QtiPlot):
<userinput>a^b</userinput> does not mean "raise a to the power of b" but
rather "bitwise exclusive or of a and b"; Python's power operator is **.
Thus: <screen width="40">
<userinput>2^3 # read: 10 xor 11 = 01</userinput>
<computeroutput>#> 1</computeroutput>
<userinput>2**3</userinput>
<computeroutput>#> 8</computeroutput>
</screen></para>
<para>One thing you have to know when working with Python is that
indentation is very important. It is used for grouping (most other
languages use either braces or keywords like
<userinput>do...end</userinput> for this). For example, <programlisting
width="40">
x=23
for i in (1,4,5):
x=i**2
print(x)
</programlisting> will do what you would expect: it prints out the numbers 1, 16 and
25; each on a line of its own. Deleting just a bit of space will change
the functionality of your program: <programlisting>
x=23
for i in (1,4,5):
x=i**2
print(x)
</programlisting> will print out only one number - no, not 23, but rather 25. This
example was designed to also teach you something about variable scoping:
There are no block-local variables in Python.</para>
<para>There are two different variable scopes to be aware of: local and
global variables. Unless specified otherwise, variables are local to the
context in which they were defined. Thus, the variable
<varname>x</varname> can have three different values in, say, two
different Note windows and a column formula. Global variables on the
other hand can be accessed from everywhere within your project. A
variable <varname>x</varname> is declared global by executing the
statement <userinput>global x</userinput>. You have to do this before
assigning a value to <varname>x</varname>, but you have to do it only
once within the project (no need to "import" the variable before using
it). Note that there is a slight twist to these rules when you <link
linkend="Python-def">define your own functions</link>.</para>
</sect2>
<sect2 id="Python-def">
<title>Defining Functions and Control Flow</title>
<para>The basic syntax for defining a function (for use within one
particular note, for example) is <programlisting>
def answer():
return 42
</programlisting> If you want your function to be accessible from the rest of your
project, you have to declare it global before the definition: <programlisting
width="40">
global answer
def answer():
return 42
</programlisting> You can add your own function to QtiPlot's function list. We'll
also provide a documentation string that will show up, for example, in
the "set column values" dialog: <programlisting>
global answer
def answer():
"Return the answer to the ultimate question about life, the universe and everything."
return 42
qti.mathFunctions["answer"] = answer
</programlisting> If you want to remove a function from the list, do: <programlisting
width="40">
del qti.mathFunctions["answer"]
</programlisting></para>
<para>Note that functions have their own local scope. That means that if
you enter a function definition in a Note, you will not be able to
access (neither reading nor writing) Note-local variables from within
the function. However, you can access global variables as usual.</para>
<para>If-then-else decisions are entered as follows: <programlisting>
if x>23:
print(x)
else:
print("The value is too small.")
</programlisting></para>
<para>You can do loops, too: <programlisting>
for i in range(1, 11):
print(i)
</programlisting> This will print out the numbers between 1 and 10 inclusively (the
upper limit does not belong to the range, while the lower limit
does).</para>
</sect2>
<sect2 id="Python-functions">
<title>Mathematical Functions</title>
<para>Python comes with some basic mathematical functions that are
automatically imported (if you use the <link
linkend="Python-init">initialization file</link> shipped with QtiPlot).
Along with them, the constants e (Euler's number) and pi (the one and
only) are defined.</para>
<table frame="sides" pgwide="1" tocentry="1">
<title>Supported Mathematical Functions</title>
<tgroup cols="2">
<colspec align="left" colname="name" colwidth="1*" />
<colspec align="justify" colname="description" colwidth="10*" />
<thead>
<row>
<entry>Name</entry>
<entry>Description</entry>
</row>
</thead>
<tbody>
<row>
<entry>acos(x)</entry>
<entry>inverse cosinus</entry>
</row>
<row>
<entry>asin(x)</entry>
<entry>inverse sinus</entry>
</row>
<row>
<entry>atan(x)</entry>
<entry>inverse tangent</entry>
</row>
<row>
<entry>atan2(y,x)</entry>
<entry>equivalent to atan(y/x), but more efficient</entry>
</row>
<row>
<entry>ceil(x)</entry>
<entry>ceiling; smallest integer greater or equal to x</entry>
</row>
<row>
<entry>cos(x)</entry>
<entry>cosinus of x</entry>
</row>
<row>
<entry>cosh(x)</entry>
<entry>hyperbolic cosinus of x</entry>
</row>
<row>
<entry>degrees(x)</entry>
<entry>convert angle from radians to degrees</entry>
</row>
<row>
<entry>exp(x)</entry>
<entry>Exponential function: e raised to the power of x.</entry>
</row>
<row>
<entry>fabs(x)</entry>
<entry>absolute value of x</entry>
</row>
<row>
<entry>floor(x)</entry>
<entry>largest integer smaller or equal to x</entry>
</row>
<row>
<entry>fmod(x,y)</entry>
<entry>remainder of integer division x/y</entry>
</row>
<row>
<entry>frexp(x)</entry>
<entry>Returns the tuple (mantissa,exponent) such that
x=mantissa*(2**exponent) where exponent is an integer and 0.5
<=abs(m)<1.0</entry>
</row>
<row>
<entry>hypot(x,y)</entry>
<entry>equivalent to sqrt(x*x+y*y)</entry>
</row>
<row>
<entry>ldexp(x,y)</entry>
<entry>equivalent to x*(2**y)</entry>
</row>
<row>
<entry>log(x)</entry>
<entry>natural (base e) logarythm of x</entry>
</row>
<row>
<entry>log10(x)</entry>
<entry>decimal (base 10) logarythm of x</entry>
</row>
<row>
<entry>modf(x)</entry>
<entry>return fractional and integer part of x as a
tuple</entry>
</row>
<row>
<entry>pow(x,y)</entry>
<entry>x to the power of y; equivalent to x**y</entry>
</row>
<row>
<entry>radians(x)</entry>
<entry>convert angle from degrees to radians</entry>
</row>
<row>
<entry>sin(x)</entry>
<entry>sinus of x</entry>
</row>
<row>
<entry>sinh(x)</entry>
<entry>hyperblic sinus of x</entry>
</row>
<row>
<entry>sqrt(x)</entry>
<entry>square root of x</entry>
</row>
<row>
<entry>tan(x)</entry>
<entry>tangent of x</entry>
</row>
<row>
<entry>tanh(x)</entry>
<entry>hyperbolic tangent of x</entry>
</row>
</tbody>
</tgroup>
</table>
</sect2>
<sect2 id="Python-API">
<title>Accessing QtiPlot's objects from Python</title>
<para>We will assume that you are using the <link
linkend="Python-init">initialization file</link> shipped with
QtiPlot. Accessing the objects in your project is straight-forward,
<programlisting>
t = table("Table1")
m = matrix("Matrix1")
g = graph("Graph1")
p = plot3D("Graph2")
n = note("Notes1")
# get a pointer to the QTextEdit object used to display information in the results log window:
log = resultsLog()
</programlisting> as is creating new objects: <programlisting>
# create an empty table named "tony" with 5 rows and 2 columns:
t = newTable("tony", 5, 2)
# use defaults
t = newTable()
# create an empty matrix named "gina" with 42 rows and 23 columns:
m = newMatrix("gina", 42, 23)
# use defaults
m = newMatrix()
# create an empty graph window
g = newGraph()
# create a graph window named "test" with two layers disposed on a 2 rows x 1 column grid
g = newGraph("test", 2, 2, 1)
# create an empty 3D plot window with default title
p = newPlot3D()
# create an empty note named "momo"
n = newNote("momo")
# use defaults
n = newNote()
</programlisting>The currently selected Table/Matrix etc. can be accessed with the follwing commands:
<programlisting>
t = currentTable()
m = currentMatrix()
g = currentGraph()
n = currentNote()
</programlisting>
The functions will only return a valid object if a window of the wanted type is actually selected.
You can check if the object is valid with a simple if clause:
<programlisting>if isinstance(t,qti.Table): print "t is a table"</programlisting></para>
<para>Every piece of code is executed in the context of an
object which you can access via the <varname>self</varname> variable. For example,
entering <userinput>self.cell("t",i)</userinput> as a column formula is equivalent to the convenience
function <userinput>col("t")</userinput>.</para>
Once you have established contact with a MDI window, you can modify some of its properties, like the name, the window label, the geometry, etc..
For example, here's how to rename a window, change its label and the way they are displayed in the window title bar, the so called caption policy:
<programlisting>
t = table("Table1")
setWindowName(t, "toto")
t.setWindowLabel("tutu")
t.setCaptionPolicy(MDIWindow.Both)
</programlisting>
The caption policy can have one of the following values:
<orderedlist>
<listitem>
Name <para>the window caption is determined by the window name</para>
</listitem>
<listitem>
Label<para>the caption is detemined by the window label</para>
</listitem>
<listitem>
Both<para>caption = "name - label"</para>
</listitem>
</orderedlist>
You can access the name or label of a window by using the <userinput>objectName()</userinput> and <userinput>windowLabel()</userinput> functions.
For a fast editing process, you can create template files from existing tables, matrices or plots. The templates can be used later on in order to create customized windows very easily:
<programlisting>
saveAsTemplate(graph("Graph1"), "my_plot.qpt")
g = openTemplate("my_plot.qpt")
</programlisting>
Also, you can easily clone a MDI window:
<programlisting>
g1 = clone(graph("Graph1"))
</programlisting>
If you want to delete a project window, you can use the <userinput>close()</userinput> method.
You might want to deactivate the confirmation message, first:
<programlisting>
w.confirmClose(False)
w.close()
</programlisting>
All QtiPlot subwindows are displayed in a QMdiArea. You can get a pointer to this object
via the <userinput>workspace()</userinput> method. This can be particularly usefull if you need to customize the
behavior of the workspace via your scripts. Here follows a small example script that
pops-up a message displaying the name of the active MDI subwindow each time a new window is activated:
<programlisting>
def showMessage():
QtGui.QMessageBox.about(qti.app, "", workspace().activeSubWindow().objectName())
QtCore.QObject.connect(workspace(), QtCore.SIGNAL("subWindowActivated(QMdiSubWindow *)"), showMessage)
</programlisting>
</sect2>
<sect2 id="Python-Folders">
<title>Project Folders</title>
Storing your data tables/matrices and your plots in folders can be very convenient and helpful
when you're analysing loads of data files in the same project.
New objects will always be added to the active folder. You can get a pointer to it via:
<programlisting>
f = activeFolder()
</programlisting>
The functions table, matrix, graph and note will start searching in the active folder and, failing this,
will continue with a depth-first recursive search of the project's root folder, given by:
<programlisting>
f = rootFolder()
</programlisting>
In order to access subfolders and windows, there are the following functions:
<programlisting>
f2 = f.folders()[number]
f2 = f.folder(name, caseSensitive=True, partialMatch=False)
t = f.table(name, recursive=False)
m = f.matrix(name, recursive=False)
g = f.graph(name, recursive=False)
n = f.note(name, recursive=False)
</programlisting>
If you supply True for the recursive argument, a depth-first recursive search of all subfolders will
be performed and the first match returned.
<para>New folders can be created using:</para>
<programlisting>
newFolder = addFolder("New Folder", parentFolder = 0)
</programlisting>
If the <varname>parentFolder</varname> is not specified, the new folder will be added as a subfolder of the project's
root folder. When you create a new folder via a Python script, it doesn't automatically become the active folder
of the project. You have to set this programatically, using:
<programlisting>
changeFolder(newFolder, bool force=False)
</programlisting>
Folders can be deleted using:
<programlisting>
deleteFolder(folder)
</programlisting>
You can save a folder as a project file, and of course, you can also save the whole project:
<programlisting>
saveFolder(folder, "new_file.qti", compress=False)
saveProjectAs("new_file_2.qti", compress=False)
</programlisting>
If <varname>compress</varname> is set to True, the project file will be archived to the .gz format, using zlib.
<para>Also, you can load a QtiPlot or an Origin project file into a new folder.
The new folder will have the base name of the project file and will be added as a subfolder
to the <varname>parentFolder</varname> or to the current folder if no parent folder is specified.</para>
<programlisting>
newFolder = appendProject("projectName", parentFolder = 0)
</programlisting>
If you don't want to be asked for confirmation when a table/matrix is renamed during this operation,
or when deleting a folder via a Python script, you must change your preferences
concerning prompting of warning messages, using the <link linkend="fig-preferences-dialog-2">Preferences dialog ("Confirmations" tab)</link>.
<para>
Folders store their own log information containing the results
of the analysis operations performed on the child windows. This information
is updated in the result log window each time you change the active folder
in the project. You can access and manipulate these log strings via the following functions:
<programlisting>
text = folder.logInfo()
folder.appendLogInfo("Hello!")
folder.clearLogInfo()
</programlisting>
</para>
</sect2>
<sect2 id="Python-Tables">
<title>Working with Tables</title>
We'll assume that you have assigned some table to the variable
<varname>t</varname>. You can access its numeric cell values with
<programlisting>
t.cell(col, row)
# and
t.setCell(col, row, value)
</programlisting>
<para>
Whenever you have to specify a column, you can use either the
column name (as a string) or the consecutive column number (starting
with 1). Row numbers also start with 1, just as they are displayed.
In many places there is an alternative API which represents a table
as a Python sequence is provided. Here rows are addressed by Python
indices or slices which start at 0. These places are marked as such.
</para>
If you want to work with arbitrary texts or the textual representations
of numeric values, you can use:
<programlisting>
t.text(col, row)
# and
t.setText(col, row, string)
</programlisting>
An alternative way to get/set the value of a cell is using the format of the column (Text, Numeric, ...).
Qtiplot handles all the casting under the hood and throws an <varname>TypeError</varname> if this isn't possible.
Assigning <varname>None</varname> will clear the cell's value.
The column type Day-of-Week returns/accepts the numbers 1 (monday) to 7 (sunday, for which also 0 is accepted).
