1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
/*
* Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CodeBlock_h
#define CodeBlock_h
#include "EvalCodeCache.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JSGlobalObject.h"
#include "JumpTable.h"
#include "Nodes.h"
#include "PtrAndFlags.h"
#include "RegExp.h"
#include "UString.h"
#include <wtf/FastAllocBase.h>
#include <wtf/RefPtr.h>
#include <wtf/Vector.h>
#if ENABLE(JIT)
#include "StructureStubInfo.h"
#endif
// Register numbers used in bytecode operations have different meaning accoring to their ranges:
// 0x80000000-0xFFFFFFFF Negative indicies from the CallFrame pointer are entries in the call frame, see RegisterFile.h.
// 0x00000000-0x3FFFFFFF Forwards indices from the CallFrame pointer are local vars and temporaries with the function's callframe.
// 0x40000000-0x7FFFFFFF Positive indices from 0x40000000 specify entries in the constant pool on the CodeBlock.
static const int FirstConstantRegisterIndex = 0x40000000;
namespace JSC {
enum HasSeenShouldRepatch {
hasSeenShouldRepatch
};
class ExecState;
enum CodeType { GlobalCode, EvalCode, FunctionCode };
static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
struct HandlerInfo {
uint32_t start;
uint32_t end;
uint32_t target;
uint32_t scopeDepth;
#if ENABLE(JIT)
CodeLocationLabel nativeCode;
#endif
};
struct ExpressionRangeInfo {
enum {
MaxOffset = (1 << 7) - 1,
MaxDivot = (1 << 25) - 1
};
uint32_t instructionOffset : 25;
uint32_t divotPoint : 25;
uint32_t startOffset : 7;
uint32_t endOffset : 7;
};
struct LineInfo {
uint32_t instructionOffset;
int32_t lineNumber;
};
// Both op_construct and op_instanceof require a use of op_get_by_id to get
// the prototype property from an object. The exception messages for exceptions
// thrown by these instances op_get_by_id need to reflect this.
struct GetByIdExceptionInfo {
unsigned bytecodeOffset : 31;
bool isOpConstruct : 1;
};
#if ENABLE(JIT)
struct CallLinkInfo {
CallLinkInfo()
: callee(0)
{
}
unsigned bytecodeIndex;
CodeLocationNearCall callReturnLocation;
CodeLocationDataLabelPtr hotPathBegin;
CodeLocationNearCall hotPathOther;
PtrAndFlags<CodeBlock, HasSeenShouldRepatch> ownerCodeBlock;
CodeBlock* callee;
unsigned position;
void setUnlinked() { callee = 0; }
bool isLinked() { return callee; }
bool seenOnce()
{
return ownerCodeBlock.isFlagSet(hasSeenShouldRepatch);
}
void setSeen()
{
ownerCodeBlock.setFlag(hasSeenShouldRepatch);
}
};
struct MethodCallLinkInfo {
MethodCallLinkInfo()
: cachedStructure(0)
{
}
bool seenOnce()
{
return cachedPrototypeStructure.isFlagSet(hasSeenShouldRepatch);
}
void setSeen()
{
cachedPrototypeStructure.setFlag(hasSeenShouldRepatch);
}
CodeLocationCall callReturnLocation;
CodeLocationDataLabelPtr structureLabel;
Structure* cachedStructure;
PtrAndFlags<Structure, HasSeenShouldRepatch> cachedPrototypeStructure;
};
struct FunctionRegisterInfo {
FunctionRegisterInfo(unsigned bytecodeOffset, int functionRegisterIndex)
: bytecodeOffset(bytecodeOffset)
, functionRegisterIndex(functionRegisterIndex)
{
}
unsigned bytecodeOffset;
int functionRegisterIndex;
};
struct GlobalResolveInfo {
GlobalResolveInfo(unsigned bytecodeOffset)
: structure(0)
, offset(0)
, bytecodeOffset(bytecodeOffset)
{
}
Structure* structure;
unsigned offset;
unsigned bytecodeOffset;
};
// This structure is used to map from a call return location
// (given as an offset in bytes into the JIT code) back to
// the bytecode index of the corresponding bytecode operation.
