1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
\name{effectplot}
\alias{effectplot}
\title{Plot phenotype means against genotypes at one or two markers.}
\description{
Plot the phenotype means for each group defined by the genotypes at
one or two markers (or the values at a discrete covariate).
}
\usage{
effectplot(cross, pheno.col=1, mname1, mark1, geno1, mname2, mark2,
geno2, main, ylim, xlab, ylab, col, add.legend=TRUE,
legend.lab, draw=TRUE, var.flag=c("pooled","group"))
}
\arguments{
\item{cross}{An object of class \code{cross}.}
\item{pheno.col}{Column number in the phenotype matrix to be
drawn in the plot. One may also give a character string matching
a phenotype name.}
\item{mname1}{Name for the first marker or pseudomarker.}
\item{mark1}{Genotype data for the first marker. If unspecified,
genotypes will be taken from the data in the input cross object,
using the name specified in \code{mname1}.}
\item{geno1}{Optional labels for the genotypes (or classes in a covariate).}
\item{mname2}{Name for the second marker or pseudomarker (optional).}
\item{mark2}{Like \code{mark1} (optional).}
\item{geno2}{Optional labels for the genotypes (or classes in a covariate).}
\item{main}{Optional figure title.}
\item{ylim}{Optional y-axis limits.}
\item{xlab}{Optional x-axis label.}
\item{ylab}{Optional y-axis label.}
\item{col}{Optional vector of colors for the different line segments.}
\item{add.legend}{A logical value to indicate whether to add a legend.}
\item{legend.lab}{Optional title for the legend.}
\item{draw}{A logical value to indicate generate the plot or not. If
FALSE, no figure will be plotted and this function can be used to
calculate the group means and standard errors.}
\item{var.flag}{The method to calculate the group variance. "pooled"
means to use the pooled variance and "group" means to calculate from
individual group.}
}
\value{
A data.frame containing the phenotype means and standard errors
for each group.
}
\details{
In the plot, the y-axis is the phenotype. In the case of one marker,
the x-axis is the genotype for that marker. In the case of two
markers, the x-axis is for different genotypes of the second marker,
and the genotypes of first marker are represented by lines in
different colors. Error bars are plotted at \eqn{\pm}{+/-} 1 SE.
The results of \code{sim.geno} are used; if they are not available,
\code{sim.geno} is run with \code{n.draws=16}. The average phenotype
for each genotype group takes account of missing genotype data by
averaging across the imputations. The SEs take account of both the
residual phenotype variation and the imputation error.
}
\examples{
data(fake.f2)
\dontshow{fake.f2 <- subset(fake.f2, chr=c(1, 13, "X"))}
# impute genotype data
\dontrun{fake.f2 <- sim.geno(fake.f2, step=5, n.draws=64)
}\dontshow{fake.f2 <- sim.geno(fake.f2, step=5, n.draws=8)
}
########################################
# one marker plots
########################################
### plot of genotype-specific phenotype means for 1 marker
mname <- find.marker(fake.f2, 1, 37) # marker D1M437
effectplot(fake.f2, pheno.col=1, mname1=mname)
### plot a phenotype
# Plot of sex-specific phenotype means,
# note that "sex" must be a phenotype name here
effectplot(fake.f2, mname1="sex", geno1=c("F","M"))
# alternatively:
sex <- fake.f2$pheno[,2]
effectplot(fake.f2, mname1="Sex", mark1=sex, geno1=c("F","M"))
########################################
# two markers plots
########################################
### plot two markers
# plot of genotype-specific phenotype means for 2 markers
mname1 <- find.marker(fake.f2, 1, 37) # marker D1M437
mname2 <- find.marker(fake.f2, 13, 24) # marker D13M254
effectplot(fake.f2, mname1=mname1, mname2=mname2)
### plot two pseudomarkers
pmnames <- find.pseudomarker(fake.f2, chr=c(1, 13), c(35, 25))
effectplot(fake.f2, mname1=pmnames[1], mname2=pmnames[2])
### Plot of sex- and genotype-specific phenotype means
mname <- find.marker(fake.f2, 13, 24) # marker D13M254
# sex and a marker
effectplot(fake.f2, mname1=mname, mname2="Sex",
mark2=fake.f2$pheno$sex, geno2=c("F","M"))
# Same as above, switch role of sex and the marker
# sex and marker
effectplot(fake.f2, mname1="Sex", mark1=fake.f2$pheno$sex,
geno1=c("F","M"), mname2=mname)
# X chromosome marker
mname <- find.marker(fake.f2, "X", 14) # marker DXM66
effectplot(fake.f2, mname1=mname)
# Two markers, including one on the X
mnames <- find.marker(fake.f2, c(13, "X"), c(24, 14))
effectplot(fake.f2, mname1=mnames[1], mname2=mnames[2])
}
\author{Hao Wu; Karl W Broman, \email{kbroman@biostat.wisc.edu} }
\seealso{ \code{\link[qtl]{plot.pxg}}, \code{\link[qtl]{find.marker}},
\code{\link[qtl]{effectscan}}, \code{\link[qtl]{find.pseudomarker}} }
\keyword{hplot}
|