The column type Month returns/accepts the numbers 1 to 12.
The column type Date returns/accepts <varname>datetime.datetime</varname> objects and also accepts a <varname>QDateTime</varname>.
The column type Time returns/accepts <varname>datetime.time</varname> objects and also accepts a <varname>QTime</varname>.
<programlisting>
t.cellData(col, row)
# and
t.setCellData(col, row, value)
</programlisting>
The number of columns and rows is accessed via:
<programlisting>
t.numRows() # same as len(t)
t.numCols()
t.setNumRows(number)
t.setNumCols(number)
</programlisting>
You can add a new column at the end of the table or you can insert new columns before a
<varname>startColumn</varname> using the functions bellow:
<programlisting>
t.addColumn()
t.insertColumns(startColumn, count)
</programlisting>
Adding an empty row at the end of the table is done with the <varname>addRow()</varname> method.
It returns the new row number.
<programlisting>
newRowIndex = t.addRow()
</programlisting>
If you need all the data of a row or column you can use the <varname>rowData()</varname>
and <varname>colData()</varname> methods. This is much faster then iterating manually over the cells.
Alternatively you can use the <varname>[]</varname> operator in combination with Python indices or slices,
which start at 0.
<programlisting>
valueList = t.colData(col) # col may be a string or a number starting at 1
rowTuple = t.rowData(row) # row number starting at 1
rowTuple = t[idx] # row index starts at 0
rowTupleList = t[slice]
</programlisting>
A Table is iteratable. The data is returned row wise as tuple.
<programlisting>
for c1, c2, c3 in t:
# do stuff, assuming t has three columns
</programlisting>
Assigning values to a complete row or column is also possible.
While the new row data has to be a tuple which length must match the column number,
column data just has to be iteratable. If the iterator stops before the end of the table
is reached, a <varname>StopIteration</varname> exception is raised.
In combination with the <varname>offset</varname> this allows to fill a column chunk wise.
A positive offset starts filling the column after this row number.
A negative offset ignores the firsts values of the iterator.
<programlisting>
t.setColData(col, iterableValueSequence, offset=0)
# just fill the first column with a list of values, staring at row 6
t.setColData(1, [12,23,34,56,67], 5)
# fill the second column with fibonacci numbers, omitting the first three.
def FibonacciGenerator():
a, b = 1, 1
while True:
a, b = b, a+b
yield a
t.setColData(2, FibonacciGenerator(), -3)
t.setRowData(row, rowTuple) # row starts at 1
# assuming t has exactly two columns...
t.setRowData(2, (23, 5)) # fill the second row
t[1] = 23, 5 # using a Python index, starting at 0
# adding a new row and set it's values
t.appendRowData(rowTuple)
</programlisting>
You can set the format of a column to text using:
<programlisting>
t.setColTextFormat(col)
</programlisting>
Or you can adjust the numeric format:
<programlisting>
t.setColNumericFormat(col, format, precision, update=True)
</programlisting>
were <varname>col</varname> is the number of the column to adjust and <varname>precision</varname> states the number of digits.
The <varname>format</varname> can be one of the following:
<variablelist spacing="compact">
<varlistentry>
<term>Table.Default (0)</term>
<listitem>
<para>standard format</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Table.Decimal (1)</term>
<listitem>
<para>decimal format with <varname>precision</varname> digits</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Table.Scientific (2)</term>
<listitem>
<para>scientific format</para>
</listitem>
</varlistentry>
</variablelist>
In the same way you can set a column hold a date. Here the text of a cell is interpreted using a format string:
<programlisting>
t.setColDateFormat(col, format, update=True)
t.setColDateFormat("col1", "yyyy-MM-dd HH:mm")
</programlisting>
were <varname>col</varname> is the name/number of a column and <varname>format</varname> the format string.
In this string, the following placeholder are recognized:
<variablelist spacing="compact">
<varlistentry>
<term>d</term>
<listitem>
<para>the day as number without a leading zero (1 to 31)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>dd</term>
<listitem>
<para>the day as number with a leading zero (01 to 31)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ddd</term>
<listitem>
<para>the abbreviated localized day name (e.g. 'Mon' to 'Sun')</para>
</listitem>
</varlistentry>
<varlistentry>
<term>dddd</term>
<listitem>
<para>the long localized day name (e.g. 'Monday' to 'Sunday')</para>
</listitem>
</varlistentry>
<varlistentry>
<term>M</term>
<listitem>
<para>the month as number without a leading zero (1-12)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MM</term>
<listitem>
<para>the month as number with a leading zero (01-12)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MMM</term>
<listitem>
<para>the abbreviated localized month name (e.g. 'Jan' to 'Dec')</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MMMM</term>
<listitem>
<para>the long localized month name (e.g. 'January' to 'December')</para>
</listitem>
</varlistentry>
<varlistentry>
<term>yy</term>
<listitem>
<para>the year as two digit number (00-99)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>yyyy</term>
<listitem>
<para>the year as four digit number</para>
</listitem>
</varlistentry>
<varlistentry>
<term>h</term>
<listitem>
<para>the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>hh</term>
<listitem>
<para>the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>H</term>
<listitem>
<para>the hour without a leading zero (0 to 23, even with AM/PM display)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>HH</term>
<listitem>
<para>the hour with a leading zero (00 to 23, even with AM/PM display)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>m</term>
<listitem>
<para>the minute without a leading zero (0 to 59)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>mm</term>
<listitem>
<para>the minute with a leading zero (00 to 59)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>s</term>
<listitem>
<para>the second without a leading zero (0 to 59)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ss</term>
<listitem>
<para>the second with a leading zero (00 to 59)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>z</term>
<listitem>
<para>the milliseconds without leading zeroes (0 to 999)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>zzz</term>
<listitem>
<para>the milliseconds with leading zeroes (000 to 999)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AP or A</term>
<listitem>
<para>interpret as an AM/PM time. AP must be either "AM" or "PM".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ap or a</term>
<listitem>
<para>interpret as an AM/PM time. ap must be either "am" or "pm".</para>
</listitem>
</varlistentry>
</variablelist>
Analog you can say that a text column should hold a time only...
<programlisting>
t.setColTimeFormat(col, format, update=True)
t.setColTimeFormat(1, "HH:mm:ss")
</programlisting>
... a month ...
<programlisting>
t.setColMonthFormat(col, format, update=True)
t.setColMonthFormat(1, "M")
</programlisting>
Here the format is the following:
<variablelist spacing="compact">
<varlistentry>
<term>M</term>
<listitem>
<para>Only the first letter of the month, i.e. "J"</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MMM</term>
<listitem>
<para>The short form, like "Jan"</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MMMM</term>
<listitem>
<para>The full name, "January"</para>
</listitem>
</varlistentry>
</variablelist>
... or the day of week:
<programlisting>
t.setColDayFormat(col, format, update=True)
t.setColDayFormat(1, "ddd")
</programlisting>
Here the format is the following:
<variablelist spacing="compact">
<varlistentry>
<term>d</term>
<listitem>
<para>Only the first letter of the day, i.e. "M"</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ddd</term>
<listitem>
<para>The short form, like "Mon"</para>
</listitem>
</varlistentry>
<varlistentry>
<term>dddd</term>
<listitem>
<para>The full name, "Monday"</para>
</listitem>
</varlistentry>
</variablelist>
It is also possible to swap two columns using:
<programlisting>
t.swapColumns(column1, column2)
</programlisting>
You can delete a colum or a range of rows using the functions bellow:
<programlisting>
t.removeCol(number)
t.deleteRows(startRowNumber, endRowNumber)
</programlisting>
It is also possible to use Python's <varname>del</varname> statement to remove rows.
Note that in this case a Python index or slice (instead of row numbers) is used, which start at 0.
<programlisting>
del t[5] # deletes row 6
del t[0:4] # deletes row 1 to 5
</programlisting>
Column names can be read and written with:
<programlisting>
t.colName(number)
t.colNames()
t.setColName(col, newName, enumerateRight=False)
t.setColNames(newNamesList)
</programlisting>
If <varname>enumerateRight</varname> is set to True, all the table columns starting from index
<varname>col</varname> will have their names modified to a combination of the
<varname>newName</varname> and a numerical increasing index. If this parameter is not specified,
by default it is set to False.
The plural forms get/set all headers at once.
<para>You can change the plot role of a table column (abscissae, ordinates, error bars, etc...) using:</para>
<programlisting>
t.setColumnRole(col, role)
</programlisting>
where <varname>role</varname> specifies the desired column role:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Table.None</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Table.X</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Table.Y</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Table.Z</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4.</term>
<listitem>
<para>Table.xErr</para>
</listitem>
</varlistentry>
<varlistentry>
<term>5.</term>
<listitem>
<para>Table.yErr</para>
</listitem>
</varlistentry>
<varlistentry>
<term>6.</term>
<listitem>
<para>Table.Label</para>
</listitem>
</varlistentry>
</variablelist>
<para>You can normalize a single column or all columns in a table:</para>
<programlisting>
t.normalize(col)
t.normalize()
</programlisting>
Sort a single or all columns:
<programlisting>
t.sortColumn(col, order = 0)
t.sort(type = 0, order = 0, leadingColumnName)
</programlisting>
<sect3 id = "Python-ImportASCII">
<title>Import ASCII files</title>
Import values from <varname>file</varname>, using <varname>sep</varname> as separator char, ignoring
<varname>ignoreLines</varname> lines at the head of the file and all lines starting with a <varname>comment</varname> string.
<programlisting>
t.importASCII(file, sep="\t",ignoreLines=0,renameCols=False,stripSpaces=True,simplifySpace=False,
importComments=False,comment="#",readOnly=False,importAs=Table.Overwrite,locale=QLocale(),endLine=0,maxRows=-1)
</programlisting>
As you see from the above list of import options, you have the possibility to set the new columns as read-only.
This will prevent the imported data from beeing modified. You have the possibility to remove this protection
at any time, by using:
<programlisting>
t.setReadOnlyColumn(col, False)
</programlisting>
<para>The <varname>importAs</varname> flag can have the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Table.NewColumns: data values are added as new columns.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Table.NewRows: data values are added as new rows.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Table.Overwrite: all existing values are overwritten (default value).</para>
</listitem>
</varlistentry>
</variablelist></para>
<para>The <varname>endLine</varname> flag specifies the end line character convention used in the ascii file.
Possible values are: 0 for line feed (LF), which is the default value,
1 for carriage return + line feed (CRLF) and 2 for carriage return only (usually on Mac computers).</para>
<para>The last parameter <varname>maxRows</varname> allows you to specify a maximum number of imported
lines. Negative values mean that all data lines must be imported.</para>
<para>If the decimal separator of the imported file does not match the currently used conventions, you have to
adjust them before using the table:</para>
<programlisting>
t.setDecimalSeparators(country,ignoreGroupSeparator=True)
</programlisting>
<para>Where country can have one of the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Use the system value</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Use the following format: 1,000.00</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Use the following format: 1.000,00</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Use the following format: 1 000,00</para>
</listitem>
</varlistentry>
</variablelist></para>
</sect3>
<sect3 id = "Python-ImportExcel">
<title>Importing Excel sheets</title>
<para>It is possible to import a sheet from an Excel .xls file <varname>file</varname> to a table, using:</para>
<programlisting>
t = importExcel(file, sheet)
</programlisting>
<para>If the integer <varname>sheet</varname> variable is not specified, all non-empty sheets in the Excel workbook are imported
into separate tables and a reference to the table containing the data from the last sheet is returned.</para>
</sect3>
<sect3 id = "Python-ImportODF">
<title>Importing ODF spreadsheets</title>
<para>It is possible to import a sheet from an ODF spreadsheet .ods <varname>file</varname> to a table, using:</para>
<programlisting>
t = importOdfSpreadsheet(file, sheet)
</programlisting>
<para>If the integer <varname>sheet</varname> variable is not specified, all non-empty sheets in the spreadsheet are imported
into separate tables and a reference to the table containing the data from the last sheet is returned.</para>
</sect3>
<sect3 id = "Python-ExportTables">
<title>Export Tables</title>
<para>You can export values from a table to an ASCII <varname>file</varname>, using
<varname>sep</varname> as separator chararacter. The <varname>ColumnLabels</varname> option
allows you to export or ignore the column labels, <varname>ColumnComments</varname> does the same for the comments
displayed in the table header and the <varname>SelectionOnly</varname> option makes
possible to export only the selected cells of the table.</para>
<programlisting>
t.exportASCII(file,sep="\t",ignore=0,ColumnLabels=False,ColumnComments=False,SelectionOnly=False)
</programlisting>
Other settings that you can modify are the text displayed as a comment in the header of a column...
<programlisting>
t.setComment(col, newComment)
</programlisting>
... or the expression used to calculate the column values. Please beware that changing the command doesn't automatically
update the values of the column; you have to call <varname>recalculate</varname> explicitly.
Calling it with just the column as argument will recalculate every row. Forcing muParser can speed things up.
<programlisting>
t.setCommand(col, newExpression)
t.recalculate(col, startRow=1, endRow=-1, forceMuParser=False, notifyChanges=True)
</programlisting>
</sect3>
You can access the column comments and enable/disable their display via the following functions:
<programlisting>
t.comment(col)
t.showComments(on = True)
</programlisting>
You can also modify the width of a column (in pixels) or hide/show table columns:
<programlisting>
t.setColumnWidth(col, width)
t.hideColumn(col, True)
</programlisting>
If one or several tabel columns are hidden you can make them visible again using:
<programlisting>
t.showAllColumns()
</programlisting>
You can ensure the visibility of a cell with:
<programlisting>
t.scrollToCell(col, row)
</programlisting>
After having changed some table values from a script, you will likely want to update dependent Graphs:
<programlisting>
t.notifyChanges()
</programlisting>
As a simple example, let's set some column values without using the dialog.
