1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
/*
* Copyright (C) 2008 Apple Inc.
* Copyright (C) 2009 University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerARM_h
#define MacroAssemblerARM_h
#include <wtf/Platform.h>
#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#include "ARMAssembler.h"
#include "AbstractMacroAssembler.h"
namespace JSC {
class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> {
static const int DoubleConditionMask = 0x0f;
static const int DoubleConditionBitSpecial = 0x10;
COMPILE_ASSERT(!(DoubleConditionBitSpecial & DoubleConditionMask), DoubleConditionBitSpecial_should_not_interfere_with_ARMAssembler_Condition_codes);
public:
enum Condition {
Equal = ARMAssembler::EQ,
NotEqual = ARMAssembler::NE,
Above = ARMAssembler::HI,
AboveOrEqual = ARMAssembler::CS,
Below = ARMAssembler::CC,
BelowOrEqual = ARMAssembler::LS,
GreaterThan = ARMAssembler::GT,
GreaterThanOrEqual = ARMAssembler::GE,
LessThan = ARMAssembler::LT,
LessThanOrEqual = ARMAssembler::LE,
Overflow = ARMAssembler::VS,
Signed = ARMAssembler::MI,
Zero = ARMAssembler::EQ,
NonZero = ARMAssembler::NE
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
DoubleEqual = ARMAssembler::EQ,
DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial,
DoubleGreaterThan = ARMAssembler::GT,
DoubleGreaterThanOrEqual = ARMAssembler::GE,
DoubleLessThan = ARMAssembler::CC,
DoubleLessThanOrEqual = ARMAssembler::LS,
// If either operand is NaN, these conditions always evaluate to true.
DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial,
DoubleNotEqualOrUnordered = ARMAssembler::NE,
DoubleGreaterThanOrUnordered = ARMAssembler::HI,
DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS,
DoubleLessThanOrUnordered = ARMAssembler::LT,
DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE,
};
static const RegisterID stackPointerRegister = ARMRegisters::sp;
static const RegisterID linkRegister = ARMRegisters::lr;
static const Scale ScalePtr = TimesFour;
void add32(RegisterID src, RegisterID dest)
{
m_assembler.adds_r(dest, dest, src);
}
void add32(Imm32 imm, Address address)
{
load32(address, ARMRegisters::S1);
add32(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void add32(Imm32 imm, RegisterID dest)
{
m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void add32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
add32(ARMRegisters::S1, dest);
}
void and32(RegisterID src, RegisterID dest)
{
m_assembler.ands_r(dest, dest, src);
}
void and32(Imm32 imm, RegisterID dest)
{
ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true);
if (w & ARMAssembler::OP2_INV_IMM)
m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM);
else
m_assembler.ands_r(dest, dest, w);
}
void lshift32(RegisterID shift_amount, RegisterID dest)
{
ARMWord w = ARMAssembler::getOp2(0x1f);
ASSERT(w != ARMAssembler::INVALID_IMM);
m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
m_assembler.movs_r(dest, m_assembler.lsl_r(dest, ARMRegisters::S0));
}
void lshift32(Imm32 imm, RegisterID dest)
{
m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f));
}
void mul32(RegisterID src, RegisterID dest)
{
if (src == dest) {
move(src, ARMRegisters::S0);
src = ARMRegisters::S0;
}
m_assembler.muls_r(dest, dest, src);
}
void mul32(Imm32 imm, RegisterID src, RegisterID dest)
{
move(imm, ARMRegisters::S0);
m_assembler.muls_r(dest, src, ARMRegisters::S0);
}
void neg32(RegisterID srcDest)
{
m_assembler.rsbs_r(srcDest, srcDest, ARMAssembler::getOp2(0));
}
void not32(RegisterID dest)
{
m_assembler.mvns_r(dest, dest);
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orrs_r(dest, dest, src);
}
void or32(Imm32 imm, RegisterID dest)
{
m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void rshift32(RegisterID shift_amount, RegisterID dest)
{
ARMWord w = ARMAssembler::getOp2(0x1f);
ASSERT(w != ARMAssembler::INVALID_IMM);
m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
m_assembler.movs_r(dest, m_assembler.asr_r(dest, ARMRegisters::S0));
}
void rshift32(Imm32 imm, RegisterID dest)
{
m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f));
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.subs_r(dest, dest, src);
}
void sub32(Imm32 imm, RegisterID dest)
{
m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void sub32(Imm32 imm, Address address)
{
load32(address, ARMRegisters::S1);
sub32(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void sub32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
sub32(ARMRegisters::S1, dest);
}
void xor32(RegisterID src, RegisterID dest)
{
m_assembler.eors_r(dest, dest, src);
}
void xor32(Imm32 imm, RegisterID dest)
{
m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void load32(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransfer32(true, dest, address.base, address.offset);
}
void load32(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
