1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
######################################################################
#
# effectplot.R
#
# copyright (c) 2002-8, Hao Wu and Karl W. Broman
#
# Last modified Feb, 2008
# first written Jul, 2002
#
# Modified by Hao Wu Feb 2005 for the following:
# 1. function will take marker, pseudomarker or phenotype as input;
# 2. separate functions to extract marker genodata given marker names
# and calculate means and ses;
#
# Licensed under the GNU General Public License version 2 (June, 1991)
#
# Part of the R/qtl package
# Contains: effectplot, effectplot.getmark, effectplot.calmeanse
#
######################################################################
effectplot <-
function (cross, pheno.col = 1, mname1, mark1, geno1, mname2,
mark2, geno2, main, ylim, xlab, ylab, col, add.legend = TRUE,
legend.lab, draw=TRUE, var.flag=c("pooled","group"))
{
if(!sum(class(cross) == "cross"))
stop("The first input variable must be an object of class cross")
if(length(pheno.col) > 1) {
pheno.col <- pheno.col[1]
warning("effectplot can take just one phenotype; only the first will be used")
}
if(is.character(pheno.col)) {
num <- find.pheno(cross, pheno.col)
if(is.na(num))
stop("Couldn't identify phenotype \"", pheno.col, "\"")
pheno.col <- num
}
if(pheno.col < 1 | pheno.col > nphe(cross))
stop("pheno.col values should be between 1 and the no. phenotypes")
var.flag <- match.arg(var.flag)
# local variables
n.ind <- nind(cross)
pheno <- cross$pheno[, pheno.col]
type <- class(cross)[1]
chrtype1 <- chrtype2 <- "A"
gennames1 <- gennames2 <- NULL
# If imputations are not available, create them
if(!("draws" %in% names(cross$geno[[1]]))) {
warning(" -Running sim.geno.")
cross <- sim.geno(cross, n.draws=16)
}
####################################################
# get genotype data for markers given marker name
# if marker genodata were given, this will be skipped
####################################################
# Get marker 1 genotype data
if(missing(mark1)) { # no data given
if(missing(mname1)) # no marker data or marker name, have to stop
stop("Either mname1 or mark1 must be specified.")
# get marker data according to marker name
tmp <- effectplot.getmark(cross, mname1)
mark1 <- tmp$mark
gennames1 <- tmp$genname
}
else {
# make mark1 a matrix if it's not
if(class(mark1) != "matrix")
mark1 <- matrix(mark1, ncol=1)
if(dim(mark1)[1] != n.ind)
stop("Marker 1 data hass the wrong dimension")
if(missing(mname1))
mname1 <- "Marker 1"
}
# Deal with marker 2
if(!missing(mname2) || !missing(mark2)) {
if(missing(mark2)) {
# get marker data according to marker name
tmp <- effectplot.getmark(cross, mname2)
mark2 <- tmp$mark
gennames2 <- tmp$genname
}
else { # mark2 data is given
# make mark2 a matrix if it's not
if(class(mark2) != "matrix")
mark2 <- matrix(mark2, ncol=1)
if(dim(mark2)[1] != n.ind)
stop("Marker 2 data has the wrong dimension")
if(missing(mname2))
mname2 <- "Marker 2"
}
}
else mark2 <- NULL
### till now, mark1 and mark2 are genotype data in matrix
########################################################
# deal with the data - if one of them is a pseudomarker,
# make the other one the same number of draws
########################################################
# determine number of draws - this part of codes works even if mark2 is NULL
ndraws1 <- dim(mark1)[2]
if(is.null(mark2))
ndraws2 <- 1
else
ndraws2 <- dim(mark2)[2]
# make them the same number of draws
if( (ndraws1>1) && (ndraws2>1) ) {
# two pseudomarkers, they must have the same number of draws
if(ndraws1 != ndraws2)
stop("Input two pseudomarkers have different number of draws.")
