File: plot.pxg.Rd

package info (click to toggle)
qtl 1.08-56-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 3,552 kB
  • ctags: 242
  • sloc: ansic: 8,903; makefile: 1
file content (78 lines) | stat: -rw-r--r-- 2,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
\name{plot.pxg}
\alias{plot.pxg}

\title{Plot phenotypes versus marker genotypes.}

\description{
  Plot the phenotype values versus the genotypes at a marker or markers.
}

\usage{
plot.pxg(x, marker, pheno.col=1, jitter=1, infer=TRUE,
         pch, ylab, main, col, \dots)
}			    

\arguments{
  \item{x}{An object of class \code{cross}.  See
    \code{\link[qtl]{read.cross}} for details. }
  \item{marker}{Marker name (a character string; can be a vector).}
  \item{pheno.col}{Column number in the phenotype matrix which should be
   used as the phenotype.  One may also give a character string matching
   a phenotype name.}
  \item{jitter}{A positive number indicating how much to spread out the
    points horizontally.  (Larger numbers correspond to greater spread.)}
  \item{infer}{If TRUE, missing genotypes are filled in with a single
    random imputation and plotted in red; if FALSE, only individuals
    typed at the specified marker are plotted.}
  \item{pch}{Plot symbol.}
  \item{ylab}{Label for y-axis.}
  \item{main}{Main title for the plot.  If missing, the names of the
    markers are used.}
  \item{col}{A vector of colors to use for the confidence intervals
    (optional).} 
  \item{\dots}{Ignored at this point.}
}

\details{
  Plots the phenotype data against the genotypes at the specified
  marker.  If infer=TRUE, the genotypes of individuals that were not
  typed is inferred based the genotypes at linked markers via a single
  imputation from \code{\link[qtl]{sim.geno}}; these points are plotted
  in red.  For each genotype, the phenotypic mean is plotted, with error
  bars at \eqn{\pm}{+/-} 1 SE.
}

\value{
A data.frame with initial columns the marker genotypes, then the
phenotype data, then a column indicating whether any of the marker
genotypes were inferred (1=at least one genotype inferred, 0=none were
inferred). 
}

\examples{
data(listeria)
mname <- find.marker(listeria, 5, 28) # marker D5M357
plot.pxg(listeria, mname)

mname2 <- find.marker(listeria, 13, 26) # marker D13Mit147
plot.pxg(listeria, c(mname, mname2))
plot.pxg(listeria, c(mname2, mname))

data(fake.f2)
mname <- find.marker(fake.f2, 1, 37) # marker D1M437
plot.pxg(fake.f2, mname)

mname2 <- find.marker(fake.f2, "X", 14) # marker DXM66
plot.pxg(fake.f2, mname2)

plot.pxg(fake.f2, c(mname,mname2))
plot.pxg(fake.f2, c(mname2,mname))
}

\seealso{ \code{\link[qtl]{find.marker}}, \code{\link[qtl]{effectplot}},
  \code{\link[qtl]{find.flanking}}, \code{\link[qtl]{effectscan}} }


\author{Karl W Broman, \email{kbroman@biostat.wisc.edu}; Brian Yandell }

\keyword{hplot}