// This is then used to look up the corresponding handler.
struct CallReturnOffsetToBytecodeIndex {
CallReturnOffsetToBytecodeIndex(unsigned callReturnOffset, unsigned bytecodeIndex)
: callReturnOffset(callReturnOffset)
, bytecodeIndex(bytecodeIndex)
{
}
unsigned callReturnOffset;
unsigned bytecodeIndex;
};
// valueAtPosition helpers for the binaryChop algorithm below.
inline void* getStructureStubInfoReturnLocation(StructureStubInfo* structureStubInfo)
{
return structureStubInfo->callReturnLocation.executableAddress();
}
inline void* getCallLinkInfoReturnLocation(CallLinkInfo* callLinkInfo)
{
return callLinkInfo->callReturnLocation.executableAddress();
}
inline void* getMethodCallLinkInfoReturnLocation(MethodCallLinkInfo* methodCallLinkInfo)
{
return methodCallLinkInfo->callReturnLocation.executableAddress();
}
inline unsigned getCallReturnOffset(CallReturnOffsetToBytecodeIndex* pc)
{
return pc->callReturnOffset;
}
// Binary chop algorithm, calls valueAtPosition on pre-sorted elements in array,
// compares result with key (KeyTypes should be comparable with '--', '<', '>').
// Optimized for cases where the array contains the key, checked by assertions.
template<typename ArrayType, typename KeyType, KeyType(*valueAtPosition)(ArrayType*)>
inline ArrayType* binaryChop(ArrayType* array, size_t size, KeyType key)
{
// The array must contain at least one element (pre-condition, array does conatin key).
// If the array only contains one element, no need to do the comparison.
while (size > 1) {
// Pick an element to check, half way through the array, and read the value.
int pos = (size - 1) >> 1;
KeyType val = valueAtPosition(&array[pos]);
// If the key matches, success!
if (val == key)
return &array[pos];
// The item we are looking for is smaller than the item being check; reduce the value of 'size',
// chopping off the right hand half of the array.
else if (key < val)
size = pos;
// Discard all values in the left hand half of the array, up to and including the item at pos.
else {
size -= (pos + 1);
array += (pos + 1);
}
// 'size' should never reach zero.
ASSERT(size);
}
// If we reach this point we've chopped down to one element, no need to check it matches
ASSERT(size == 1);
ASSERT(key == valueAtPosition(&array[0]));
return &array[0];
}
#endif
struct ExceptionInfo : FastAllocBase {
Vector<ExpressionRangeInfo> m_expressionInfo;
Vector<LineInfo> m_lineInfo;
Vector<GetByIdExceptionInfo> m_getByIdExceptionInfo;
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeIndex> m_callReturnIndexVector;
#endif
};
class CodeBlock : public FastAllocBase {
friend class JIT;
protected:
CodeBlock(ScriptExecutable* ownerExecutable, CodeType, PassRefPtr<SourceProvider>, unsigned sourceOffset, SymbolTable* symbolTable);
public:
virtual ~CodeBlock();
void markAggregate(MarkStack&);
void refStructures(Instruction* vPC) const;
void derefStructures(Instruction* vPC) const;
#if ENABLE(JIT_OPTIMIZE_CALL)
void unlinkCallers();
#endif
static void dumpStatistics();
#if !defined(NDEBUG) || ENABLE_OPCODE_SAMPLING
void dump(ExecState*) const;
void printStructures(const Instruction*) const;
void printStructure(const char* name, const Instruction*, int operand) const;
#endif
inline bool isKnownNotImmediate(int index)
{
if (index == m_thisRegister)
return true;
if (isConstantRegisterIndex(index))
return getConstant(index).isCell();
return false;
}
ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
{
return index >= m_numVars;
}
HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
int lineNumberForBytecodeOffset(CallFrame*, unsigned bytecodeOffset);
int expressionRangeForBytecodeOffset(CallFrame*, unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset);
bool getByIdExceptionInfoForBytecodeOffset(CallFrame*, unsigned bytecodeOffset, OpcodeID&);
#if ENABLE(JIT)
void addCaller(CallLinkInfo* caller)
{
caller->callee = this;
caller->position = m_linkedCallerList.size();
m_linkedCallerList.append(caller);
}
void removeCaller(CallLinkInfo* caller)