else
ndraws <- ndraws1
}
else if( (ndraws1>1) && (ndraws2==1) ) {
# one pm and one typed marker
if(!is.null(mark2))
mark2 <- matrix(rep(mark2,ndraws1), ncol=ndraws1)
ndraws <- ndraws1
}
else if( (ndraws1==1) && (ndraws2>1) ) {
# one pm and one typed marker
mark1 <- matrix(rep(mark1,ndraws2), ncol=ndraws2)
ndraws <- ndraws2
}
else # they are all real markers
ndraws <- 1
# drop data for individuals with missing phenotypes or genotypes
keepind <- !is.na(pheno)
if(!is.null(mark1))
keepind <- keepind & apply(mark1, 1, function(a) all(!is.na(a)))
if(!is.null(mark2))
keepind <- keepind & apply(mark2, 1, function(a) all(!is.na(a)))
mark1 <- mark1[keepind,]
mark2 <- mark2[keepind,]
pheno <- pheno[keepind]
########################################################
# 1. get level names - this part will be executed when
# user only input mark without mname and geno
# 2. adjust marker data if the input is not numeric
########################################################
tmpf <- factor(mark1)
if(!missing(geno1)) { # geno1 is given
# check if it has the correct length
if(length(geno1) < length(levels(tmpf)))
stop("geno1 is too short.")
}
else {
# geno1 is not given
if(!is.null(gennames1)) # get it from genname1
geno1 <- gennames1
else if(is.factor(mark1)) { # or if it's factor, get it from level
geno1 <- levels(mark1)
mark1 <- as.numeric(mark1)
}
else if(!is.numeric(mark1)) {
# if it's neither factor nor numeric, it must be a string vector
# such like c("F","M","F")...
geno1 <- levels(tmpf)
}
else { # otherwise, generate a standard one
geno1 <- getgenonames(type, "A", cross.attr=attributes(cross))
# if(type == "bc")
# geno1 <- c("AA", "AB")
# else if(type == "f2")
# geno1 <- c("AA", "AB", "BB")
# else if(type == "riself" || type == "risib")
# geno1 <- c("AA", "BB")
# else if(type == "4way")
# geno1 <- c("AC", "BC", "AD", "BD")
if(length(levels(tmpf)) > length(geno1))
geno1 <- c(geno1, rep("?", length(levels(tmpf)) -
length(geno1)))
}
}
# adjust marker data - if the input is not numeric, convert them into numeric
if(!is.numeric(mark1))
mark1 <- matrix(as.numeric(tmpf, levels=sort(levels(tmpf))), ncol=ndraws)
# Now work on mark2
if(!is.null(mark2)) {
tmpf <- factor(mark2)
if(!missing(geno2)) { # geno2 is given
# check if it has the correct length
if(length(geno2) < length(levels(tmpf)))
stop("geno2 is too short.")
}
else {
# geno2 is not given
if(!is.null(gennames2)) # get it from genname2
geno2 <- gennames2
else if(is.factor(mark2)) { # or if it's factor, get it from level
geno2 <- levels(mark2)
mark2 <- as.numeric(mark2)
}
else if(!is.numeric(mark2)) {
# if it's neither factor nor numberic, it must be a string vector
# such like c("F","M","F")...
geno2 <- levels(tmpf)
}
else { # otherwise, generate a standard one
geno2 <- getgenonames(type, "A", cross.attr=attributes(cross))
# if(type == "bc")
# geno2 <- c("AA", "AB")
# else if(type == "f2")
# geno2 <- c("AA", "AB", "BB")
# else if(type == "riself" || type == "risib")
# geno2 <- c("AA", "BB")
# else if(type == "4way")
# geno2 <- c("AC", "BC", "AD", "BD")
if(length(levels(tmpf)) > length(geno2))
geno2 <- c(geno2, rep("?", length(levels(tmpf)) -
length(geno2)))
}
}
# adjust marker data - if the input is not numeric, convert them into numeric
if(!is.numeric(mark2))
mark2 <- matrix(as.numeric(tmpf, levels=sort(levels(tmpf))), ncol=ndraws)
}
# number of genotypes
ngen1 <- length(geno1)
if(!is.null(mark2))
ngen2 <- length(geno2)
# calculate means and ses
# and make output object
# the output will be a data frame. For two-marker case,
# the rows corresponding to the first marker and the columns
# corresponding to the second marker
result <- effectplot.calmeanse(pheno, mark1, mark2, ndraws, var.flag)
means <- result$Means
ses <- result$SEs
# assign column and row names
if(is.null(mark2)) {
if(length(means) != length(geno1)) {
warning("Number of genotypes is different than length(geno1).")
if(length(means) < length(geno1))
geno1 <- geno1[1:length(means)]
else geno1 <- c(geno1, rep("?", length(means) - length(geno1)))
ngen1 <- length(geno1)
}
names(result$Means) <- paste(mname1, geno1, sep = ".")
names(result$SEs) <- paste(mname1, geno1, sep = ".")