<programlisting>
t = table("table1")
for i in range(1, t.numRows()+1):
t.setCell(1, i, i**2)
t.notifyChanges()
</programlisting>
While the above is easy to understand, there is a faster and more pythonic way of doing the same:
<programlisting>
t = table("table1")
t.setColData(1, [i*i for i in range(len(t))])
t.notifyChanges()
</programlisting>
You can check if a column or row of a table is selected by using the following functions:
<programlisting>
t.isColSelected(col)
t.isRowSelected(row)
</programlisting>
<sect3 id = "Python-R">
<title>R interface</title>
If <ulink url="http://rpy.sourceforge.net/rpy2.html">RPy2</ulink> is available,
the <link linkend="Python-init">default initialization file</link> sets up the
helper functions <userinput>qti.Table.toRDataFrame</userinput> and
<userinput>qti.app.newTableFromRDataFrame</userinput> to convert back and forth
between R data frames and &appname; tables.
Here is a little example of an R session...
<programlisting>
df <- read.table("/some/path/data.csv", header=TRUE)
m <- mean(df)
v <- var(df)
source("/some/path/my_func.r")
new_df <- my_func(df, foo=bar)
</programlisting>
... and now the same from within &appname;:
<programlisting>
df = table("Table1").toRDataFrame()
print R.mean(df), R.var(df)
R.source("/some/path/my_func.r")
new_df = R.my_func(df, foo=bar)
newTableFromRDataFrame(new_df, "my result table")
</programlisting>
</sect3>
</sect2>
<sect2 id="Python-Matrix">
<title>Working with Matrices</title>
Matrix objects have a dual view mode: either as images or as data tables.
Assuming that you have assigned some matrix to the variable
<varname>m</varname>, you can change its display mode via the following function:
<programlisting>
m.setViewType(Matrix.TableView)
m.setViewType(Matrix.ImageView)
</programlisting>
If a matrix is viewed as an image, you have the choice to display it
either as gray scale or using a predefined color map:
<programlisting>
m.setGrayScale()
m.setRainbowColorMap()
m.setDefaultColorMap() # default color map defined via the 3D plots tab of the preferences dialog
</programlisting>
You can also define custom color maps:
<programlisting>
map = LinearColorMap(QtCore.Qt.yellow, QtCore.Qt.blue)
map.setMode(LinearColorMap.FixedColors) # default mode is LinearColorMap.ScaledColors
map.addColorStop(0.2, QtCore.Qt.magenta)
map.addColorStop(0.7, QtCore.Qt.cyan)
m.setColorMap(map)
</programlisting>
You have direct access to the color map used for a matrix via the following functions:
<programlisting>
map = m.colorMap()
col1 = map.color1()
print col1.green()
col2 = map.color2()
print col2.blue()
</programlisting>
Accessing cell values is very similar to Table,
but since Matrix doesn't use column logic, row arguments are specified
before columns and obviously you can't use column name.
<programlisting>
m.cell(row, col)
m.setCell(row, col, value)
m.text(row, col)
m.setText(row, col, string)
</programlisting>
An alternative solution to assign values to a Matrix, would be to define a formula and to calculate the values using this formula, like in the following example:
<programlisting>
m.setFormula("x*y*sin(x*y)")
m.calculate()
</programlisting>
You can also specify a column/row range in the calculate() function, like this:
<programlisting>
m.calculate(startRow, endRow, startColumn, endColumn)
</programlisting>
Before setting the values in a matrix you might want to define the numeric precision,
that is the number of significant digits used for the computations:
<programlisting>
m.setNumericPrecision(prec)
</programlisting>
Also, like with tables, you can access the number of rows/columns in a matrix:
<programlisting>
rows = m.numRows()
columns = m.numCols()
</programlisting>
Matrix objects allow you to define a system of x/y coordinates that will be used when plotting color/contour maps or 3D height maps.
You can manipulate these coordinates using the following functions:
<programlisting>
xs = m.xStart()
xe = m.xEnd()
ys = m.yStart()
ye = m.yEnd()
m.setCoordinates(xs + 2.5, xe, ys - 1, ye + 1)
</programlisting>
The horizontal and vertical headers of a matrix can display either the x/y coordinates or
the column/row indexes:
<programlisting>
m.setHeaderViewType(Matrix.ColumnRow)
m.setHeaderViewType(Matrix.XY)
</programlisting>
There are several built-in transformations that you can apply to a matrix object.
You can transpose or invert a matrix and calculate its determinant, provided, of course, that
the conditions on the matrix dimensions, required by these operations, are matched:
<programlisting>
m.transpose()
m.invert()
d = m.determinant()
</programlisting>
Some other operations, very useful when working with images, like 90 degrees rotations and mirroring,
can also be performed. By default rotations are performed clockwise. For a counterclockwise rotation
you must set the <varname>clockwise</varname> parameter to <varname>False</varname>.
<programlisting>
m.flipVertically()
m.flipHorizontally()
m.rotate90(clockwise = True)
</programlisting>
Please note that sometimes, after a change in the matrix settings,
you need to use the following function in order to update the display:
<programlisting>
m.resetView()
</programlisting>
If you need to get data from a table, in order to use it in a matrix (or vice-versa), you can
avoid time consuming copy/paste operations and speed up the whole proces by simply converting
the table into a matrix:
<programlisting>
m = tableToMatrix(table("Table1"))
t = matrixToTable(m)
</programlisting>
Also, it's worth knowing that you can easily import image files to matrices, that can be
used afterwards for plotting (see the next section for more details about 2D plots):
<programlisting>
m1 = importImage("C:/poze/adi/PIC00074.jpg")
m2 = newMatrix()
m2.importImage("C:/poze/adi/PIC00075.jpg")
</programlisting>
The algorithm used to import the image returns a gray value between 0 and 255 from the (r, g, b) triplet
corresponding to each pixel. The gray value is calculated using the formula: (r * 11 + g * 16 + b * 5)/32
<para>For custom image analysis operations, you can get a copy of the matrix image view, as a QImage object, via:</para>
<programlisting>
image = m.image()
</programlisting>
You can export matrices to all raster image formats supported by Qt or to any of the following vectorial image format:
EPS, PS, PDF or SVG using:
<programlisting>
m.export(fileName)
</programlisting>
This is a shortcut function which uses some default parameters in order to generate the output image.
If you need more control over the export parameters you must use one of the following functions:
<programlisting>
m1.exportRasterImage(fileName, quality = 100, dpi = 0)
m2.exportVector(fileName, resolution, color = True)
</programlisting>,
where the <varname>quality</varname> parameter influences the size of the output file.
The higher this value (maximum is 100), the higher the qualitity of the image, but the larger the size of the resulting files.
The <varname>dpi</varname> parameter represents the export resolution in pixels per inch (the default is screen resolution).
<para>You can also import an ASCII data <varname>file</varname>, using <varname>sep</varname> as separator characters, ignoring
<varname>ignore</varname> lines at the head of the file and all lines starting with a <varname>comment</varname> string:
</para>
<programlisting>
m.importASCII(file, sep="\t", ignore=0, stripSpaces=True, simplifySpace=False, comment="#",
importAs=Matrix.Overwrite, locale=QLocale(), endLine=0, maxRows=-1)
</programlisting>
<para>The <varname>importAs</varname> flag can have the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Matrix.NewColumns: data values are added as new columns.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Matrix.NewRows: data values are added as new rows.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Matrix.Overwrite: all existing values are overwritten (default value).</para>
</listitem>
</varlistentry>
</variablelist>
The <varname>locale</varname> parameter can be used to specify the convention for decimal separators used in your ASCII file.</para>
<para>The <varname>endLine</varname> flag specifies the end line character convention used in the ascii file.
Possible values are: 0 for line feed (LF), which is the default value,
1 for carriage return + line feed (CRLF) and 2 for carriage return only (usually on Mac computers).</para>
<para>The last parameter <varname>maxRows</varname> allows you to specify a maximum number of imported
lines. Negative values mean that all data lines must be imported.</para>
<para>Also, you can export values from a matrix to an ASCII <varname>file</varname>, using
<varname>sep</varname> as separator chararacters. The <varname>SelectionOnly</varname> option makes
possible to export only the selected cells of the matrix.</para>
<programlisting>
m.exportASCII(file, sep="\t", SelectionOnly=False)
</programlisting>
</sect2>
<sect2 id = "Python-Stem-and-Leaf-Plot">
<title>Stem Plots</title>
<para>
A stemplot (or stem-and-leaf plot), in statistics, is a device for presenting
quantitative data in a graphical format, similar to a histogram,
to assist in visualizing the shape of a distribution.
A basic stemplot contains two columns separated by a vertical line.
The left column contains the stems and the right column contains the leaves.
See <ulink url="http://en.wikipedia.org/wiki/Stemplot">Wikipedia</ulink> for more details.
</para>
<para>
QtiPlot provides a text representation of a stemplot. The following function
returns a string of characters reprezenting the statistical analysis of the data:
<programlisting>
text = stemPlot(Table *t, columnName, power = 1001, startRow = 0, endRow = -1)
</programlisting>
where the <varname>power</varname> variable is used to specify the stem unit as a power of 10.
If this parameter is greater than 1000 (the default behavior), than QtiPlot will
try to guess the stem unit from the input data and will pop-up a dialog asking you to
confirm the automatically detected stem unit.
</para>
<para>
Once you have created the string representation of the stemplot, you can display it in any text editor you like:
in a note within the project or even in the results log:
<programlisting>
resultsLog().append(stemPlot(table("Table1"), "Table1_2", 1, 2, 15))
</programlisting>
</para>
</sect2>
<sect2 id = "Python-Plots2D">
<title>2D Plots</title>
If you want to create a new Graph window for some data in table Table1, you can use the plot command:
<programlisting>
t = table("Table1")
g = plot(t, column, type)
</programlisting>
<varname>type</varname> specifies the desired plot type and can be one of the following numbers or the equivalent reserved word:
<variablelist spacing="compact">
<varlistentry>
<term>0</term>
<listitem>
<para>Layer.Line</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1</term>
<listitem>
<para>Layer.Scatter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2</term>
<listitem>
<para>Layer.LineSymbols</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3</term>
<listitem>
<para>Layer.VerticalBars</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4</term>
<listitem>
<para>Layer.Area</para>
</listitem>
</varlistentry>
<varlistentry>
<term>5</term>
<listitem>
<para>Layer.Pie</para>
</listitem>
</varlistentry>
<varlistentry>
<term>6</term>
<listitem>
<para>Layer.VerticalDropLines</para>
</listitem>
</varlistentry>
<varlistentry>
<term>7</term>
<listitem>
<para>Layer.Spline</para>
</listitem>
</varlistentry>
<varlistentry>
<term>8</term>
<listitem>
<para>Layer.HorizontalSteps</para>
</listitem>
</varlistentry>
<varlistentry>
<term>9</term>
<listitem>
<para>Layer.Histogram</para>
</listitem>
</varlistentry>
<varlistentry>
<term>10</term>
<listitem>
<para>Layer.HorizontalBars</para>
</listitem>
</varlistentry>
<varlistentry>
<term>13</term>
<listitem>
<para>Layer.Box</para>
</listitem>
</varlistentry>
<varlistentry>
<term>15</term>
<listitem>
<para>Layer.VerticalSteps</para>
</listitem>
</varlistentry>
</variablelist>
You can plot more than one column at once by giving a Python tuple (see the <ulink url="http://docs.python.org/tut">Python
Tutorial</ulink>) as an argument:
<programlisting>
g1 = plot(table("Table1"), (2,4,7), 2)
g2 = plot(table("Table1"), ("Table1_2","Table1_3"), Layer.LineSymbols)
</programlisting>
All the curves in a plot layer can be customized in terms of color, line width and line style.
Here's a short script showing the corresponding functions at work:
<programlisting>
t = newTable("test", 30, 4)
for i in range(1, t.numRows()+1):
t.setCell(1, i, i)
t.setCell(2, i, i)
t.setCell(3, i, i+2)
t.setCell(4, i, i+4)
l = plot(t, (2,3,4), Layer.Line).activeLayer() # plot columns 2, 3 and 4
for i in range(0, l.numCurves()):
l.setCurveLineColor(i, 1 + i) #curve color is defined as an integer value
l.setCurveLineWidth(i, 0.5 + 2*i)
l.setCurveLineStyle(1, QtCore.Qt.DotLine)
l.setCurveLineStyle(2, QtCore.Qt.DashLine)
</programlisting>
You can also create a vector plot by giving four columns in
a Python tuple as an argument and the plot type as Layer.VectXYXY (11) or Layer.VectXYAM (14),
depending on how you want to define the end point of your vectors: using (X, Y) coordinates or
(Angle, Magnitude) coordinates.
<programlisting>
g = plot(table("Table1"), (2,3,4,5), Layer.VectXYXY)
</programlisting>
If you want to add a curve to an existing Graph window, you have
to choose the destination layer. Usually,
<programlisting>
l = g.activeLayer()
</programlisting>
will do the trick, but you can also select a layer by its number:
<programlisting>
l = g.layer(num)
</programlisting>
<sect3 id="Python-Curves">
<title>Working with curves</title>
You can then add or remove curves to or from this layer:
<programlisting>
l.insertCurve(table, Ycolumn, type=Layer.Scatter, int startRow = 0, int endRow = -1)# returns a reference to the inserted curve
l.insertCurve(table, Xcolumn, Ycolumn, type=Layer.Scatter, int startRow = 0, int endRow = -1)# returns a reference to the inserted curve
l.addCurve(table, column, type=Layer.Line, lineWidth = 1, symbolSize = 3, startRow = 0, endRow = -1)# returns True on success
l.addCurves(table, (2,4), type=Layer.Line, lineWidth = 1, symbolSize = 3, startRow = 0, endRow = -1)# returns True on success
l.removeCurve(curveName)
l.removeCurve(curveIndex)
l.removeCurve(curveReference)
l.deleteFitCurves()
</programlisting>
It is possible to change the order of the curves inserted in a layer using the following function:
<programlisting>
l.changeCurveIndex(int oldIndex, int newIndex)
</programlisting>
Sometimes, when performing data analysis, one might need the curve title. It is possible to obtain it using the method bellow:
<programlisting>
title = l.curveTitle(curveIndex)
</programlisting>
It is possible to get a reference to a curve on the layer l using it's index or it's title, like shown bellow:
<programlisting>
c = l.curve(curveIndex)
c = l.curve(curveTitle)
dc = l.dataCurve(curveIndex)
</programlisting>
<para>Please, keep in mind the fact that the above methods might return an invalid reference
if the curve with the specified index/title is not a PlotCurve or a DataCurve object, respectively.