{
unsigned pos = caller->position;
unsigned lastPos = m_linkedCallerList.size() - 1;
if (pos != lastPos) {
m_linkedCallerList[pos] = m_linkedCallerList[lastPos];
m_linkedCallerList[pos]->position = pos;
}
m_linkedCallerList.shrink(lastPos);
}
StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
{
return *(binaryChop<StructureStubInfo, void*, getStructureStubInfoReturnLocation>(m_structureStubInfos.begin(), m_structureStubInfos.size(), returnAddress.value()));
}
CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binaryChop<CallLinkInfo, void*, getCallLinkInfoReturnLocation>(m_callLinkInfos.begin(), m_callLinkInfos.size(), returnAddress.value()));
}
MethodCallLinkInfo& getMethodCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binaryChop<MethodCallLinkInfo, void*, getMethodCallLinkInfoReturnLocation>(m_methodCallLinkInfos.begin(), m_methodCallLinkInfos.size(), returnAddress.value()));
}
unsigned getBytecodeIndex(CallFrame* callFrame, ReturnAddressPtr returnAddress)
{
reparseForExceptionInfoIfNecessary(callFrame);
return binaryChop<CallReturnOffsetToBytecodeIndex, unsigned, getCallReturnOffset>(callReturnIndexVector().begin(), callReturnIndexVector().size(), ownerExecutable()->generatedJITCode().offsetOf(returnAddress.value()))->bytecodeIndex;
}
bool functionRegisterForBytecodeOffset(unsigned bytecodeOffset, int& functionRegisterIndex);
#endif
void setIsNumericCompareFunction(bool isNumericCompareFunction) { m_isNumericCompareFunction = isNumericCompareFunction; }
bool isNumericCompareFunction() { return m_isNumericCompareFunction; }
Vector<Instruction>& instructions() { return m_instructions; }
void discardBytecode() { m_instructions.clear(); }
#ifndef NDEBUG
unsigned instructionCount() { return m_instructionCount; }
void setInstructionCount(unsigned instructionCount) { m_instructionCount = instructionCount; }
#endif
#if ENABLE(JIT)
JITCode& getJITCode() { return ownerExecutable()->generatedJITCode(); }
ExecutablePool* executablePool() { return ownerExecutable()->getExecutablePool(); }
#endif
ScriptExecutable* ownerExecutable() const { return m_ownerExecutable; }
void setGlobalData(JSGlobalData* globalData) { m_globalData = globalData; }
void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
int thisRegister() const { return m_thisRegister; }
void setNeedsFullScopeChain(bool needsFullScopeChain) { m_needsFullScopeChain = needsFullScopeChain; }
bool needsFullScopeChain() const { return m_needsFullScopeChain; }
void setUsesEval(bool usesEval) { m_usesEval = usesEval; }
bool usesEval() const { return m_usesEval; }
void setUsesArguments(bool usesArguments) { m_usesArguments = usesArguments; }
bool usesArguments() const { return m_usesArguments; }
CodeType codeType() const { return m_codeType; }
SourceProvider* source() const { return m_source.get(); }
unsigned sourceOffset() const { return m_sourceOffset; }
size_t numberOfJumpTargets() const { return m_jumpTargets.size(); }
void addJumpTarget(unsigned jumpTarget) { m_jumpTargets.append(jumpTarget); }
unsigned jumpTarget(int index) const { return m_jumpTargets[index]; }
unsigned lastJumpTarget() const { return m_jumpTargets.last(); }
#if !ENABLE(JIT)
void addPropertyAccessInstruction(unsigned propertyAccessInstruction) { m_propertyAccessInstructions.append(propertyAccessInstruction); }
void addGlobalResolveInstruction(unsigned globalResolveInstruction) { m_globalResolveInstructions.append(globalResolveInstruction); }
bool hasGlobalResolveInstructionAtBytecodeOffset(unsigned bytecodeOffset);
#else
size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
void addStructureStubInfo(const StructureStubInfo& stubInfo) { m_structureStubInfos.append(stubInfo); }
StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
void addGlobalResolveInfo(unsigned globalResolveInstruction) { m_globalResolveInfos.append(GlobalResolveInfo(globalResolveInstruction)); }
GlobalResolveInfo& globalResolveInfo(int index) { return m_globalResolveInfos[index]; }
