1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/stream_synchronization.h"
#include <algorithm>
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/ntp_time.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kMaxChangeMs = 80; // From stream_synchronization.cc
constexpr int kDefaultAudioFrequency = 8000;
constexpr int kDefaultVideoFrequency = 90000;
constexpr int kSmoothingFilter = 4 * 2;
} // namespace
class StreamSynchronizationTest : public ::testing::Test {
public:
StreamSynchronizationTest()
: sync_(0, 0), clock_sender_(98765000), clock_receiver_(43210000) {}
protected:
// Generates the necessary RTCP measurements and RTP timestamps and computes
// the audio and video delays needed to get the two streams in sync.
// |audio_delay_ms| and |video_delay_ms| are the number of milliseconds after
// capture which the frames are received.
// |current_audio_delay_ms| is the number of milliseconds which audio is
// currently being delayed by the receiver.
bool DelayedStreams(int audio_delay_ms,
int video_delay_ms,
int current_audio_delay_ms,
int* total_audio_delay_ms,
int* total_video_delay_ms) {
int audio_frequency =
static_cast<int>(kDefaultAudioFrequency * audio_clock_drift_ + 0.5);
int video_frequency =
static_cast<int>(kDefaultVideoFrequency * video_clock_drift_ + 0.5);
// Generate NTP/RTP timestamp pair for both streams corresponding to RTCP.
bool new_sr;
StreamSynchronization::Measurements audio;
StreamSynchronization::Measurements video;
NtpTime ntp_time = clock_sender_.CurrentNtpTime();
uint32_t rtp_timestamp =
clock_sender_.CurrentTime().ms() * audio_frequency / 1000;
EXPECT_TRUE(audio.rtp_to_ntp.UpdateMeasurements(
ntp_time.seconds(), ntp_time.fractions(), rtp_timestamp, &new_sr));
clock_sender_.AdvanceTimeMilliseconds(100);
clock_receiver_.AdvanceTimeMilliseconds(100);
ntp_time = clock_sender_.CurrentNtpTime();
rtp_timestamp = clock_sender_.CurrentTime().ms() * video_frequency / 1000;
EXPECT_TRUE(video.rtp_to_ntp.UpdateMeasurements(
ntp_time.seconds(), ntp_time.fractions(), rtp_timestamp, &new_sr));
clock_sender_.AdvanceTimeMilliseconds(900);
clock_receiver_.AdvanceTimeMilliseconds(900);
ntp_time = clock_sender_.CurrentNtpTime();
rtp_timestamp = clock_sender_.CurrentTime().ms() * audio_frequency / 1000;
EXPECT_TRUE(audio.rtp_to_ntp.UpdateMeasurements(
ntp_time.seconds(), ntp_time.fractions(), rtp_timestamp, &new_sr));
clock_sender_.AdvanceTimeMilliseconds(100);
clock_receiver_.AdvanceTimeMilliseconds(100);
ntp_time = clock_sender_.CurrentNtpTime();
rtp_timestamp = clock_sender_.CurrentTime().ms() * video_frequency / 1000;
EXPECT_TRUE(video.rtp_to_ntp.UpdateMeasurements(
ntp_time.seconds(), ntp_time.fractions(), rtp_timestamp, &new_sr));
clock_sender_.AdvanceTimeMilliseconds(900);
clock_receiver_.AdvanceTimeMilliseconds(900);
// Capture an audio and a video frame at the same time.
audio.latest_timestamp =
clock_sender_.CurrentTime().ms() * audio_frequency / 1000;
video.latest_timestamp =
clock_sender_.CurrentTime().ms() * video_frequency / 1000;
if (audio_delay_ms > video_delay_ms) {
// Audio later than video.
clock_receiver_.AdvanceTimeMilliseconds(video_delay_ms);
video.latest_receive_time_ms = clock_receiver_.CurrentTime().ms();
clock_receiver_.AdvanceTimeMilliseconds(audio_delay_ms - video_delay_ms);
audio.latest_receive_time_ms = clock_receiver_.CurrentTime().ms();
} else {
// Video later than audio.
clock_receiver_.AdvanceTimeMilliseconds(audio_delay_ms);
audio.latest_receive_time_ms = clock_receiver_.CurrentTime().ms();
clock_receiver_.AdvanceTimeMilliseconds(video_delay_ms - audio_delay_ms);
video.latest_receive_time_ms = clock_receiver_.CurrentTime().ms();
}
int relative_delay_ms;
EXPECT_TRUE(StreamSynchronization::ComputeRelativeDelay(
audio, video, &relative_delay_ms));
EXPECT_EQ(video_delay_ms - audio_delay_ms, relative_delay_ms);
return sync_.ComputeDelays(relative_delay_ms, current_audio_delay_ms,
total_audio_delay_ms, total_video_delay_ms);
}
// Simulate audio playback 300 ms after capture and video rendering 100 ms
// after capture. Verify that the correct extra delays are calculated for
// audio and video, and that they change correctly when we simulate that
// NetEQ or the VCM adds more delay to the streams.