For example, an analytical function curve is a PlotCurve but not a DataCurve and spectrograms are a
completely different type of plot items which are neither PlotCurves nor DataCurves.</para>
<para>Use the following function to change the axis attachment of a curve:</para>
<programlisting>
l.setCurveAxes(number, x-axis, y-axis)
</programlisting>
<para>where number is the curve's number, x-axis is either 0 or 1 (bottom or top) and y-axis is either 0 or 1 (left or right).</para>
You can also add analytical function curves to a plot layer:
<programlisting>
c = l.addFunction("x*sin(x)", 0, 3*pi, points = 100)
c.setTitle("x*sin(x)")
c.setPen(Qt.green)
c.setBrush(QtGui.QColor(0, 255, 0, 100))
l.addParametricFunction("cos(m)", "sin(m)", 0, 2*pi, points = 100, variableName = "m")
l.addPolarFunction("t", "t", 0, 2*pi, points = 100, variableName = "t")
</programlisting>
When dealing with analytical function curves, you can customize them using the following methods:
<programlisting>
c.setRange(0, 2*pi)
c.setVariable("t")
c.setFormulas("sin(t)", "cos(t)")
c.setFunctionType(FunctionCurve.Polar) # or c.setFunctionType(FunctionCurve.Parametric)
c.loadData(1000, xLog10Scale = False)
c.setFunctionType(FunctionCurve.Normal)
c.setFormula("cos(x)")
c.loadData()
</programlisting>
In case you need the number of curves on a layer, you can get it with <programlisting>
l.numCurves()
</programlisting>
Once you have added a curve to a 2D plot, you can fully customize it's appearance:
<programlisting>
l = newGraph().activeLayer()
l.setAntialiasing()
c = l.insertCurve(table("Table1"), "Table1_2", Layer.LineSymbols)
c.setPen(QtGui.QPen(Qt.red, 3))
c.setBrush(QtGui.QBrush(Qt.darkYellow))
c.setSymbol(PlotSymbol(PlotSymbol.Hexagon, QtGui.QBrush(Qt.yellow), QtGui.QPen(Qt.blue, 1.5), QtCore.QSize(15, 15)))
</programlisting>
It is possible to change the number of symbols to be displayed for a curve using the function bellow.
This option can be very usefull for very large data sets:
<programlisting>
c.setSkipSymbolsCount(3)
print c.skipSymbolsCount()
</programlisting>
An alternative way of customizing a curve is by using the functions bellow:
<programlisting>
l.setCurveLineColor(int curve, int color) # uses the index of the colors in the default QtiPlot color list: 0 = black, 1 = red, 2 = green, etc...
l.setCurveLineStyle(int curve, Qt::PenStyle style)
l.setCurveLineWidth(int curve, double width)
</programlisting>
You can also define a global color policy for the plot layer using the following
convenience functions:
<programlisting>
l.setGrayScale()
l.setIndexedColors() # uses the colors in the default QtiPlot color list: 0 = black, 1 = red, 2 = green, etc...
</programlisting>
You can display labels showing the y values for each data point in a DataCurve:
<programlisting>
c.setLabelsColumnName("Table1_2")
c.setLabelsOffset(50, 50)
c.setLabelsColor(Qt.red)
c.setLabelsFont(QtGui.QFont("Arial", 14))
c.setLabelsRotation(45)
c.loadData() # creates the labels and updates the display
</programlisting>
and, of course, you can disable them using:
<programlisting>
c.clearLabels()
l.replot() # redraw the plot layer object
</programlisting>
If you need to change the range of data points displayed in a DataCurve you can use
the following methods:
<programlisting>
c.setRowRange(int startRow, int endRow)
c.setFullRange()
</programlisting>
Also, you can hide/show a plot curve via:
<programlisting>
c.setVisible(bool on)
</programlisting>
In case you need to get information about the data stored in the curve,
you have at your disposal the functions bellow:
<programlisting>
points = c.dataSize()
for i in range (0, points):
print i, "x = ", c.x(i), "y = ", c.y(i)
print c.minXValue()
print c.maxXValue()
print c.minYValue()
print c.maxYValue()
</programlisting>
</sect3>
<sect3 id = "Python-PlotSymbols">
<title>Plot symbols</title>
Here's how you can customize the plot symbol used for a 2D plot curve <varname>c</varname>:
<programlisting>
s = c.symbol()
s.setSize(QtCore.QSize(7, 7))# or s.setSize(7)
s.setBrush(QtGui.QBrush(Qt.darkYellow))
s.setPen(QtGui.QPen(Qt.blue, 3))
s.setStyle(PlotSymbol.Diamond)
l.replot() # redraw the plot layer object
</programlisting>
The symbol styles available in QtiPlot are:
<variablelist spacing="compact">
<varlistentry>
<term>0</term>
<listitem>
<para>PlotSymbol.NoSymbol</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1</term>
<listitem>
<para>PlotSymbol.Ellipse</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2</term>
<listitem>
<para>PlotSymbol.Rect</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3</term>
<listitem>
<para>PlotSymbol.Diamond</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4</term>
<listitem>
<para>PlotSymbol.Triangle</para>
</listitem>
</varlistentry>
<varlistentry>
<term>5</term>
<listitem>
<para>PlotSymbol.DTriangle</para>
</listitem>
</varlistentry>
<varlistentry>
<term>6</term>
<listitem>
<para>PlotSymbol.UTriangle</para>
</listitem>
</varlistentry>
<varlistentry>
<term>7</term>
<listitem>
<para>PlotSymbol.LTriangle</para>
</listitem>
</varlistentry>
<varlistentry>
<term>8</term>
<listitem>
<para>PlotSymbol.RTriangle</para>
</listitem>
</varlistentry>
<varlistentry>
<term>9</term>
<listitem>
<para>PlotSymbol.Cross</para>
</listitem>
</varlistentry>
<varlistentry>
<term>10</term>
<listitem>
<para>PlotSymbol.XCross</para>
</listitem>
</varlistentry>
<varlistentry>
<term>11</term>
<listitem>
<para>PlotSymbol.HLine</para>
</listitem>
</varlistentry>
<varlistentry>
<term>12</term>
<listitem>
<para>PlotSymbol.VLine</para>
</listitem>
</varlistentry>
<varlistentry>
<term>13</term>
<listitem>
<para>PlotSymbol.Star1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>14</term>
<listitem>
<para>PlotSymbol.Star2</para>
</listitem>
</varlistentry>
<varlistentry>
<term>15</term>
<listitem>
<para>PlotSymbol.Hexagon</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3 id = "Python-Spectrograms">
<title>Image and Contour Line Plots (Spectrograms)</title>
As you have seen in the previous section, it is possible create 2D plots from matrices.
Here's how you can do it in practice:
<programlisting>
m = importImage("C:/poze/adi/PIC00074.jpg")
g1 = plot(m, Layer.ColorMap)
g2 = plot(m, Layer.Contour)
g3 = plot(m, Layer.GrayScale)
</programlisting>
The plot functions above return a reference to the multilayer plot window. If you need a reference to the
spectrogram object itself, you can get it as shown in the example bellow:
<programlisting>
m = newMatrix("TestMatrix", 1000, 800)
m.setFormula("x*y")
m.calculate()
g = plot(m, Layer.ColorMap)
s = g.activeLayer().spectrogram(m)
s.setColorBarWidth(20)
</programlisting>
It is possible to fine tune the plots created from a matrix:
<programlisting>
m = newMatrix("TestMatrix", 1000, 800)
m.setFormula("x*y")
m.calculate()
s = newGraph().activeLayer().plotSpectrogram(m, Layer.ColorMap)
s.setContourLevels((20.0, 30.0, 60.0, 80.0))
s.setDefaultContourPen(QtGui.QPen(Qt.yellow)) # set global pen for the contour lines
s.setLabelsWhiteOut(True)
s.setLabelsColor(Qt.red)
s.setLabelsFont(QtGui.QFont("Arial", 14))
s.setLabelsRotation(45)
s.showColorScale(Layer.Top)
s.setColorBarWidth(20)
</programlisting>
As you have seen earlier, you can set a global pen for the contour lines, using:
<programlisting>
s.setDefaultContourPen(QtGui.QPen(Qt.yellow))
</programlisting>
You can also assign a specific pen for each contour line, using the function bellow:
<programlisting>
s.setContourLinePen(index, QPen)
</programlisting>
or you can automatically set pen colors defined by the color map of the spectrogram:
<programlisting>
s.setColorMapPen(bool on = True)
</programlisting>
You can also use any of the following functions:
<programlisting>
s.setMatrix(Matrix *, bool useFormula = False)
s.setUseMatrixFormula(bool useFormula = True)# calculate data to be drawn using matrix formula (if any)
s.setLevelsNumber(int)
s.showColorScale(int axis, bool on = True)
s.setGrayScale()
s.setDefaultColorMap()
s.setCustomColorMap(LinearColorMap map)
s.showContourLineLabels(bool show = True) # enable/disable contour line labels
s.setLabelsOffset(int x, int y) # offset values for all labels in % of the text size
s.updateData()
</programlisting>
</sect3>
<sect3 id = "Python-Histograms">
<title>Histograms</title>
As you have seen in the previous section, it is possible create 2D histograms from matrices or tables.
Here's a small script showing how to customize a histogram and how to get access to the
statistical information in the histogram (bin positions, counts, mean, standard deviation, etc...):
<programlisting>
m = newMatrix("TestHistogram", 1000, 800)
m.setFormula("x*y")
m.calculate()
g = newGraph().activeLayer()
h = g.addHistogram(m)
h.setBinning(10, 1, 90) # the bin size is set to 10, data range is set to [1, 90]
h.loadData() # update the histogram
g.replot() # update the display
# print histogram values:
for i in range (0, h.dataSize()):
print i, "Bin start = ", h.x(i), "counts = ", h.y(i)
# print statistic information:
print "Standard deviation = ", h.standardDeviation()
print "Mean = ", h.mean()
</programlisting>
You can also enable autobinning (a default number of ten bins will be used):
<programlisting>
h.setAutoBinning()
</programlisting>
</sect3>
<sect3 id="Python-Title">
<title>The plot title</title>
<programlisting>
l.setTitle("My beautiful plot")
l.setTitleFont(QtGui.QFont("Arial", 12))
l.setTitleColor(QtGui.QColor("red"))
l.setTitleAlignment(QtCore.Qt.AlignLeft)
</programlisting>
The alignment parameter can be any combination of the Qt alignment flags (see the
<ulink url="http://www.riverbankcomputing.com/Docs/PyQt4/html/qt.html#AlignmentFlag-enum">PyQt documentation</ulink>
for more details).
<para>If you want you can remove the plot title using:</para>
<programlisting>
l.removeTitle()
</programlisting>
Here's how you can add greek symbols in the plot title or in any other text in the plot layer: axis labels, legends:
<programlisting>
<![CDATA[
l.setTitle("normal text <font face=\"Symbol\">greek text</font>")
]]>
</programlisting>
Using the font specifications, you can also change the color of some parts of the title only:
<programlisting>
<![CDATA[
l=newGraph().activeLayer()
l.setTitle("<font color = red>red</font> <font color = yellow>yellow</font> <font color = blue>blue</font>")
]]>
</programlisting>
</sect3>
<sect3 id="Python-Axes">
<title>Customizing the axes</title>
Layer axes can be shown/hidden using the following function:
<programlisting>
l.enableAxis(int axis, on = True)
</programlisting>
where <varname>axis</varname> can be any integer value between 0 and 3 or the equivalent reserved word:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Layer.Left</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Layer.Right</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Layer.Bottom</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Layer.Top</para>
</listitem>
</varlistentry>
</variablelist>
If an axis is enabled, you can fully customize it via a Python script.
For example you can set its title:
<programlisting>
l.setAxisTitle(axis, "My axis title")
l.setAxisTitleFont(axis, QtGui.QFont("Arial", 11))
l.setAxisTitleColor(axis, QtGui.QColor("blue"))
l.setAxisTitleAlignment(axis, alignFlags)
</programlisting>
its color and the font used for the tick labels:
<programlisting>
l.setAxisColor(axis, QtGui.QColor("green"))
l.setAxisFont(axis, QtGui.QFont("Arial", 10))
</programlisting>
The tick labels of an axis can be enabled or disabled, you can set their color and their rotation angle:
<programlisting>
l.enableAxisLabels(axis, on = True)
l.setAxisLabelsColor(axis, QtGui.QColor("black"))
l.setAxisLabelRotation(axis, angle)
</programlisting>
<varname>angle</varname> can be any integer value between -90 and 90 degrees.
A rotation angle can be set only for horizontal axes (Bottom and Top).
<para>The numerical format of the labels can be set using:</para>
<programlisting>
l.setAxisNumericFormat(axis, format, precision = 6, formula)
</programlisting>
where <varname>format</varname> can have the following values: <variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Automatic: the most compact numeric representation is chosen</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Decimal: numbers are displayed in floating point form</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Scientific: numbers are displayed using the exponential notation</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Superscripts: like Scientific, but the exponential part is displayed as a power of 10</para>
</listitem>
</varlistentry>
</variablelist>
<varname>precision</varname> is the number of significant digits and
<varname>formula</varname> is a mathematical expression that can be used to link oposite scales. It's
argument must be <varname>x</varname> for horizontal axes and <varname>y</varname> for vertical axes.