#if CPU(ARMV5_OR_LOWER)
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest);
#else
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
load32(address, dest);
}
#endif
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
m_assembler.dtr_ur(true, dest, address.base, ARMRegisters::S0);
return dataLabel;
}
Label loadPtrWithPatchToLEA(Address address, RegisterID dest)
{
Label label(this);
load32(address, dest);
return label;
}
void load16(BaseIndex address, RegisterID dest)
{
m_assembler.add_r(ARMRegisters::S0, address.base, m_assembler.lsl(address.index, address.scale));
if (address.offset>=0)
m_assembler.ldrh_u(dest, ARMRegisters::S0, ARMAssembler::getOp2Byte(address.offset));
else
m_assembler.ldrh_d(dest, ARMRegisters::S0, ARMAssembler::getOp2Byte(-address.offset));
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
m_assembler.dtr_ur(false, src, address.base, ARMRegisters::S0);
return dataLabel;
}
void store32(RegisterID src, ImplicitAddress address)
{
m_assembler.dataTransfer32(false, src, address.base, address.offset);
}
void store32(RegisterID src, BaseIndex address)
{
m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
void store32(Imm32 imm, ImplicitAddress address)
{
if (imm.m_isPointer)
m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
else
move(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void store32(RegisterID src, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.dtr_u(false, src, ARMRegisters::S0, 0);
}
void store32(Imm32 imm, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
if (imm.m_isPointer)
m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
else
m_assembler.moveImm(imm.m_value, ARMRegisters::S1);
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void pop(RegisterID dest)
{
m_assembler.pop_r(dest);
}
void push(RegisterID src)
{
m_assembler.push_r(src);
}
void push(Address address)
{
load32(address, ARMRegisters::S1);
push(ARMRegisters::S1);
}
void push(Imm32 imm)
{
move(imm, ARMRegisters::S0);
push(ARMRegisters::S0);
}
void move(Imm32 imm, RegisterID dest)
{
if (imm.m_isPointer)
m_assembler.ldr_un_imm(dest, imm.m_value);
else
m_assembler.moveImm(imm.m_value, dest);
}
void move(RegisterID src, RegisterID dest)
{
m_assembler.mov_r(dest, src);
}
void move(ImmPtr imm, RegisterID dest)
{
move(Imm32(imm), dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
m_assembler.mov_r(ARMRegisters::S0, reg1);
m_assembler.mov_r(reg1, reg2);
m_assembler.mov_r(reg2, ARMRegisters::S0);
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest)
move(src, dest);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest)
move(src, dest);
}
Jump branch32(Condition cond, RegisterID left, RegisterID right, int useConstantPool = 0)
{
m_assembler.cmp_r(left, right);
return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
}
Jump branch32(Condition cond, RegisterID left, Imm32 right, int useConstantPool = 0)
{
if (right.m_isPointer) {
m_assembler.ldr_un_imm(ARMRegisters::S0, right.m_value);
m_assembler.cmp_r(left, ARMRegisters::S0);
} else
m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
}
Jump branch32(Condition cond, RegisterID left, Address right)
{
load32(right, ARMRegisters::S1);
return branch32(cond, left, ARMRegisters::S1);
}
Jump branch32(Condition cond, Address left, RegisterID right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, Address left, Imm32 right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, BaseIndex left, Imm32 right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, Imm32 right)
{
load32WithUnalignedHalfWords(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch16(Condition cond, BaseIndex left, RegisterID right)
{
UNUSED_PARAM(cond);
UNUSED_PARAM(left);
UNUSED_PARAM(right);
ASSERT_NOT_REACHED();
return jump();
}
Jump branch16(Condition cond, BaseIndex left, Imm32 right)
{
load16(left, ARMRegisters::S0);
move(right, ARMRegisters::S1);
m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S1);
return m_assembler.jmp(ARMCondition(cond));
}
Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask)
{
ASSERT((cond == Zero) || (cond == NonZero));
m_assembler.tst_r(reg, mask);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchTest32(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true);
if (w & ARMAssembler::OP2_INV_IMM)
m_assembler.bics_r(ARMRegisters::S0, reg, w & ~ARMAssembler::OP2_INV_IMM);
else
m_assembler.tst_r(reg, w);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchTest32(Condition cond, Address address, Imm32 mask = Imm32(-1))
{
load32(address, ARMRegisters::S1);
return branchTest32(cond, ARMRegisters::S1, mask);
}
Jump branchTest32(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
{
load32(address, ARMRegisters::S1);
return branchTest32(cond, ARMRegisters::S1, mask);
}
Jump jump()
{
return Jump(m_assembler.jmp());