}
else {
if(nrow(means) != length(geno1)) {
warning("Number of genotypes in marker 1 is different than length(geno1).")
if(nrow(means) < length(geno1))
geno1 <- geno1[1:nrow(means)]
else geno1 <- c(geno1, rep("?", nrow(means) - length(geno1)))
ngen1 <- length(geno1)
}
if(ncol(means) != length(geno2)) {
warning("Number of genotypes in marker 2 is different than length(geno2).")
if(ncol(means) < length(geno2))
geno2 <- geno2[1:ncol(means)]
else geno2 <- c(geno2, rep("?", ncol(means) - length(geno2)))
ngen2 <- length(geno2)
}
rownames(result$Means) <- paste(mname1, geno1, sep = ".")
colnames(result$Means) <- paste(mname2, geno2, sep = ".")
rownames(result$SEs) <- paste(mname1, geno1, sep = ".")
colnames(result$SEs) <- paste(mname2, geno2, sep = ".")
}
# calculate lo's and hi's for plot
lo <- means - ses
hi <- means + ses
######### Draw the figure if requested ############
if(draw) {
# graphics parameters
old.xpd <- par("xpd")
old.las <- par("las")
par(xpd = FALSE, las = 1)
on.exit(par(xpd = old.xpd, las = old.las))
# colors (for case of two markers)
if(missing(col)) {
if(ngen1 <= 5) {
if(ngen1 == 1) int.color <- "black"
else if(ngen1 == 2) int.color <- c("red", "blue")
else int.color <- c("black", "red", "blue", "orange", "green")[1:ngen1]
}
else
int.color <- c("black", rainbow(ngen1-1, start=0, end=2/3))
}
else int.color <- col
# plot title
if(missing(main)) {
if(is.null(mark2))
main <- paste("Effect plot for", mname1)
else main <- paste("Interaction plot for", mname1, "and",
mname2)
}
# y axis limits
if(missing(ylim)) {
ylimits <- range(c(lo, means, hi), na.rm = TRUE)
ylimits[2] <- ylimits[2] + diff(ylimits) * 0.1
}
else ylimits <- ylim
# x axis limits
if(is.null(mark2)) { # one marker
u <- sort(unique(as.vector(mark1)))
d <- diff(u[1:2])
xlimits <- c(min(mark1) - d/4, max(mark1) + d/4)
}
else { # two markers
u <- sort(unique(as.vector(mark2)))
d <- diff(u[1:2])
xlimits <- c(min(mark2) - d/4, max(mark2) + d/4)
}
## fix of x limits
d <- 1
xlimits <- c(1 - d/4, length(u) + d/4)
if(is.null(mark2)) { # single marker
if(missing(xlab)) xlab <- mname1
if(missing(ylab)) ylab <- names(cross$pheno)[pheno.col]
if(missing(col)) col <- "black"
# plot the means
plot(1:ngen1, means, main = main, xlab = xlab, ylab = ylab,
pch = 1, col = col[1], ylim = ylimits, xaxt = "n",
type = "b", xlim = xlimits)
# confidence limits
for(i in 1:ngen1) {
if(!is.na(lo[i]) && !is.na(hi[i]))
lines(c(i, i), c(lo[i], hi[i]), pch = 3, col = col[1],
type = "b", lty = 3)
}
# X-axis ticks
a <- par("usr")
ystart <- a[3]