For example, assuming that the bottom axis displays a range of wavelengths in nanometers and that the top
axis represents the equivalent energies in eV, with the help of the code bellow all the wavelengths
will be automatically converted to electron-volts and the result will be displayed in floating point form
with two significant digits after the decimal dot sign:
<programlisting>
l.setAxisNumericFormat(Layer.Top, 1, 2, "1239.8419/x")
</programlisting>
The axis ticks can be customized via the following functions:
<programlisting>
l.setTicksLength(minLength, majLength)
l.setMajorTicksType(axis, majTicksType)
l.setMinorTicksType(axis, minTicksType)
l.setAxisTicksLength(axis, majTicksType, minTicksType, minLength, majLength)
</programlisting>
where the <varname>majTicksType</varname> and <varname>minTicksType</varname> parameters specify the
desired orientation for the major and minor ticks, respectively:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Layer.NoTicks</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Layer.Out: outward orientation for ticks, with respect to the plot canvas</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Layer.InOut: both inward and outward ticks</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Layer.In: inward ticks</para>
</listitem>
</varlistentry>
</variablelist>
<varname>minLength</varname> specifies the length of the minor ticks, in pixels and
<varname>majLength</varname> the length of the major ticks.
<para>You can also customize the scales of the different axes using: <programlisting>
l.setScale(int axis, double start, double end, double step=0.0, int majorTicks=5, int minorTicks=5, int type=0, bool inverted=False)
</programlisting>
where <varname>type</varname> specifies the desired scale type: <variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Layer.Linear</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Layer.Log10</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Layer.Ln</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Layer.Log2</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4.</term>
<listitem>
<para>Layer.Reciprocal</para>
</listitem>
</varlistentry>
<varlistentry>
<term>5.</term>
<listitem>
<para>Layer.Probability</para>
</listitem>
</varlistentry>
<varlistentry>
<term>6.</term>
<listitem>
<para>Layer.Logit</para>
</listitem>
</varlistentry>
</variablelist>
and <varname>step</varname> defines the size of the interval between the major scale ticks. If not specified (default value is 0.0), the step size is calculated automatically.
The other flags should be self-explanatory.</para>
Defining a scale range for an axis doesn't automatically disable autoscaling.
This means that if a curve is added or removed from the layer, the axes will still automatically
adapt to the new data interval. This can be avoided by disabling the autoscaling mode, thus
making sure that your scale settings will always be taken into account:
<programlisting>
l.enableAutoscaling(False)
</programlisting>
If you want to rescale the plot layer so that all the data points are visible, you can use the following utility function:
<programlisting>
l.setAutoScale()
</programlisting>
The same <varname>setScale</varname> function above, with a longer list of arguments,
can be used to define an axis break region:
<programlisting>
l.setScale(axis, start, end, step=0.0, majorTicks=5, minorTicks=5, type=0, inverted=False,
left=-DBL_MAX, right=DBL_MAX, breakPosition=50, stepBeforeBreak=0.0, stepAfterBreak=0.0,
minTicksBeforeBreak=4, minTicksAfterBreak=4, log10AfterBreak=False, breakWidth=4, breakDecoration=True)
</programlisting>
where <varname>left</varname> specifies the left limit of the break region,
<varname>right</varname> the right limit,
<varname>breakPosition</varname> is the position of the break expressed as a percentage of the axis length and
<varname>breakWidth</varname> is the width of the break region in pixels.
The names of the other parameters should be self-explanatory.
<para>Finally, you can specify the width of all axes and enable/disable the drawing of their
backbone line, using:</para>
<programlisting>
l.setAxesLinewidth(2)
l.drawAxesBackbones(True)
</programlisting>
</sect3>
<sect3 id="Python-Canvas">
<title>The canvas</title>
You can display a rectangular frame around the drawing area of the plot (the canvas) and
fill it with a background color, using:<programlisting>
l.setCanvasFrame(2, QtGui.QColor("red"))
l.setCanvasColor(QtGui.QColor("lightGrey"))
</programlisting>
Drawing the canvas frame and disabling the axes backbone lines
is the only possible solution for the issue of axes not touching themselves at their ends.
</sect3>
<sect3 id="Python-Frame">
<title>The layer frame</title>
You can display a rectangular frame around the whole layer and fill it with a background color,
using:<programlisting>
l.setFrame(2, QtGui.QColor("blue"))
l.setBackgroundColor(QtGui.QColor("grey"))
</programlisting>
The default spacing between the layer frame and the other layer elements (axes, title) can be changed via:
<programlisting>
l.setMargin(10)
</programlisting>
</sect3>
<sect3 id="Python-Grid-2D">
<title>Customizing the grid</title>
You can display the grid associated to a layer axis or the whole grid using:<programlisting>
l.showGrid(axis)
l.showGrid()
</programlisting>
This will display the grid with the default color, width and pen style settings.
If you need to change these settings, as well as to enable/disable certain grid lines,
you can use the following functions:<programlisting>
grid = l.grid()
grid.setMajPenX(QtGui.QPen(QtCore.Qt.red, 1))
grid.setMinPenX(QtGui.QPen(QtCore.Qt.yellow, 1, QtCore.Qt.DotLine))
grid.setMajPenY(QtGui.QPen(QtCore.Qt.green, 1))
grid.setMinPenY(QtGui.QPen(QtCore.Qt.blue, 1, QtCore.Qt.DashDotLine))
grid.enableXMax(True)
grid.enableXMin()
grid.enableYMax()
grid.enableYMin(False)
grid.enableZeroLineX(True)
grid.enableZeroLineY(False)
grid.setXZeroLinePen(QtGui.QPen(QtCore.Qt.black, 2))
grid.setYZeroLinePen(QtGui.QPen(QtCore.Qt.black, 2))
l.replot()
</programlisting>
All the grid functions containing an <varname>X</varname> refer to the vertical grid lineas, whereas the <varname>Y</varname> leter indicates the horizontal ones.
Also, the <varname>Maj</varname> word refers to the main grid lines and <varname>Min</varname> to the secondary grid.
</sect3>
<sect3 id="Python-Legends">
<title>The plot legend</title>
You can add a new legend to a plot using: <programlisting>
legend = l.newLegend()
#or
legend = l.newLegend("enter your text here")
</programlisting>
Plot legends are special text objects which are updated each time you add or remove a curve from the layer.
They have a special <varname>auto-update</varname> flag which is enabled by default.
The following function returns <varname>True</varname> for a legend object:
<programlisting>
legend.isAutoUpdateEnabled()
</programlisting>
You can disable/enable the auto-update behavior of a legend/text object using:
<programlisting>
legend.setAutoUpdate(False/True)
</programlisting>
You can add common texts like this:
<programlisting>
text = l.addText(legend)
text.setOrigin(legend.x(), legend.y()+50)
</programlisting>
Please notice that the <varname>addText</varname> function returns a different reference
to the new text object. You can use this new reference later on in order to remove the text:
<programlisting>
l.remove(text)
</programlisting>
Once you have created a legend/text, it's very easy to customize it.
If you want to modify the text you can use:<programlisting>
legend.setText("Enter your text here")
</programlisting>
All other properties of the legend: rotation angle, text color, background color, frame style, font and position of the top-left corner
can be modified via the following functions:<programlisting>
legend.setAngle(90)
legend.setTextColor(QtGui.QColor("red"))
legend.setBackgroundColor(QtGui.QColor("yellow"))
legend.setFrameStyle(Frame.Shadow)
legend.setFrameColor(QtCore.Qt.red)
legend.setFrameWidth(3)
legend.setFrameLineStyle(QtCore.Qt.DotLine)
legend.setFont(QtGui.QFont("Arial", 14, QtGui.QFont.Bold, True))
# set top-left position using scale coordinates:
legend.setOriginCoord(200.5, 600.32)
# or set top-left position using pixel coordinates:
legend.setOrigin(5, 10)
legend.repaint()
</programlisting>
Other frame styles available for legends are: <varname>Legend.Line</varname>, which draws a rectangle around the text
and <varname>Legend.None</varname> (no frame at all).
There is also a function allowing you to add an automatically built time stamp:
<programlisting>
timeStamp = l.addTimeStamp()
</programlisting>
</sect3>
<sect3 id="Python-Arrows">
<title>Adding arrows/lines to a plot layer</title>
<programlisting>
arrow = ArrowMarker()
arrow.setStart(10.5, 12.5)
arrow.setEnd(200, 400.51)
arrow.setStyle(QtCore.Qt.DashLine)
arrow.setColor(QtGui.QColor("red"))
arrow.setWidth(1)
arrow.drawStartArrow(False)
arrow.drawEndArrow(True)
arrow.setHeadLength(7)
arrow.setHeadAngle(35)
arrow.fillArrowHead(True)
l = newGraph().activeLayer()
arrow1 = l.addArrow(arrow)
arrow.setStart(120.5, 320.5)
arrow.setColor(QtGui.QColor("blue"))
arrow2 = l.addArrow(arrow)
l.remove(arrow1)
</programlisting>
<para>As you might notice from the sample code above, the <varname>addArrow</varname> function
returns a reference to a new arrow object that can be used later on to modify this
new arrow or to delete it with the <varname>remove</varname> function.</para>
<para>It is possible to modify the properties of all the lines/arrows in a plot layer, see the short example bellow:</para>
<programlisting>
g = graph("Graph1").activeLayer()
lst = g.arrowsList()
for i in range (0, g.numArrows()):
lst[i].setColor(Qt.green)
g.replot()
</programlisting>
</sect3>
<sect3 id="Python-Images">
<title>Adding images to a layer</title>
<programlisting>
l = newGraph().activeLayer()
image = l.addImage("C:/poze/adi/PIC00074.jpg")
image.setCoordinates(200, 800, 800, 200)
image.setFrameStyle(Frame.Shadow)
image.setFrameColor(QtCore.Qt.green)
image.setFrameWidth(3)
l.replot()
</programlisting>
The <varname>setCoordinates</varname> function above can be used to set the geometry of the image using
scale coordinates. If you need to specify the image geometry in pixel coordinates, independently of
the plot axes values, you may use the following functions:
<programlisting>
image.setOrigin(x, y)
image.setSize(width, height)
image.setRect(x, y, width, height)
l.replot()
</programlisting>
You can remove an image using its reference:
<programlisting>
l.remove(image)
</programlisting>
</sect3>
<sect3 id="Python-Rectangles">
<title>Rectangles</title>
<programlisting>
l = newGraph().activeLayer()
r = Rectangle(l)
r.setSize(100, 100)
r.setOrigin(100, 200)
r.setBackgroundColor(QtCore.Qt.yellow)
r.setFrameColor(QtCore.Qt.red)
r.setFrameWidth(3)
r.setFrameLineStyle(QtCore.Qt.DotLine)
r.setBrush(QtGui.QBrush(QtCore.Qt.green, QtCore.Qt.FDiagPattern))
r1 = l.add(r)
</programlisting>
You can remove a rectangle using its reference:
<programlisting>
r2 = l.add(r)
r2.setOrigin(200, 200)
l.remove(r1)
</programlisting>
</sect3>
<sect3 id="Python-Ellipses">
<title>Circles/Ellipses</title>
<programlisting>
l = newGraph().activeLayer()
e = Ellipse(l)
e.setSize(100, 100)
e.setOrigin(100, 200)
e.setBackgroundColor(QtCore.Qt.yellow)
e.setFrameColor(QtCore.Qt.red)
e.setFrameWidth(0.8)
e.setFrameLineStyle(QtCore.Qt.DotLine)
e.setBrush(QtGui.QBrush(QtCore.Qt.green, QtCore.Qt.FDiagPattern))
l.add(e)
</programlisting>
</sect3>
<sect3 id="Python-Antialiasing">
<title>Antialiasing</title>
Antialiasing can be enabled/disabled for the drawing of the curves and other layer
objects, but it is a very resources consuming feature:<programlisting>
l.setAntialiasing(True, bool update = True)
</programlisting>
</sect3>
<sect3 id="Python-ResizingLayers">
<title>Resizing layers</title>
A layer can be resized using the methods bellow, where the first argument is the new width,
the second is the new height and sizes are defined in pixels:
<programlisting>
l.resize(200, 200);
l.resize(QSize(w, h))
</programlisting>
If you also need to reposition the layer, you can use the following functions, where the first two arguments
specify the new position of the top left corner of the canvas:
<programlisting>
l.setGeometry(100, 100, 200, 200);
l.setGeometry(QRect(x, y, w, h));
</programlisting>
The default behaviour of 2D plot layers, with respect to the resizing of the graph window
is to adapt the sizes of the fonts used for the various texts, to the new size
of the plot window. You can override this behaviour and keep the size of the fonts unchanged:
<programlisting>
l.setAutoscaleFonts(False)
</programlisting>
</sect3>
<sect3 id="Python-Resizing">
<title>Resizing the drawing area</title>
The drawing area of a layer (the canvas) can be resized using the methods bellow, where the first argument is the new width,
the second is the new height and sizes are defined in pixels:
<programlisting>
l.setCanvasSize(200, 200);
l.setCanvasSize(QSize(w, h))
</programlisting>
If you also need to reposition the canvas, you can use the following functions, where the first two arguments
specify the new position of the top left corner of the canvas:
<programlisting>
l.setCanvasGeometry(100, 100, 200, 200);
l.setCanvasGeometry(QRect(x, y, w, h));
</programlisting>
Please keep in mind that the fonts of the layer are not rescaled when you resize the layer canvas using the above methods.
</sect3>
<sect3 id="Python-Exporting-2DPlots">
<title>Exporting plots/layers to different image formats</title>
Layers and whole Graphs can be printed and exported from within Python.