}
void jump(RegisterID target)
{
move(target, ARMRegisters::pc);
}
void jump(Address address)
{
load32(address, ARMRegisters::pc);
}
Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
add32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchAdd32(Condition cond, Imm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
add32(imm, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
void mull32(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest) {
move(src1, ARMRegisters::S0);
src1 = ARMRegisters::S0;
}
m_assembler.mull_r(ARMRegisters::S1, dest, src2, src1);
m_assembler.cmp_r(ARMRegisters::S1, m_assembler.asr(dest, 31));
}
Jump branchMul32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
mull32(src, dest, dest);
cond = NonZero;
}
else
mul32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchMul32(Condition cond, Imm32 imm, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
move(imm, ARMRegisters::S0);
mull32(ARMRegisters::S0, src, dest);
cond = NonZero;
}
else
mul32(imm, src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, Imm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(imm, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchNeg32(Condition cond, RegisterID srcDest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
neg32(srcDest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchOr32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero));
or32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
void breakpoint()
{
m_assembler.bkpt(0);
}
Call nearCall()
{
prepareCall();
return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::LinkableNear);
}
Call call(RegisterID target)
{
prepareCall();
move(ARMRegisters::pc, target);
JmpSrc jmpSrc;
return Call(jmpSrc, Call::None);
}
void call(Address address)
{
call32(address.base, address.offset);
}
void ret()
{
m_assembler.mov_r(ARMRegisters::pc, linkRegister);
}
void set32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmp_r(left, right);
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void set32(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void set8(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
{
// ARM doesn't have byte registers
set32(cond, left, right, dest);
}
void set8(Condition cond, Address left, RegisterID right, RegisterID dest)
{
// ARM doesn't have byte registers
load32(left, ARMRegisters::S1);
set32(cond, ARMRegisters::S1, right, dest);
}
void set8(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
// ARM doesn't have byte registers
set32(cond, left, right, dest);
}
void setTest32(Condition cond, Address address, Imm32 mask, RegisterID dest)
{
load32(address, ARMRegisters::S1);
if (mask.m_value == -1)
m_assembler.cmp_r(0, ARMRegisters::S1);
else
m_assembler.tst_r(ARMRegisters::S1, m_assembler.getImm(mask.m_value, ARMRegisters::S0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void setTest8(Condition cond, Address address, Imm32 mask, RegisterID dest)
{
// ARM doesn't have byte registers
setTest32(cond, address, mask, dest);
}
void add32(Imm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void add32(Imm32 imm, AbsoluteAddress address)
{
m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
add32(imm, ARMRegisters::S1);
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void sub32(Imm32 imm, AbsoluteAddress address)
{
m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
sub32(imm, ARMRegisters::S1);
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void load32(void* address, RegisterID dest)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.dtr_u(true, dest, ARMRegisters::S0, 0);
}
Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, AbsoluteAddress left, Imm32 right)
{
load32(left.m_ptr, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Call call()
{
prepareCall();
return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::Linkable);
}
Call tailRecursiveCall()
{
return Call::fromTailJump(jump());
}
Call makeTailRecursiveCall(Jump oldJump)
{
return Call::fromTailJump(oldJump);
}
DataLabelPtr moveWithPatch(ImmPtr initialValue, RegisterID dest)
{
DataLabelPtr dataLabel(this);
m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value));
return dataLabel;
}
Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1);
Jump jump = branch32(cond, left, ARMRegisters::S1, true);
return jump;
}
Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
load32(left, ARMRegisters::S1);
dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0);
Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true);
return jump;
}
DataLabelPtr storePtrWithPatch(ImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
return dataLabel;
}
DataLabelPtr storePtrWithPatch(ImplicitAddress address)
{
return storePtrWithPatch(ImmPtr(0), address);
}
// Floating point operators
bool supportsFloatingPoint() const