bool hasGlobalResolveInfoAtBytecodeOffset(unsigned bytecodeOffset);
size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
void addCallLinkInfo() { m_callLinkInfos.append(CallLinkInfo()); }
CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
void addMethodCallLinkInfos(unsigned n) { m_methodCallLinkInfos.grow(n); }
MethodCallLinkInfo& methodCallLinkInfo(int index) { return m_methodCallLinkInfos[index]; }
void addFunctionRegisterInfo(unsigned bytecodeOffset, int functionIndex) { createRareDataIfNecessary(); m_rareData->m_functionRegisterInfos.append(FunctionRegisterInfo(bytecodeOffset, functionIndex)); }
#endif
// Exception handling support
size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
void addExceptionHandler(const HandlerInfo& hanler) { createRareDataIfNecessary(); return m_rareData->m_exceptionHandlers.append(hanler); }
HandlerInfo& exceptionHandler(int index) { ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
bool hasExceptionInfo() const { return m_exceptionInfo; }
void clearExceptionInfo() { m_exceptionInfo.clear(); }
ExceptionInfo* extractExceptionInfo() { ASSERT(m_exceptionInfo); return m_exceptionInfo.release(); }
void addExpressionInfo(const ExpressionRangeInfo& expressionInfo) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_expressionInfo.append(expressionInfo); }
void addGetByIdExceptionInfo(const GetByIdExceptionInfo& info) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_getByIdExceptionInfo.append(info); }
size_t numberOfLineInfos() const { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_lineInfo.size(); }
void addLineInfo(const LineInfo& lineInfo) { ASSERT(m_exceptionInfo); m_exceptionInfo->m_lineInfo.append(lineInfo); }
LineInfo& lastLineInfo() { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_lineInfo.last(); }
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeIndex>& callReturnIndexVector() { ASSERT(m_exceptionInfo); return m_exceptionInfo->m_callReturnIndexVector; }
#endif
// Constant Pool
size_t numberOfIdentifiers() const { return m_identifiers.size(); }
void addIdentifier(const Identifier& i) { return m_identifiers.append(i); }
Identifier& identifier(int index) { return m_identifiers[index]; }
size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
void addConstantRegister(const Register& r) { return m_constantRegisters.append(r); }
Register& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].jsValue(); }
unsigned addFunctionDecl(NonNullPassRefPtr<FunctionExecutable> n) { unsigned size = m_functionDecls.size(); m_functionDecls.append(n); return size; }
FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
int numberOfFunctionDecls() { return m_functionDecls.size(); }
unsigned addFunctionExpr(NonNullPassRefPtr<FunctionExecutable> n) { unsigned size = m_functionExprs.size(); m_functionExprs.append(n); return size; }
FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
unsigned addRegExp(RegExp* r) { createRareDataIfNecessary(); unsigned size = m_rareData->m_regexps.size(); m_rareData->m_regexps.append(r); return size; }
RegExp* regexp(int index) const { ASSERT(m_rareData); return m_rareData->m_regexps[index].get(); }
// Jump Tables
size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; }
SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); }
SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; }
size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; }
SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); }
SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; }
size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
StringJumpTable& stringSwitchJumpTable(int tableIndex) { ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
SymbolTable* symbolTable() { return m_symbolTable; }
SharedSymbolTable* sharedSymbolTable() { ASSERT(m_codeType == FunctionCode); return static_cast<SharedSymbolTable*>(m_symbolTable); }
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
void shrinkToFit();
// FIXME: Make these remaining members private.