The fastest way to export a plot/layer is the following: <programlisting>
l.export(fileName)
</programlisting>
This function uses some default parameters
for the properties of the image. If you need more control over the exported images you can use one
of the following specialized functions:<programlisting>
l.exportVector(fileName, dpi = 96, color = True, size = QSizeF(), unit = Frame.Pixel, fontsFactor = 1.0)
l.exportImage(fileName, quality = 100, transparent = False, dpi = 0, size = QSizeF(), unit = Frame.Pixel, fontsFactor = 1.0)
l.exportTex(fileName, color = True, escapeStrings = True, fontSizes = True, size = QSizeF(), unit = Frame.Pixel, fontsFactor = 1.0)</programlisting>
<para>The function <varname>exportVector</varname> can export the plot/layer to the following vector formats:
.eps, .ps, .pdf.</para>
<para>The function <varname>exportImage</varname> can be used if you need to export to
one of the Qt supported bitmap image formats (.bmp, .png, .jpg, etc...). The <varname>transparent</varname>
option can only be used in conjunction with the file formats supporting transprency: .png and .tif (.tiff).
The <varname>quality</varname> parameter influences the size of the output file. The higher this value (maximum is 100),
the higher the qualitity of the image, but the larger the size of the resulting files.
The <varname>dpi</varname> parameter represents the export resolution in pixels per inch (the default is screen resolution),
<varname>size</varname> is the printed size of the image (the default is the size on screen) and
<varname>unit</varname> is the length unit used to express the custom size
and can take one of the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Inch</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Millimeter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Centimeter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Point: 1/72th of an inch</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4.</term>
<listitem>
<para>Pixel</para>
</listitem>
</varlistentry>
</variablelist>
The <varname>fontsFactor</varname> parameter represents a scaling factor
for the font sizes of all texts in the plot (the default is 1.0, meaning no scaling).
If you set this parameter to 0, the program will automatically try to calculate
a scale factor.</para>
<para>
The function <varname>exportTex</varname> can be used if you need to export to
a TeX file. The <varname>escapeStrings</varname> parameter enables/disables the escaping of
special TeX characters like: $, {, }, ^, etc...
If <varname>True</varname>, the <varname>fontSizes</varname> parameter triggers the export of the original
font sizes in the plot layer.
Otherwise all exported text strings will use the font size specified in the preamble of
the TeX document.
</para>
<para>All the export functions rely on the file name suffix in order to choose the image format.</para>
</sect3></sect2>
<sect2 id="Python-MultiLayer">
<title>Arranging Layers</title>
When you are working with many layers in a 2D plot window, setting the layout of these layers manually can
be a very tedious task. With the help of a simple Python script you can make this task very easy and
automatically manage the layout of the plot window.
For example, here's how you can create a two rows by two columns matrix of layers,
each plot layer having a canvas size (the drawing area) of 400 pixels wide and 300 pixels in height:
<programlisting>
g = newGraph("Test", 4, 2, 2)
g.setLayerCanvasSize(400, 300)
g.arrangeLayers(False, True)
</programlisting>
The <varname>arrangeLayers()</varname> function takes two parameters. The first one specifies
if the layers should be arranged automatically, using a best-layout algorithm, or if the
numbers of rows and columns is fixed by the user. If the value of the second parameter is
<varname>True</varname>, the size of the canvas is fixed by the user and the plot window
will be enlarged or shrinked, according to the user settings. Otherwise the size of the plot
window will be kept and the canvas area of each layer will be automatically adapted to fit this size.
Here's how you can modify the graph created in the previous example, in order to display a row of three
layers, while keeping the size of the plot window unchanged:
<programlisting>
g.setNumLayers(3)
g.setRows(1)
g.setCols(3)
g.arrangeLayers(False, False)
</programlisting>
By default, the space betwee two neighbouring layers as well as the distance between the layers
and the borders of the plot window is set to five pixels. You can change the spacing between the
layers and the margins using the following functions:
<programlisting>
g.setSpacing (x, y)
g.setMargins (left, right, top, bottom)
</programlisting>
Another aspect of the layout management is the alignement of the layers. There are three alignement
flags that you can use for the horizontal alignement (HCenter, Left, Right) and another three for
the vertical alignement (VCenter, Top, Bottom) of the layers. The following code line
aligns the layers with the right edge of the window and centers them vertically in the available space:
<programlisting>
g.setAlignement(Graph.Right, Graph.VCenter)
</programlisting>
All the examples above suppose that the layers are aranged on a grid, but of course you can add layers
at any position in the plot window. In the examples bellow the x, y coordinates, in pixels,
refer to the position of the top-left corner of the layer.
The origin of the coordinates system coincides with the top-left corner of the plot window, the y
coordinate increasing towards the bottom of the window. If the width and height of the layer are not specified
they will be set to the default values. The last argument specifies if the default preferences, specified via the
<link linkend="fig-preferences-dialog-5">Preferences dialog</link>, will be used to customize the new layer
(default value is <varname>False</varname>):
<programlisting>
g = newGraph()
l1 = g.addLayer()
l2 = g.addLayer(215, 20)
l3 = g.addLayer(10, 20, 200, 200)
l4 = g.addLayer(10, 20, 200, 200, True)
</programlisting>
You can remove a plot layer using:
<programlisting>
l = g.layer(num)
g.removeLayer(l)
g.removeActiveLayer()
</programlisting>
As you have already seen, in a plot window the active layer is, by default, the last layer added
to the plot, but you can change it programatically:
<programlisting>
l = g.layer(num)
g.setActiveLayer(l)
</programlisting>
In case you need to perform a repetitive task on all the layers in a plot window, you need to use a for loop
and of course you need to know the number of layers existant on the plot. Here's a small example showing how to
custom the titles of all the layers in the plot window:
<programlisting>
g = graph("Graph1")
layers = g.numLayers()
for i in range (1, layers+1):
l = g.layer(i)
l.setTitle("Layer"+QtCore.QString.number(i))
l.setTitleColor(QtGui.QColor("red"))
l.setTitleFont(QtGui.QFont("Arial", 14, QtGui.QFont.Bold, True))
l.setTitleAlignment(QtCore.Qt.AlignLeft)
</programlisting>
Finally, sometimes it might be useful to be able to swap two layers. This can be done with the help of the
following function:
<programlisting>
g.swapLayers(layerNum1, layerNum2)
</programlisting>
</sect2>
<sect2 id="Python-WaterfallPlots">
<title>Waterfall Plots</title>
Waterfall plots use a cascading layout for the layers in a 2D plot window.
You can create and customize them using the functions bellow:
<programlisting>
g = waterfallPlot(table("Table1"), (2, 3, 4))
g.setWaterfallOffset(15, 10)
g.setWaterfallSideLines(True) # draw side lines for all the curves displayed
g.setWaterfallFillColor(Qt.lightGray)
g.reverseWaterfallOrder() # reverse the order of the displayed curves
</programlisting>
</sect2>
<sect2 id="Python-Plots3D">
<title>3D Plots</title>
<sect3>
<title>Creating a 3D plot</title>
You can plot 3D analytical functions or parametric surfaces.
For the 3D functions, the only parameters allowed are <varname>x</varname> for the the abscissae values and <varname>y</varname> for the ordinates:
<programlisting>
g = plot3D("sin(x*y)", -10.0, 10.0, -10.0, 10.0, -2.0, 2.0)
</programlisting>
For the parametric surfaces the only parameters allowed are the latitude and the longitude: <varname>u</varname> and <varname>v</varname>. Here's, for example,
how you can plot a sphere:
<programlisting>
g = plot3D("cos(u)*cos(v)", "sin(u)*cos(v)", "sin(v)", -3.14, 3.14, -2, 2)
</programlisting>
You can also create 3D height maps using data from matrices and, of course, you can plot table columns:
<programlisting>
g = plot3D(matrix("Matrix1"), style = 5)
g = plot3D(table("Table1"), "3", style)
</programlisting>
In the case of 3D plots created from matrix data sources the <varname>style</varname> parameter can take
any integer value from 1 to 5, with the following signification:
<variablelist spacing="compact">
<varlistentry>
<term>1.</term>
<listitem>
<para>Wireframe style</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Hidden Line style</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Color filled polygons without edges</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4.</term>
<listitem>
<para>Color filled polygons with separately colored edges</para>
</listitem>
</varlistentry>
<varlistentry>
<term>5.</term>
<listitem>
<para>Scattered points (the default style)</para>
</listitem>
</varlistentry>
</variablelist>
For 3D plots created from tables the <varname>style</varname> parameter can take
any integer value from 0 to 3 or the equivalent style values from the follwing list:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Graph3D.Scatter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Graph3D.Trajectory</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Graph3D.Bars</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Graph3D.Ribbon</para>
</listitem>
</varlistentry>
</variablelist>
An alternative method to create a 3D plot is to create an empty plot window and to assign a data source to it.
As you have already seen a data source can be an analytical function, a matrix or a table.
For large data sets you can increase the drawing speed by reducing the number of points
taken into account. The lower the resolution parameter, the higher the number of points used:
for an integer value of 1, all the data points are drawn.
<programlisting>
g = newPlot3D("test3D")
g.setTitle("My 3D Plot", QtGui.QColor("blue"), QtGui.QFont("Arial",14))
g.setResolution(2)
g.setFunction("sin(x*y)", -10.0, 10.0, -10.0, 10.0, -2.0, 2.0)
#or
g.setData(table("Table1"), "3")
#or
g.setMatrix(matrix("Matrix1"))
</programlisting>
Once a plot is created, you can modify the scales and set the data range to display, using, for example:
<programlisting>
g.setScales(-1.0, 1.0, -10.0, 11.0, -2.0, 3.0)
</programlisting>
</sect3>
<sect3 id="Python-3D-View">
<title>Customizing the view</title>
When a new 3D plot is created, the scene view parameters are set to default values.
Of course, QtiPlot provides functions to customize each aspect of the view.
For example, you can set rotation angles, in degrees, around the X, Y and Z axes, respectively, using:
<programlisting>
g.setRotation(45, 15, 35)
</programlisting>
The following function allows you to shift the plot along the world X, Y and Z axes, respectively:
<programlisting>
g.setShift(3.0, 7.0, -4.0)
</programlisting>
You can also zoom in/out the entire plot as a whole, or you can zoom along a particular axis:
<programlisting>
g.setZoom(10)
g.setScale(0.1, 0.05, 0.3)
</programlisting>
Also, you can automatically detect the zoom values that fit best with the size of the plot window:
<programlisting>
g.findBestLayout()
</programlisting>
You can enable/disable the perspective view mode or animate the view using:
<programlisting>
g.setOrthogonal(False)
g.animate(True)
</programlisting>
</sect3>
<sect3 id="Python-3D-Style">
<title>Plot Styles</title>
The style of the 3D plot can be set using the following functions:
<programlisting>
g.setPolygonStyle()
g.setFilledMeshStyle()
g.showLegend(True)
g.setHiddenLineStyle()
g.setWireframeStyle()
g.setAntialiasing(True)
g.setMeshLineWidth(0.7)
</programlisting>
For scatter plots using points you can specify the radius of the points and their shape:
circles if <varname>smooth</varname> is True, rectangles otherwise.
<programlisting>
g.setDotOptions(10, smooth = True)
g.setDotStyle()
</programlisting>
Other symbols available for scatter plots are: bars
<programlisting>
g.setBarRadius(0.01)
g.setBarLines(False)
g.setFilledBars(True)
g.setBarStyle()
</programlisting>
cones
<programlisting>
g.setConeOptions(radius, quality)
g.setConeStyle()
</programlisting>
and crosses (surrounded by a box frame, if <varname>boxed</varname> is set to True):
<programlisting>
g.setCrossOptions(radius, width, smooth, boxed)
g.setCrossStyle()
</programlisting>
</sect3>
<sect3 id="Python-3D-Projection">
<title>The 2D Projection</title>
By default the floor projection of the 3D surface plot is disabled. You can enable a full 2D projection
or only display the isolines using the following functions:
<programlisting>
g.showFloorProjection()
g.showFloorIsolines()
g.setEmptyFloor()
</programlisting>
</sect3>
<sect3 id="Python-3D-Coordinates">
<title>Customizing the Coordinates System</title>
The coordinates system around the surface plot can be customized to display all the twelve axes,
only three of them or none, respectively, with the help of the following funcions:
<programlisting>
g.setBoxed()
g.setFramed()
g.setNoAxes()
</programlisting>
If the axes are enabled, you can set their legends and the distance between the legend and the axes via:
<programlisting>
g.setXAxisLabel("X axis legend")
g.setYAxisLabel("Y axis legend")
g.setZAxisLabel("Z axis legend")
g.setLabelsDistance(30)
</programlisting>
It is possible to set the numerical format and precision of the axes using the function bellow:
<programlisting>
g.setAxisNumericFormat(axis, format, precision)
</programlisting>
where the first parameter is the index of the axis: 0 for X, 1 for Y and 2 for Z, the second one is the numerical format:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Graph3D.Default: decimal or scientific, depending which is most compact</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Graph3D.Decimal: 10000.0</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Graph3D.Scientific: 1e4</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Graph3D.Engineering: 10k</para>
</listitem>
</varlistentry>
</variablelist>
and the last parameter is the precision (the number of significant digits).
The following convenience functions are also provided, where you don't have to specify the index of the axis anymore:
<programlisting>
g.setXAxisNumericFormat(1, 3)
g.setYAxisNumericFormat(1, 3)
g.setZAxisNumericFormat(1, 3)
</programlisting>
Also, you can fix the length of the major and minor ticks of an axis:
<programlisting>
g.setXAxisTickLength(2.5, 1.5)
g.setYAxisTickLength(2.5, 1.5)
g.setZAxisTickLength(2.5, 1.5)
</programlisting>
</sect3>
<sect3 id="Python-3D-Grid">
<title>Grid</title>
If the coordinate system is displayed, you can also display a grid around the surface plot.