yend <- ystart - diff(a[3:4]) * 0.02
ytext <- ystart - diff(a[3:4]) * 0.05
# for(i in 1:ngen1) {
# lines(x = c(i, i), y = c(ystart, yend), xpd = TRUE)
# text(i, ytext, geno1[i], xpd = TRUE)
# }
axis(side=1, at=1:ngen1, labels=geno1)
}
else { # two markers
if(missing(xlab)) xlab <- mname2
if(missing(ylab)) ylab <- names(cross$pheno)[pheno.col]
# plot the first genotype of marker 1
plot(1:ngen2, means[1, ], main = main, xlab = xlab,
ylab = ylab, pch = 1, col = int.color[1],
ylim = ylimits, xaxt = "n", type = "b", xlim = xlimits)
# confidence limits
for(i in 1:ngen2) {
if(!is.na(lo[1, i]) && !is.na(hi[1, i]))
lines(c(i, i), c(lo[1, i], hi[1, i]), pch = 3,
col = int.color[1], type = "b", lty = 3)
}
for(j in 2:ngen1) { # for the rest of genotypes for Marker 1
lines(1:ngen2, means[j, ], col = int.color[j], pch = 1,
type = "b")
# confidence limits
for(i in 1:ngen2) {
if(!is.na(lo[j, i]) && !is.na(hi[j, i]))
lines(c(i, i), c(lo[j, i], hi[j, i]), pch = 3,
col = int.color[j], type = "b", lty = 3)
}
}
# draw X-axis ticks
a <- par("usr")
ystart <- a[3]
yend <- ystart - diff(a[3:4]) * 0.02
ytext <- ystart - diff(a[3:4]) * 0.05
# for(i in 1:ngen2) {
# lines(x = c(i, i), y = c(ystart, yend), xpd = TRUE)
# text(i, ytext, geno2[i], xpd = TRUE)
# }
axis(side=1, at=1:ngen2, labels=geno2)
# add legend
if(add.legend) {
col <- int.color[1:ngen1]
# legend position
x.leg <- a[1]*0.25+a[2]*0.75
y.leg <- a[4] - diff(a[3:4]) * 0.05
y.leg2 <- a[4] - diff(a[3:4]) * 0.03
legend(x.leg, y.leg, geno1, lty = 1, pch = 1, col = col,
cex = 1, xjust = 0.5)
if(missing(legend.lab)) legend.lab <- mname1
text(x.leg, y.leg2, legend.lab)
}
}
}
return(invisible(result))
}
##############################################
# function to get genotype data for a marker
# given marker name
##############################################
effectplot.getmark <-
function (cross, mname)
{
# cross type
type <- class(cross)[1]
# return variables
mark <- NULL
gennames <- NULL
# determine marker type - it could be a marker, a pseudomarker or a phenotype
mar.type <- "none"
# regular expression pattern for a pseudomarker names
pm.pattern <- "c[0-9,X]*\\.loc.*" # pseudomarker names will be like "c1.loc10"
if(mname %in% names(cross$pheno)) { # this is a phenotype
mar.type <- "pheno"
idx.pos <- which(mname==names(cross$pheno))
}
else if(length(grep(pm.pattern, mname)) > 0) { # like "c1.loc10", this is a pseudomarker
# note that the column names for draws is like "loc10",
# so I need to take the part after "." in mname
tmp <- unlist(strsplit(mname, "\\."))
