1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*Copyright (C) 2015 Olivier Delaneau, Halit Ongen, Emmanouil T. Dermitzakis
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.*/
#ifndef _RESIDUALIZER_H
#define _RESIDUALIZER_H
#define R_QR_TOLERANCE 1e-7
//ERROR CODE FOR COVARIATE PARSING
#define COV_OKAY 0
#define COV_MIXD 1
#define COV_DROP 2
#define COV_NVAR 3
#define COV_NCOV 4
#define COV_CORR 5
//STL INCLUDES
#include <vector>
#include <set>
#include <sstream>
#include <string>
//EIGEN INCLUDES
#include <Eigen/Dense>
#include <Eigen/LU>
//EIGEN NAMESPACE
using namespace Eigen;
class residualizer {
public:
unsigned int n_samples;
unsigned int n_covariates;
MatrixXd covarM;
MatrixXd PQR_Q;
MatrixXd PQR_Q_A;
ColPivHouseholderQR < MatrixXd > PQR;
residualizer(int _n_samples) : n_samples (_n_samples) {
covarM.resize(n_samples,1);
covarM.col(0) = VectorXd::Ones(n_samples);
n_covariates = 0;
}
~residualizer() {
n_samples = 0;
n_covariates = 0;
covarM.resize(0,0);
PQR_Q.resize(0,0);
PQR_Q_A.resize(0,0);
}
unsigned int push(vector < string > & covariate) {
set < string > factors;
set < unsigned int > i_yesmissing, i_nonmissing;
//MAP MISSING
for (int i = 0 ; i < covariate.size() ; i++) {
if (covariate[i] == "NA") i_yesmissing.insert(i);
else i_nonmissing.insert(i);
}
//TEST FOR NUMERIC
bool isNumeric = false, isAlphabetic = false;
for (set < unsigned int >::iterator itNM = i_nonmissing.begin(); itNM != i_nonmissing.end() ; ++itNM) {
float value;
std::istringstream in(covariate[*itNM]);
if (!(in >> value)) {
factors.insert(covariate[*itNM]);
isAlphabetic = true;
} else isNumeric = true;
}
if (isNumeric && isAlphabetic) return COV_MIXD;
//FILL IN VALUES
vector < vector < float > > additional_hcov;
if (factors.size() == 0) {
additional_hcov = vector < vector < float > > (1, vector < float > (n_samples, 0.0));
for (int i = 0 ; i < covariate.size() ; i++) additional_hcov[0][i] = std::stof(covariate[i]);
} else if (factors.size() > 1) {
factors.erase(factors.begin());
for (set < string > ::iterator itF = factors.begin(); itF != factors.end() ; itF++) {
additional_hcov.push_back(vector < float > (n_samples, 0.0));
for (int i = 0 ; i < n_samples ; i++) additional_hcov.back()[i] = (covariate[i] == (*itF));
}
} else return COV_DROP;
//IMPUTE MISSING
if (i_yesmissing.size() > 0) {
for (unsigned int c = 0 ; c < additional_hcov.size() ; c ++) {
double sum_row = 0;
for (set < unsigned int >::iterator itNM = i_nonmissing.begin(); itNM != i_nonmissing.end() ; ++itNM) sum_row += additional_hcov[c][*itNM];
for (set < unsigned int >::iterator itYM = i_yesmissing.begin(); itYM != i_yesmissing.end() ; ++itYM) additional_hcov[c][*itYM] = sum_row / i_nonmissing.size();
}
}
//ADD RESULTING COVARIATES
for (int c = 0 ; c < additional_hcov.size() ; c ++) if (!push(additional_hcov[c])) return COV_NVAR;
return COV_OKAY;
}
bool push(vector < float > & covariate) {
bool isVariable = false;
for (unsigned int e = 1 ; e < covariate.size() ; e ++) if (covariate[e] != covariate[e-1]) isVariable = true;
if (!isVariable) return false;
n_covariates ++;
covarM.conservativeResize(n_samples, n_covariates+1);
for(int i = 0 ; i < n_samples ; i ++) covarM(i, n_covariates) = covariate[i];
return true;
}
unsigned int build() {
if (n_covariates == 0) return COV_NCOV;
PQR = ColPivHouseholderQR<MatrixXd>(covarM);
PQR.setThreshold(R_QR_TOLERANCE);
if (PQR.rank() != n_covariates + 1) {
PQR_Q = PQR.householderQ();
PQR_Q_A = PQR.householderQ().adjoint();
return COV_CORR;
}
return COV_OKAY;
}
unsigned int residualize(vector < float > & data) {
if (n_covariates == 0) return COV_NCOV;
bool isVariable = false;
for (unsigned int e = 1 ; e < data.size() ; e ++) if (data[e] != data[e-1]) isVariable = true;
if (!isVariable) return COV_NVAR;
//FILL IN DATA
VectorXd counts(n_samples);
for(int i = 0; i < n_samples ; i ++) counts(i) = data[i];
//CORRECTION
if (PQR.rank() == n_covariates + 1) {
VectorXd m_coef = PQR.solve(counts);
VectorXd fitted = covarM * m_coef;
VectorXd e = counts - fitted;
for (int i = 0; i < e.size(); i ++) data[i] = e(i);
} else {
VectorXd effects(PQR_Q_A * counts);
effects.tail(n_samples - PQR.rank()).setZero();
VectorXd fitted = PQR_Q * effects;
VectorXd e = counts - fitted;
for (int i = 0; i < e.size(); i ++) data[i] = (float)e(i);
}
return COV_OKAY;
}
unsigned int residualize(float * data) {
if (n_covariates == 0) return COV_NCOV;
bool isVariable = false;
for (unsigned int e = 1 ; e < n_samples ; e ++) if (data[e] != data[e-1]) isVariable = true;
if (!isVariable) return COV_NVAR;
//FILL IN DATA
VectorXd counts(n_samples);
for(int i = 0; i < n_samples ; i ++) counts(i) = data[i];
//CORRECTION
if (PQR.rank() == n_covariates + 1) {
VectorXd m_coef = PQR.solve(counts);
VectorXd fitted = covarM * m_coef;
VectorXd e = counts - fitted;
for (int i = 0; i < e.size(); i ++) data[i] = e(i);
} else {
VectorXd effects(PQR_Q_A * counts);
effects.tail(n_samples - PQR.rank()).setZero();
VectorXd fitted = PQR_Q * effects;
VectorXd e = counts - fitted;
for (int i = 0; i < e.size(); i ++) data[i] = (float)e(i);
}
return COV_OKAY;
}
};
#endif
|