Each side of the grid can be shown/hidden:
<programlisting>
g.setLeftGrid(True)
g.setRightGrid()
g.setCeilGrid()
g.setFloorGrid()
g.setFrontGrid()
g.setBackGrid(False)
</programlisting>
</sect3>
<sect3 id="Python-3D-Colors">
<title>Customizing the Plot Colors</title>
The default color map of the plot is defined using two colors: red for the maximum data values and
blue for the minimum data values. You can change these default colors:
<programlisting>
g.setDataColors(QtCore.Qt.black, QtCore.Qt.green)
g.update()
</programlisting>
Of course, you can define more complex color maps, using <emphasis>LinearColorMap</emphasis> objects:
<programlisting>
map = LinearColorMap(QtCore.Qt.yellow, QtCore.Qt.blue)
map.setMode(LinearColorMap.FixedColors) # default mode is LinearColorMap.ScaledColors
map.addColorStop(0.2, QtCore.Qt.magenta)
map.addColorStop(0.7, QtCore.Qt.cyan)
g.setDataColorMap(map)
g.update()
</programlisting>
Also, you can use predifined color maps stored in .map files.
A .map file consists of a of 255 lines, each line defining a color coded as RGB values.
A set of predefined color map files can be downloaded from QtiPlot web site, in the "Miscelanous"
section.
<programlisting>
g.setDataColorMap(fileName)
g.update()
</programlisting>
The colors of all the other plot elements can be customized as shown bellow. Don't forget to
update the plot in order to display the new colors:
<programlisting>
g.setMeshColor(QtGui.QColor("blue"))
g.setAxesColor(QtGui.QColor("green"))
g.setNumbersColor(QtGui.QColor("black"))
g.setLabelsColor(QtGui.QColor("darkRed"))
g.setBackgroundColor(QtGui.QColor("lightYellow"))
g.setGridColor(QtGui.QColor("grey"))
g.setDataColors(QtGui.QColor("red"), QtGui.QColor("orange"))
g.setOpacity(0.75)
g.update()
</programlisting>
</sect3>
<sect3 id="Python-3D-Export">
<title>Exporting</title>
In order to export a 3D plot you need to specify a file name containing a valid file format extention:
<programlisting>
g.export(fileName)
</programlisting>
This function uses some default export options. If you want to customize the exported image, you should use the
following function in order to export to raster image formats:
<programlisting>
g.exportImage(fileName, int quality = 100, bool transparent = False, dpi = 0, size = QSizeF(), unit = Frame.Pixel, fontsFactor = 1.0)
</programlisting>
where <varname>quality</varname> is a compression factor: the larger its value, the better the quality of the
exported image, but also the larger the file size.
The <varname>dpi</varname> parameter represents the export resolution in pixels per inch (the default is screen resolution),
<varname>size</varname> is the printed size of the image (the default is the size on screen) and
<varname>unit</varname> is the length unit used to express the custom size
and can take one of the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>Inch</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Millimeter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Centimeter</para>
</listitem>
</varlistentry>
<varlistentry>
<term>3.</term>
<listitem>
<para>Point: 1/72th of an inch</para>
</listitem>
</varlistentry>
<varlistentry>
<term>4.</term>
<listitem>
<para>Pixel</para>
</listitem>
</varlistentry>
</variablelist>
The <varname>fontsFactor</varname> parameter represents a scaling factor
for the font sizes of all texts in the plot (the default is 1.0, meaning no scaling).
If you set this parameter to 0, the program will automatically try to calculate
a scale factor.
<para>
3D plots can be exported to any of the following vector formats: .eps, .ps, .pdf, .pgf and .svg, using
the function bellow:
<programlisting>
g.exportVector(fileName, textMode = 0, sortMode = 1, size = QSizeF(), unit = Frame.Pixel, fontsFactor = 1.0)
</programlisting>
where <varname>textMode</varname> is an integer value, specifing how texts are handled. It can take
one of the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>All text will be converted to bitmap images (default).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>Text output in the native output format.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>Text output in additional LaTeX file as an overlay.</para>
</listitem>
</varlistentry>
</variablelist>
The <varname>sortMode</varname> parameter is also an integer value and can take one of the following values:
<variablelist spacing="compact">
<varlistentry>
<term>0.</term>
<listitem>
<para>No sorting at all.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>1.</term>
<listitem>
<para>A simple, quick sort algorithm (default).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>2.</term>
<listitem>
<para>BSP sort: best algorithm, but slow.</para>
</listitem>
</varlistentry>
</variablelist>
The other parameters have the same meaning as for the export of 2D plots.
</para>
</sect3>
</sect2>
<sect2 id="Python-DataAnalysis">
<title>Data Analysis</title>
<sect3 id="Python-GeneralFunctions">
<title>General Functions</title>
As you will see in the following subsections, the data analysis operations available
in QtiPlot are: convolution/deconvolution, correlation, differentiation, FFT, filtering,
smoothing, fitting and numerical integration of data sets.
Generally, you can declare/initialize an analysis operation using one of the following methods,
depending on the data source, which can be a 2D plot curve or a table:
<programlisting>
op = LogisticFit(graph("Graph1").activeLayer().curve(0), 15.2, 30.9)
op = FFTFilter(graph("Graph1").activeLayer(), "Table1_2", 1.5, 3.9)
op = LinearFit(table("Table1"), "colX", "colY", 10, 100)
</programlisting>
In the first example the data source is a curve <emphasis>Table1_2</emphasis>, plotted
in the active layer of the graph <emphasis>Graph1</emphasis> and the abscissae range is
chosen between 1.5 and 3.9.
In the second example the data source is a table <emphasis>Table1</emphasis>.
The abscissae of the data set are stored in the column called <emphasis>colX</emphasis>
and the ordinates in the column <emphasis>colY</emphasis>. The data range is
chosen between the 10th row and the row with the index 100. If you don't specify the row range,
by default the whole table will be used.
Not all operations support curves as data sources, like for example:
convolution/deconvolution and correlation. For these operations only table columns can be used
as data sources for the moment.
<para>Once you have initialized an operation, you can still chage its input data via
the following functions:</para>
<programlisting>
op.setDataFromCurve(graph("Graph2").activeLayer().curve(1), 10.5, 20.1)
op.setDataFromCurve("Table1_energy", 10.5, 20.1, graph("Graph2").activeLayer())
op.setDataFromTable(table("Table1"), "colX", "colY", 10, 100)
</programlisting>
You don't have to specify a plot layer in the setDataFromCurve() function, if the analysis operation has
already been initialized by specifying a curve on an existing graph and you just want to treat another
curve from the same plot layer.
<para>Also, when performing analysis tasks via Python scripts, there are several utility functions that
can be called for all operations. For example you can disable any graphical output from an operation
or you can redirect the output to the plot layer of your choice: </para>
<programlisting>
op.enableGraphicsDisplay(False)
op.enableGraphicsDisplay(True, graph("Graph2").activeLayer())
</programlisting>
Let's assume that you need to perform a specific operation <varname>op</varname>,
which analyses your data and at the end, displays a result curve.
For this kind of operations, you can customize the number of points in the resulting curve
and its color:
<programlisting>
op.setOutputPoints(int)
op.setColor(int)
op.setColor("green")
</programlisting>
Colors can be specified by their names or as integer values, from 0 to 23,
each integer corresponding to a predefined color: 0 - "black", 1 - "red", 2 - "green", 3 - "blue",
4 - "cyan", 5 - "magenta", 6 - "yellow", 7 - "darkYellow", 8 - "navy", 9 - "purple", etc ...
<para>Most of the time, a new table is also created as a result of a data analysis operation.
This table stores the data displayed by the result curve and is hidden by default,
but you can interact with it via the following function:
<programlisting>
t = op.resultTable()
</programlisting></para>
After the initialization of an analysis operation, which consists of setting the data source,
the data range and some other properties, like color, number of points, etc..., you can execute
it via a call to its run() function:
<programlisting>
op.run()
</programlisting>
For data fitting operations, there's an alias for the run() function which is: fit().
</sect3>
<sect3 id="Python-Correlation">
<title>Correlation, Convolution/Deconvolution</title>
Assuming you have a table named "Table1", here's how you can calculate the convolution of two of its columns,
"Table1_B" and "Table1_C":
<programlisting>
conv = Convolution(table("Table1"), "B", "C")
conv.setColor("green")
conv.run()
</programlisting>
The deconvolution and the correlation of two data sets can be done using a similar synthax:
<programlisting>
dec = Deconvolution(table("Table1"), "B", "C")
dec.run()
cor = Correlation(table("Table1"), "B", "C", 10, 200)
cor.setColor("green")
cor.run()
</programlisting>
</sect3>
<sect3 id="Python-Differentiation">
<title>Differentiation</title>
Assuming you have a Graph named "Graph1" containing one curve
(on its active layer), here's how you can differentiate this curve within a defined x interval,
[2,10] in this case:
<programlisting>
diff = Differentiation(graph("Graph1").activeLayer().curve(0), 2, 10)
diff.run()
</programlisting>
The result of these code sequence would be a new plot window displaying the derivative of the initial curve.
The numerical derivative is calculated using a five terms formula.
</sect3>
<sect3 id="Python-FFT">
<title>FFT</title>
Assuming you have a graph named "Graph1" containing one curve on its active layer and having a
periodicity of 0.1 in the time domain,
a FFT will allow you to extract its characteristic frequencies.
The results will be stored in a hidden table named "FFT1".
<programlisting>
fft = FFT(graph("Graph1").activeLayer().curve(0))
fft.normalizeAmplitudes(False)
fft.shiftFrequencies(False)
fft.setSampling(0.1)
fft.run()
</programlisting>
By default the calculated amplitudes are normalized
and the corresponding frequencies are shifted in order to obtain a centered x-scale.
If we want to recover the initial curve with the help of the inverse transformation, we
mustn't modify the amplitudes and the frequencies. Also the sampling parameter must be set to
the inverse of the time period, that is 10. Here's how we can perform the inverse FFT, using the "FFT1" table,
in order to recover the original curve:
<programlisting>
ifft = FFT(table("FFT1"), "Real", "Imaginary")
ifft.setInverseFFT()
ifft.normalizeAmplitudes(False)
ifft.shiftFrequencies(False)
ifft.setSampling(10)
ifft.run()
</programlisting>
</sect3>
<sect3 id="Python-Filtering">
<title>FFT Filters</title>
In this section, it will be assumed that you have a signal displayed in a graph ("Graph1", on its active layer).
This signal has a power spectrum with high and low frequencies.
You can filter some of these frequencies according to your needs, using a FFTFilter.
Here's how you can cut all the frequencies lower than 1 Hz:
<programlisting>
filter = FFTFilter(graph("Graph1").activeLayer().curve(0), FFTFilter.HighPass)
filter.setCutoff(1)
filter.run()
</programlisting>
Here's how you can cut all the frequencies lower than 1.5 Hz and higher than 3.5 Hz.
In the following example the continuous component of the signal is also removed:
<programlisting>
filter.setFilterType(FFTFilter.BandPass)
filter.enableOffset(False)
filter.setBand(1.5, 3.5)
filter.run()
</programlisting>
Other types of FFT filters available in QtiPlot are: low pass (<varname>FFTFilter.LowPass</varname>)
and band block (<varname>FFTFilter.BandBlock</varname>).
</sect3>
<sect3 id="Python-Fitting">
<title>Fitting</title>
Assuming you have a graph named "Graph1" displaying a curve entitled "Table1_2" on its active layer,
a minimal Fit example would be:
<programlisting>
f = GaussFit(graph("Graph1").activeLayer().curve(0))
f.guessInitialValues()
f.fit()
</programlisting> This creates a new GaussFit object on the curve, lets it guess
the start parameters and does the fit. The following fit types are
supported: <itemizedlist>
<listitem>
<para>LinearFit(curve)</para>
</listitem>
<listitem>
<para>PolynomialFit(curve, degree=2, legend=False)</para>
</listitem>
<listitem>
<para>ExponentialFit(curve, growth=False)</para>
</listitem>
<listitem>
<para>TwoExpFit(curve)</para>
</listitem>
<listitem>
<para>ThreeExpFit(curve)</para>
</listitem>
<listitem>
<para>GaussFit(curve)</para>
</listitem>
<listitem>
<para>GaussAmpFit(curve)</para>
</listitem>
<listitem>
<para>LorentzFit(curve)</para>
</listitem>
<listitem>
<para>LogisticFit(curve)</para>
</listitem>
<listitem>
<para>SigmoidalFit(curve)</para>
</listitem>
<listitem>
<para>NonLinearFit(curve)</para>
<programlisting>
f = NonLinearFit(layer, curve)
f.setFormula(formula_string)
f.save(fileName)
</programlisting>
</listitem>
<listitem>
<para>PluginFit(curve)</para>
<programlisting>
f = PluginFit(curve)
f.load(pluginName)
</programlisting>
</listitem>
</itemizedlist> For each of these, you can optionally restrict the X
range that will be used for the fit, like in <programlisting>
f = LinearFit(graph("Graph1").activeLayer().curve(0), 2, 7)
f.fit()
</programlisting>
You can also restrict the search range for any of the fit parameters:
<programlisting>
f = NonLinearFit(graph("Graph1").activeLayer().curve(0))
f.setFormula("a0+a1*x+a2*x*x")
f.setParameterRange(parameterIndex, start, end)
</programlisting>
All the settings of a non-linear fit can be saved to an XML file and restored later one, using this file,
for a faster editing process. Here's for example how you can save the above fit function:
<programlisting>
f.save("/fit_models/poly_fit.txt")
</programlisting>
and how you can use this file during another fitting session, later on:
<programlisting>
f = NonLinearFit(graph("Graph1").activeLayer(), "Table1_2")
f.load("/fit_models/poly_fit.txt")
f.fit()
</programlisting>
If your script relies on a specific numbering of the fit parameters use setParameters() before setting
the formula and switch of automatic detection of the fit parameters when the fit formula is set:
<programlisting>
f.setParameters("a2","a0","a1")
f.setFormula("a0+a1*x+a2*x*x",0)
</programlisting>
<para>After creating the Fit object and before calling its fit()
method, you can set a number of parameters that influence the fit:
<programlisting>
f.setDataFromTable(table("Table4"), "w", "energy", 10, 200) <lineannotation>change data source</lineannotation>
f.setDataFromCurve(curve) <lineannotation>change data source</lineannotation>
f.setDataFromCurve(curveTitle, graph) <lineannotation>change data source</lineannotation>
f.setDataFromCurve(curve, from, to) <lineannotation>change data source</lineannotation>
f.setDataFromCurve(curveTitle, from, to, graph) <lineannotation>change data source</lineannotation>
f.setInterval(from, to) <lineannotation>change data range</lineannotation>
f.setInitialValue(number, value)
f.setInitialValues(value1, ...)