int m_numCalleeRegisters;
int m_numVars;
int m_numParameters;
private:
#if !defined(NDEBUG) || ENABLE(OPCODE_SAMPLING)
void dump(ExecState*, const Vector<Instruction>::const_iterator& begin, Vector<Instruction>::const_iterator&) const;
CString registerName(ExecState*, int r) const;
void printUnaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printBinaryOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printConditionalJump(ExecState*, const Vector<Instruction>::const_iterator&, Vector<Instruction>::const_iterator&, int location, const char* op) const;
void printGetByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
void printPutByIdOp(ExecState*, int location, Vector<Instruction>::const_iterator&, const char* op) const;
#endif
void reparseForExceptionInfoIfNecessary(CallFrame*);
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData.set(new RareData);
}
ScriptExecutable* m_ownerExecutable;
JSGlobalData* m_globalData;
Vector<Instruction> m_instructions;
#ifndef NDEBUG
unsigned m_instructionCount;
#endif
int m_thisRegister;
bool m_needsFullScopeChain;
bool m_usesEval;
bool m_usesArguments;
bool m_isNumericCompareFunction;
CodeType m_codeType;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
#if !ENABLE(JIT)
Vector<unsigned> m_propertyAccessInstructions;
Vector<unsigned> m_globalResolveInstructions;
#else
Vector<StructureStubInfo> m_structureStubInfos;
Vector<GlobalResolveInfo> m_globalResolveInfos;
Vector<CallLinkInfo> m_callLinkInfos;
Vector<MethodCallLinkInfo> m_methodCallLinkInfos;
Vector<CallLinkInfo*> m_linkedCallerList;
#endif
Vector<unsigned> m_jumpTargets;
// Constant Pool
Vector<Identifier> m_identifiers;
Vector<Register> m_constantRegisters;
Vector<RefPtr<FunctionExecutable> > m_functionDecls;
Vector<RefPtr<FunctionExecutable> > m_functionExprs;
SymbolTable* m_symbolTable;
OwnPtr<ExceptionInfo> m_exceptionInfo;
struct RareData : FastAllocBase {
Vector<HandlerInfo> m_exceptionHandlers;
// Rare Constants
Vector<RefPtr<RegExp> > m_regexps;
// Jump Tables
Vector<SimpleJumpTable> m_immediateSwitchJumpTables;
Vector<SimpleJumpTable> m_characterSwitchJumpTables;
Vector<StringJumpTable> m_stringSwitchJumpTables;
EvalCodeCache m_evalCodeCache;
#if ENABLE(JIT)
Vector<FunctionRegisterInfo> m_functionRegisterInfos;
#endif
};
OwnPtr<RareData> m_rareData;
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
public:
GlobalCodeBlock(ScriptExecutable* ownerExecutable, CodeType codeType, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, JSGlobalObject* globalObject)
: CodeBlock(ownerExecutable, codeType, sourceProvider, sourceOffset, &m_unsharedSymbolTable)
, m_globalObject(globalObject)
{
m_globalObject->codeBlocks().add(this);
}
~GlobalCodeBlock()
{
if (m_globalObject)
m_globalObject->codeBlocks().remove(this);
}
void clearGlobalObject() { m_globalObject = 0; }
private:
JSGlobalObject* m_globalObject; // For program and eval nodes, the global object that marks the constant pool.
SymbolTable m_unsharedSymbolTable;
};
class ProgramCodeBlock : public GlobalCodeBlock {
public:
ProgramCodeBlock(ProgramExecutable* ownerExecutable, CodeType codeType, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider)
: GlobalCodeBlock(ownerExecutable, codeType, sourceProvider, 0, globalObject)
{
}
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
EvalCodeBlock(EvalExecutable* ownerExecutable, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth)
: GlobalCodeBlock(ownerExecutable, EvalCode, sourceProvider, 0, globalObject)
, m_baseScopeDepth(baseScopeDepth)
{
}
int baseScopeDepth() const { return m_baseScopeDepth; }
const Identifier& variable(unsigned index) { return m_variables[index]; }
unsigned numVariables() { return m_variables.size(); }
void adoptVariables(Vector<Identifier>& variables)
{
ASSERT(m_variables.isEmpty());
m_variables.swap(variables);
}
private:
int m_baseScopeDepth;
Vector<Identifier> m_variables;
};
class FunctionCodeBlock : public CodeBlock {
public:
// Rather than using the usual RefCounted::create idiom for SharedSymbolTable we just use new
// as we need to initialise the CodeBlock before we could initialise any RefPtr to hold the shared
// symbol table, so we just pass as a raw pointer with a ref count of 1. We then manually deref
// in the destructor.
FunctionCodeBlock(FunctionExecutable* ownerExecutable, CodeType codeType, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset)
: CodeBlock(ownerExecutable, codeType, sourceProvider, sourceOffset, new SharedSymbolTable)
{
}
~FunctionCodeBlock()
{
sharedSymbolTable()->deref();
}
};
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
if (codeBlock->isConstantRegisterIndex(index))
return codeBlock->constantRegister(index);
return this[index];
}
} // namespace JSC
#endif // CodeBlock_h
|