chr <- substr(tmp[1],2,nchar(tmp[1])) # this will be like 1 or "X"
if( !(chr %in% names(cross$geno)) )
stop("Couldn't find marker ", mname)
mar.type <- "pm"
chrtype <- class(cross$geno[[chr]])
pm.name <- paste(tmp[-1],collapse=".") # this will be like loc10
idx.pos <- which(pm.name==colnames(cross$geno[[chr]]$draws))
if(length(idx.pos) == 0)
stop("Couldn't find marker ", mname)
else if(length(idx.pos)>1) # take the first one for multiple markers with the same name
idx.pos <- idx.pos[1]
}
else { # this is a real marker name but it could be a observed or imputed
for(i in 1:length(cross$geno)) {
if(mname %in% colnames(cross$geno[[i]]$draws)) { # this is a pseudomarker
mar.type <- "pm"
chr <- i
chrtype <- class(cross$geno[[chr]])
idx.pos <- which(mname == colnames(cross$geno[[i]]$draws))
break
}
else if(mname %in% colnames(cross$geno[[i]]$data)) { # this is a typed marker
mar.type <- "marker"
chr <- i
chrtype <- class(cross$geno[[i]])
idx.pos <- which(mname == colnames(cross$geno[[i]]$data))
break
}
}
}
# if didn't find this marker
if(mar.type == "none")
stop("Marker ", mname, " not found")
# get data from typed marker, pseudomarker or phenotype
if(mar.type == "pheno") { # this is a phenotype
mark <- cross$pheno[,idx.pos]
# the phenotype need to be categorical
if(length(unique(mark)) > 5) { # I'm using arbitrary number here
stop("The input phenotype ", mname, " is not a categorical trait")
}
gennames <- sort(unique(mark))
}
else if(mar.type=="marker") { # this is a real marker
mark <- cross$geno[[chr]]$data[, idx.pos]
# if X chr and backcross or intercross, get sex/dir data + revise data
if(chrtype == "X" && (type == "bc" || type == "f2")) {
sexpgm <- getsex(cross)
mark <- as.numeric(reviseXdata(type, "standard", sexpgm,
geno = as.matrix(mark),
cross.attr=attributes(cross)))
gennames <- getgenonames(type, chrtype, "standard", sexpgm, attributes(cross))
}
}
else if(mar.type=="pm") { # this is a pseudomarker
# get the imputed genotype data for this marker
mark <- cross$geno[[chr]]$draws[,idx.pos,,drop=FALSE]
# if X chr and backcross or intercross, get sex/dir data + revise data
if(chrtype == "X" && (type == "bc" || type == "f2")) {
sexpgm <- getsex(cross)
mark <- reviseXdata(type, "standard", sexpgm, draws=mark,
cross.attr=attributes(cross))[,1,]
gennames <- getgenonames(type, chrtype, "standard", sexpgm, attributes(cross))
}
else mark <- mark[,1,]
}
else # none of the above
stop("Couldn't find marker ", mname)
# make mark a matrix if it's not one
if(class(mark) != "matrix")
mark <- matrix(mark, ncol=1)
# return
list(mark=mark, gennames=gennames)
}
##############################################
# function to calculate the means and ses
# if ndraws is 1, it's easy
# if ndraws > 1 (has pseudomarker),
# loop thru the draws
##############################################
effectplot.calmeanse <- function(pheno, mark1, mark2, ndraws, var.flag=c("pooled","group")) {
# local variables
nind <- length(pheno)
# method to calculate variances for estimated QTL effects
var.flag <- match.arg(var.flag)
result <- NULL
nind <- sum(!is.na(pheno)) # number of individuals
if(is.null(mark2)) { # if mark2 is missing
if(ndraws > 1) { # more than one draws
mark1.level <- levels(as.factor(mark1)) # level for mark1
# init
means.all <- matrix(NA, nrow=ndraws, ncol=length(mark1.level))
colnames(means.all) <- sort(unique(as.vector(mark1)))
vars.all <- matrix(NA, nrow=ndraws, ncol=length(mark1.level))
colnames(vars.all) <- sort(unique(as.vector(mark1)))
weight <- rep(0, ndraws) # weight for draws
# loop thru draws
for(i in 1:ndraws) {
mark1.tmp <- mark1[,i] # data for current draw
# fit a regression - this is used to calculate the weights
mark1.factor <- as.factor(mark1.tmp)
lm.tmp <- lm(pheno~mark1.factor-1)
rss <- sum(lm.tmp$residuals^2)
# compute the weight
weight[i] <- (-nind/2)*log(rss)
# group means
means.tmp <- tapply(pheno, mark1.tmp, mean, na.rm = TRUE)