f.guessInitialValues()
f.setAlgorithm(algo) # algo = Fit.ScaledLevenbergMarquardt, Fit.UnscaledLevenbergMarquardt, Fit.NelderMeadSimplex
f.setWeightingData(method, colname) # method = Fit.NoWeighting, Fit.Instrumental, Fit.Statistical, Fit.Dataset, Fit.Direct
f.setTolerance(tolerance)
f.setOutputPrecision(precision)
f.setMaximumIterations(number)
f.scaleErrors(yes = True)
f.setColor("green") <lineannotation>change the color of the result fit curve to green (default color is red)</lineannotation>
</programlisting></para>
After you've called fit(), you have a number of possibilities
for extracting the results: <programlisting>
f.results()
f.errors()
f.residuals()
f.dataSize()
f.numParameters()
f.parametersTable("params")
f.covarianceMatrix("cov")
</programlisting>
There are a number of statistical functions allowing you to test the goodness of the fit:
<programlisting>
f.chiSquare()
f.rSquare()
f.adjustedRSquare()
f.rmse() # Root Mean Squared Error
f.rss() # Residual Sum of Squares
</programlisting>
Also you can display the confidence and the prediction limits for the fit, using
a custom confidence level:
<programlisting>
f.showPredictionLimits(0.95)
f.showConfidenceLimits(0.95)
</programlisting>
Confidence limits for individual fit parameters can be calculated using:
<programlisting>
f.lcl(parameterIndex, confidenceLevel)
f.ucl(parameterIndex, confidenceLevel)
</programlisting>
where <varname>parameterIndex</varname> is a value between zero and f.numParameters() - 1.
<para>It is important to know that QtiPlot can generate an analytical formula
for the resulting fit curve or a normal plot curve with data stored in a hidden table.
You can choose either of these two output options, before calling the fit() instruction, using:
<programlisting>
f.generateFunction(True, points=100)
</programlisting>
</para>
If the first parameter of the above function is set to True,
QtiPlot will generate an analytical function curve. If the <varname>points </varname> parameter
is not specified, by default the function will be estimated over 100 points.
You can get the analytical formula of the fit curve via a call to resultFormula():
<programlisting>
formula = f.resultFormula()
print(formula)
</programlisting>
If the first parameter of generateFunction() is set to False, QtiPlot will create a hidden data
table contining the same number of points as the data set/curve to be fitted (same abscissae).
You can interact with this table and extract the data points of the result fit curve using:
<programlisting>
t = f.resultTable()
</programlisting>
</sect3>
<sect3 id="Python-Integration">
<title>Integration</title>
With the same assumptions as above, here's how you can integrate a curve within a given interval:
<programlisting>
integral = Integration(graph("Graph1").activeLayer().curve(0), 2, 10)
integral.setMethodOrder(4)
integral.setTolerance(1e-4)
integral.setMaximumIterations(100)
integral.run()
result = integral.area()
</programlisting>
The method order parameter can be any integer value between 1 (Trapezoidal rule, the default value) and 5.
The code integrates the curve using an iterative algorithm. The tolerance determines the termination criteria for the solver.
Because, sometimes we ask for too much accuracy, setting a maximum number of iterations makes sure
that the solver will not enter an infinite loop, which could freeze the application.
<para>As you can see from the above example, the numerical value of the integral can be obtained
via the <varname>area()</varname> function.</para>
</sect3>
<sect3 id="Python-Interpolation">
<title>Interpolation</title>
The interpolation is used to generate a new data curve with a high number of points
from an existing data set. Here's an example:
<programlisting>
interpolation = Interpolation(graph("Graph1").activeLayer().curve(0), 2, 10, Interpolation.Linear)
interpolation.setOutputPoints(10000)
interpolation.setColor("green")
interpolation.run()
</programlisting>
The simplest interpolation method is the linear method. There are two other methods available:
<varname>Interpolation.Akima</varname> and <varname>Interpolation.Cubic</varname>.
You can choose the interpolation method using:
<programlisting>
interpolation.setMethod(Interpolation.Akima)
</programlisting>
</sect3>
<sect3 id="Python-Smooth">
<title>Smoothing</title>
Assuming you have a graph named "Graph1" with an irregular curve entitled
"Table1_2" (on its active layer). You can smooth this curve using a SmoothFilter:
<programlisting>
smooth = SmoothFilter(graph("Graph1").activeLayer().curve(0), SmoothFilter.Average)
smooth.setSmoothPoints(10)
smooth.run()
</programlisting>
The default smoothing method is the mowing window average. Other smoothing methods are the
<varname>SmoothFilter.FFT</varname>, <varname>SmoothFilter.Lowess</varname> and <varname>SmoothFilter.SavitzkyGolay</varname>. Here's an example
of how to use the last two methods:
<programlisting>
smooth.setMethod(SmoothFilter.Lowess)
smooth.setLowessParameter(0.2, 2)
smooth.run()
</programlisting>
<programlisting>
smooth.setSmoothPoints(5,5)
smooth.setMethod(SmoothFilter.SavitzkyGolay)
smooth.setPolynomOrder(9)
smooth.run()
</programlisting>
</sect3>
</sect2>
<sect2 id = "Python-Notes">
<title>Working with Notes</title>
<para>
The following functions are available when dealing with multi-tab notes:
</para>
<programlisting>
setAutoexec(on = True)
text()
setText(text)
exportPDF(fileName)
saveAs(fileName)
importASCII(fileName)
showLineNumbers(on = True)
setFont(QFont f)
setTabStopWidth(int length)
tabs()
addTab()
removeTab(tabIndex)
renameTab(tabIndex, title)
e = editor(int index)
e = currentEditor()
</programlisting>
</sect2>
<sect2 id="Python-QtDialogs">
<title>Using Qt's dialogs and classes</title>
Let's assume that you have a lot of ASCII data files to analyze.
Furthermore, let's suppose that these files were created
during several series of measurements, each measurement generating a set
of files identified by a certain string in the file name, like for example: "disper1".
In order to analyze these files, you need first of all to import them into tables.
The following code snippet shows how to automize this task using Qt dialogs and convenience classes:
<programlisting>
# Pop-up a file dialog allowing to chose the working folder:
dirPath = QtGui.QFileDialog.getExistingDirectory(qti.app, "Choose Working Folder", "/test/")
# Create a folder object using Qt's QDir class:
folder = QtCore.QDir(dirPath)
# Pop-up a text input dialog allowing to chose the file naming pattern:
namePattern = QtGui.QInputDialog.getText(qti.app, "Enter Pattern", "Text: ", QtGui.QLineEdit.Normal, "disper1")
# Get the list of file names in the working directory containing the above pattern:
fileNames = folder.entryList (QtCore.QStringList ("*_" + namePattern[0] + "*.dat"))
# Import each file into a new project table:
for i in range (0, lst.count()):
t = newTable()
t.importASCII(dirPath + fileNames[i], " ", 0, False, True, True)
</programlisting>
For a detailed description of all the dialogs and utility classes provided by Qt/PyQt
please take a look at the
<ulink url="http://www.riverbankcomputing.com/static/Docs/PyQt4/html/classes.html">PyQt documentation</ulink>.
</sect2>
<sect2 id="Python-QtDesigner">
<title>Using Qt Designer for easy creation of custom user dialogs</title>
Writing and designing user dialogs can be a very complicated task.
The QtDesigner application provided by the Qt framework makes it easy and very pleasant.
It allows you to design widgets, dialogs or complete main windows using on-screen forms and a simple drag-and-drop interface.
Qt Designer uses XML .ui files to store designs.
Once you have finished the design process you can load and use an .ui file in your Python scripts
with the help of the <varname>uic</varname> module.
<para>
As an example, suppose that we have created a test dialog containing an input QDoubleSpinBox called "valueBox"
and a QPushButton called "okButton". On pressing this button, we would like to create a new table displaying
the input value in its first cell. We have saved this dialog to a file called "myDialog.ui".
A minimalistic approach is shown in the small script bellow:
</para>
<programlisting>
from PyQt4 import uic
global ui, createTable
def createTable():
t = newTable()
t.setCell(1, 1, ui.valueBox.value())
ui = uic.loadUi("myDialog.ui")
ui.connect(ui.okButton, QtCore.SIGNAL("clicked()"), createTable)
ui.show()
</programlisting>
For more details about how to use .ui files in your Python scripts please read the
<ulink url="http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/pyqt4ref.html#using-the-generated-code">PyQt4 documentation</ulink>.
</sect2>
<sect2 id="Python-AutomatizationExample">
<title>Task automatization example</title>
Bellow you can find a detailed example showing how to completely automatize tasks in QtiPlot.
It can be used in order to verify the accuracy of the curve fitting algorithms in QtiPlot. The data used
in this example is retrieved from the <ulink url="http://www.itl.nist.gov/div898/strd/">
Statistical Reference Datasets Project of the National Institute of Standards and Technology (NIST)</ulink>.
In order to run this example, you need an internet connection, since the script will try to download all the
<ulink url="http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml">nonlinear regression test files </ulink> from the Statistical Reference Datasets Project.
<programlisting>
import urllib, re, sys
# Pop-up a file dialog allowing to chose a destination folder:
dirPath = QtGui.QFileDialog.getExistingDirectory(qti.app, "Choose Destination Folder")
saveout = sys.stdout
# create a log file in the destination folder
fsock = open(dirPath + "/" + "results.txt", "w")
sys.stdout = fsock
# on Unix systems you can redirect the output directly to a console by uncommenting the line bellow:
#sys.stdout = sys.__stdout__
# make sure that the decimal separator is the dot character
qti.app.setLocale(QtCore.QLocale.c())
host = "http://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/"
url = urllib.urlopen(host)
url_string = url.read()
p = re.compile( '\w{,}.dat">' )
iterator = p.finditer( url_string )
for m in iterator:
name = (m.group()).replace("\">", "")
if (name == "Nelson.dat"):
continue
url = host + name
print "\nRetrieving file: " + url
path = dirPath + "/" + name
urllib.urlretrieve( url, path ) # retrieve .dat file to specified location
file = QtCore.QFile(path)
if file.open(QtCore.QIODevice.ReadOnly):
ts = QtCore.QTextStream(file)
name = name.replace(".dat", "")
changeFolder(addFolder(name)) #create a new folder and move to it
formula = ""
parameters = 0
initValues = list()
certifiedValues = list()
standardDevValues = list()
xLabel = "X"
yLabel = "Y"
while (ts.atEnd() == False):
s = ts.readLine().simplified()
if (s.contains("(y = ")):
lst = s.split("=")
yLabel = lst[1].remove(")")
if (s.contains("(x = ")):
lst = s.split("=")
xLabel = lst[1].remove(")")
if (s.contains("Model:")):
s = ts.readLine().simplified()
lst = s.split(QtCore.QRegExp("\\s"))
s = lst[0]
parameters = s.toInt()[0]
ts.readLine()
if (name == "Roszman1"):
ts.readLine()
formula = ts.readLine().simplified()
else:
formula = (ts.readLine() + ts.readLine() + ts.readLine()).simplified()
formula.remove("+ e").remove("y =").replace("[", "(").replace("]", ")")
formula.replace("**", "^").replace("arctan", "atan")
if (s.contains("Starting")):
ts.readLine()
ts.readLine()
for i in range (1, parameters + 1):
s = ts.readLine().simplified()
lst = s.split(" = ")
s = lst[1].simplified()
lst = s.split(QtCore.QRegExp("\\s"))
initValues.append(lst[1])
certifiedValues.append(lst[2])
standardDevValues.append(lst[3])
if (s.contains("Data: y")):
row = 0
t = newTable(name, 300, 2)
t.setColName(1, "y")
t.setColumnRole(1, Table.Y)
t.setColName(2, "x")
t.setColumnRole(2, Table.X)
while (ts.atEnd() == False):
row = row + 1
s = ts.readLine().simplified()
lst = s.split(QtCore.QRegExp("\\s"))
t.setText(1, row, lst[0])
t.setText(2, row, lst[1])
g = plot(t, t.colName(1), Layer.Scatter).activeLayer()
g.setTitle("Data set: " + name + ".dat")
g.setAxisTitle(Layer.Bottom, xLabel)
g.setAxisTitle(Layer.Left, yLabel)
f = NonLinearFit(g, name + "_" + t.colName(1))
if (f.setFormula(formula) == False) :
file.close()
changeFolder(rootFolder())
continue
f.scaleErrors()
for i in range (0, parameters):
f.setInitialValue(i, initValues[i].toDouble()[0])
f.fit()
g.removeLegend()
f.showLegend()
print "QtiPlot Results:\n" + f.legendInfo()
print "\nCertified Values:"
paramNames = f.parameterNames()
for i in range (0, parameters):
print '%s = %s +/- %s' % (paramNames[i], certifiedValues[i], standardDevValues[i])
print "\nDifference with QtiPlot results:"
results = f.results()
for i in range (0, parameters):
diff = fabs(results[i] - certifiedValues[i].toDouble()[0])
print 'db%d = %6g' % (i+1, diff)
file.close()
changeFolder(rootFolder())
newNote("ResultsLog").importASCII(dirPath + "/" + "results.txt")
saveProjectAs(dirPath + "/" + "StRD_NIST.qti")
sys.stdout = saveout
fsock.close()
</programlisting>
</sect2>
</sect1>
|