{
return s_isVFPPresent;
}
bool supportsFloatingPointTruncate() const
{
return false;
}
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
m_assembler.doubleTransfer(true, dest, address.base, address.offset);
}
void loadDouble(void* address, FPRegisterID dest)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, (ARMWord)address);
m_assembler.fdtr_u(true, dest, ARMRegisters::S0, 0);
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
m_assembler.doubleTransfer(false, src, address.base, address.offset);
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.faddd_r(dest, dest, src);
}
void addDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
addDouble(ARMRegisters::SD0, dest);
}
void divDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fdivd_r(dest, dest, src);
}
void divDouble(Address src, FPRegisterID dest)
{
ASSERT_NOT_REACHED(); // Untested
loadDouble(src, ARMRegisters::SD0);
divDouble(ARMRegisters::SD0, dest);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fsubd_r(dest, dest, src);
}
void subDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
subDouble(ARMRegisters::SD0, dest);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fmuld_r(dest, dest, src);
}
void mulDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
mulDouble(ARMRegisters::SD0, dest);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.fmsr_r(dest, src);
m_assembler.fsitod_r(dest, dest);
}
void convertInt32ToDouble(Address src, FPRegisterID dest)
{
ASSERT_NOT_REACHED(); // Untested
// flds does not worth the effort here
load32(src, ARMRegisters::S1);
convertInt32ToDouble(ARMRegisters::S1, dest);
}
void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
{
ASSERT_NOT_REACHED(); // Untested
// flds does not worth the effort here
m_assembler.ldr_un_imm(ARMRegisters::S1, (ARMWord)src.m_ptr);
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
convertInt32ToDouble(ARMRegisters::S1, dest);
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
m_assembler.fcmpd_r(left, right);
m_assembler.fmstat();
if (cond & DoubleConditionBitSpecial)
m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS);
return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond & ~DoubleConditionMask)));
}
// Truncates 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, INT_MIN).
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
UNUSED_PARAM(src);
UNUSED_PARAM(dest);
ASSERT_NOT_REACHED();
return jump();
}
// Convert 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, 0).
void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp)
{
m_assembler.ftosid_r(ARMRegisters::SD0, src);
m_assembler.fmrs_r(dest, ARMRegisters::SD0);
// Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
m_assembler.fsitod_r(ARMRegisters::SD0, ARMRegisters::SD0);
failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0));
// If the result is zero, it might have been -0.0, and 0.0 equals to -0.0
failureCases.append(branchTest32(Zero, dest));
}
void zeroDouble(FPRegisterID srcDest)
{
m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0));
convertInt32ToDouble(ARMRegisters::S0, srcDest);
}
protected:
ARMAssembler::Condition ARMCondition(Condition cond)
{
return static_cast<ARMAssembler::Condition>(cond);
}
void ensureSpace(int insnSpace, int constSpace)
{
m_assembler.ensureSpace(insnSpace, constSpace);
}
int sizeOfConstantPool()
{
return m_assembler.sizeOfConstantPool();
}
void prepareCall()
{
ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord));
m_assembler.mov_r(linkRegister, ARMRegisters::pc);
}
void call32(RegisterID base, int32_t offset)
{
if (base == ARMRegisters::sp)
offset += 4;
if (offset >= 0) {
if (offset <= 0xfff) {
prepareCall();
m_assembler.dtr_u(true, ARMRegisters::pc, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.add_r(ARMRegisters::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
prepareCall();
m_assembler.dtr_u(true, ARMRegisters::pc, ARMRegisters::S0, offset & 0xfff);
} else {
ARMWord reg = m_assembler.getImm(offset, ARMRegisters::S0);
prepareCall();
m_assembler.dtr_ur(true, ARMRegisters::pc, base, reg);
}
} else {
offset = -offset;
if (offset <= 0xfff) {
prepareCall();
m_assembler.dtr_d(true, ARMRegisters::pc, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.sub_r(ARMRegisters::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
prepareCall();
m_assembler.dtr_d(true, ARMRegisters::pc, ARMRegisters::S0, offset & 0xfff);
} else {
ARMWord reg = m_assembler.getImm(offset, ARMRegisters::S0);
prepareCall();
m_assembler.dtr_dr(true, ARMRegisters::pc, base, reg);
}
}
}
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
ARMAssembler::linkCall(code, call.m_jmp, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static const bool s_isVFPPresent;
};
}
#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#endif // MacroAssemblerARM_h
|