# calculate group means and variances
if(var.flag=="group") { # use variance in each group
vars.tmp <- tapply(pheno, mark1.tmp, function(a) var(a,na.rm = TRUE)/length(a))
}
else { # use pooled variance
vars.tmp <- tapply(mark1.tmp, mark1.tmp, function(a) rss/nind/length(a))
}
# note that there could be missing categories in draws
means.all[i, names(means.tmp)] <- means.tmp
vars.all[i, names(vars.tmp)] <- vars.tmp
}
# average across draws - for vars, it should be
# mean of variance plus variance of means
weight <- exp(weight-max(weight))
means <- apply(means.all, 2, function(a) weighted.mean(a,weight,na.rm=TRUE))
meanvar <- apply(vars.all, 2, function(a) weighted.mean(a,weight,na.rm=TRUE)) # mean of vars
varmean <- apply(means.all, 2, function(a) weighted.mean((a-mean(a,na.rm=TRUE))^2,weight,na.rm=TRUE)) # var of means
# standard error
ses <- sqrt(meanvar+varmean)
}
else { # ndraws is 1
means <- tapply(pheno, mark1, mean, na.rm = TRUE)
if(var.flag == "group") { # use group variance
ses <- tapply(pheno, mark1, function(a) sd(a, na.rm = TRUE)/sqrt(sum(!is.na(a))))
}
else { # use pooled variance
mark1.factor <- as.factor(mark1)
lm.tmp <- lm(pheno~mark1.factor-1)
rss <- sum(lm.tmp$residuals^2)
ses <- tapply(mark1, mark1, function(a) sqrt(rss/nind/length(a)))
}
}
}
else { # with mark2
if(ndraws > 1) {
mark1.level <- levels(as.factor(mark1)) # level for mark1
mark2.level <- levels(as.factor(mark2)) # level for mark2
# init
means.all <- array(NA, c(length(mark1.level), length(mark2.level), ndraws))
dimnames(means.all) <- list(sort(unique(as.vector(mark1))), sort(unique(as.vector(mark2))), NULL)
vars.all <- array(NA, c(length(mark1.level), length(mark2.level), ndraws))
dimnames(vars.all) <- list(sort(unique(as.vector(mark1))), sort(unique(as.vector(mark2))), NULL)
weight <- rep(0, ndraws) # weight for draws
# loop thru draws
for(i in 1:ndraws) {
mark1.tmp <- mark1[,i] # data for current draw
mark2.tmp <- mark2[,i]
# fit a regression - this is used to calculate the weights
mark1.factor <- as.factor(mark1.tmp)
mark2.factor <- as.factor(mark2.tmp)
lm.tmp <- lm(pheno~mark1.factor+mark2.factor+1)
rss <- sum(lm.tmp$residuals^2)
# compute the weight
weight[i] <- (-nind/2)*log(rss)
# group means
means.tmp <- tapply(pheno, list(mark1.tmp, mark2.tmp), mean, na.rm = TRUE)
# calculate group means and variances
if(var.flag=="group") { # use variance in each group
vars.tmp <- tapply(pheno, list(mark1.tmp,mark2.tmp),
function(a) var(a,na.rm = TRUE)/length(a))
}
else { # use pooled variance
vars.tmp <- tapply(mark1.tmp, list(mark1.tmp,mark2.tmp),
function(a) rss/nind/length(a))
}
# note that there could be missing categories in draws
means.all[dimnames(means.tmp)[[1]], dimnames(means.tmp)[[2]],i] <- means.tmp
vars.all[dimnames(vars.tmp)[[1]], dimnames(vars.tmp)[[2]], i] <- vars.tmp
}
# average across draws - for vars, it should be
# mean of variance plus variance of means
weight <- exp(weight-max(weight))
means <- apply(means.all, c(1,2), function(a) weighted.mean(a,weight,na.rm=TRUE))
meanvar <- apply(vars.all, c(1,2), function(a) weighted.mean(a,weight,na.rm=TRUE))
varmean <- apply(means.all, c(1,2), function(a) weighted.mean((a-mean(a,na.rm=TRUE))^2,weight,na.rm=TRUE)) # var of means
# standard error
ses <- sqrt(meanvar+varmean)
}
else { # ndraws is 1
means <- tapply(pheno, list(mark1, mark2), mean, na.rm = TRUE)
if(var.flag=="group") { # use group variance
ses <- tapply(pheno, list(mark1, mark2), function(a) sd(a, na.rm = TRUE)/sqrt(sum(!is.na(a))))
}
else {# use pooled variance
mark1.factor <- as.factor(mark1)
mark2.factor <- as.factor(mark2)
lm.tmp <- lm(pheno~mark1.factor+mark2.factor-1)
rss <- sum(lm.tmp$residuals^2)
ses <- tapply(mark1, list(mark1, mark2), function(a) sqrt(rss/nind/length(a)))
}
}
}
# result
result$Means <- means
result$SEs <- ses
result
}
# end of effectplot.R
|