void BothDelayedAudioLaterTest(int base_target_delay_ms) {
const int kAudioDelayMs = base_target_delay_ms + 300;
const int kVideoDelayMs = base_target_delay_ms + 100;
int current_audio_delay_ms = base_target_delay_ms;
int total_audio_delay_ms = 0;
int total_video_delay_ms = base_target_delay_ms;
int filtered_move = (kAudioDelayMs - kVideoDelayMs) / kSmoothingFilter;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms + filtered_move, total_video_delay_ms);
EXPECT_EQ(base_target_delay_ms, total_audio_delay_ms);
// Set new current delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(
1000 - std::max(kAudioDelayMs, kVideoDelayMs));
// Simulate base_target_delay_ms minimum delay in the VCM.
total_video_delay_ms = base_target_delay_ms;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms + 2 * filtered_move, total_video_delay_ms);
EXPECT_EQ(base_target_delay_ms, total_audio_delay_ms);
// Set new current delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(
1000 - std::max(kAudioDelayMs, kVideoDelayMs));
// Simulate base_target_delay_ms minimum delay in the VCM.
total_video_delay_ms = base_target_delay_ms;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms + 3 * filtered_move, total_video_delay_ms);
EXPECT_EQ(base_target_delay_ms, total_audio_delay_ms);
// Simulate that NetEQ introduces some audio delay.
const int kNeteqDelayIncrease = 50;
current_audio_delay_ms = base_target_delay_ms + kNeteqDelayIncrease;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(
1000 - std::max(kAudioDelayMs, kVideoDelayMs));
// Simulate base_target_delay_ms minimum delay in the VCM.
total_video_delay_ms = base_target_delay_ms;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
filtered_move = 3 * filtered_move +
(kNeteqDelayIncrease + kAudioDelayMs - kVideoDelayMs) /
kSmoothingFilter;
EXPECT_EQ(base_target_delay_ms + filtered_move, total_video_delay_ms);
EXPECT_EQ(base_target_delay_ms, total_audio_delay_ms);
// Simulate that NetEQ reduces its delay.
const int kNeteqDelayDecrease = 10;
current_audio_delay_ms = base_target_delay_ms + kNeteqDelayDecrease;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(
1000 - std::max(kAudioDelayMs, kVideoDelayMs));
// Simulate base_target_delay_ms minimum delay in the VCM.
total_video_delay_ms = base_target_delay_ms;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
filtered_move =
filtered_move + (kNeteqDelayDecrease + kAudioDelayMs - kVideoDelayMs) /
kSmoothingFilter;
EXPECT_EQ(base_target_delay_ms + filtered_move, total_video_delay_ms);
EXPECT_EQ(base_target_delay_ms, total_audio_delay_ms);
}
void BothDelayedVideoLaterTest(int base_target_delay_ms) {
const int kAudioDelayMs = base_target_delay_ms + 100;
const int kVideoDelayMs = base_target_delay_ms + 300;
int current_audio_delay_ms = base_target_delay_ms;
int total_audio_delay_ms = 0;
int total_video_delay_ms = base_target_delay_ms;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms, total_video_delay_ms);
// The audio delay is not allowed to change more than this.
EXPECT_GE(base_target_delay_ms + kMaxChangeMs, total_audio_delay_ms);
int last_total_audio_delay_ms = total_audio_delay_ms;
// Set new current audio delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(
current_audio_delay_ms,
base_target_delay_ms + kVideoDelayMs - kAudioDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Set new current audio delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(
current_audio_delay_ms,
base_target_delay_ms + kVideoDelayMs - kAudioDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Simulate that NetEQ for some reason reduced the delay.
current_audio_delay_ms = base_target_delay_ms + 10;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(
current_audio_delay_ms,
base_target_delay_ms + kVideoDelayMs - kAudioDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Simulate that NetEQ for some reason significantly increased the delay.
current_audio_delay_ms = base_target_delay_ms + 350;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(base_target_delay_ms, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(
current_audio_delay_ms,
base_target_delay_ms + kVideoDelayMs - kAudioDelayMs),
total_audio_delay_ms);
}
int MaxAudioDelayChangeMs(int current_audio_delay_ms, int delay_ms) const {
int diff_ms = (delay_ms - current_audio_delay_ms) / kSmoothingFilter;
diff_ms = std::min(diff_ms, kMaxChangeMs);
diff_ms = std::max(diff_ms, -kMaxChangeMs);
return diff_ms;
}
StreamSynchronization sync_;
SimulatedClock clock_sender_;
SimulatedClock clock_receiver_;
double audio_clock_drift_ = 1.0;
double video_clock_drift_ = 1.0;
};
TEST_F(StreamSynchronizationTest, NoDelay) {
int total_audio_delay_ms = 0;
int total_video_delay_ms = 0;
EXPECT_FALSE(DelayedStreams(/*audio_delay_ms=*/0, /*video_delay_ms=*/0,
/*current_audio_delay_ms=*/0,
&total_audio_delay_ms, &total_video_delay_ms));
EXPECT_EQ(0, total_audio_delay_ms);
EXPECT_EQ(0, total_video_delay_ms);
}
TEST_F(StreamSynchronizationTest, VideoDelayed) {
const int kAudioDelayMs = 200;
int total_audio_delay_ms = 0;
int total_video_delay_ms = 0;
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, /*video_delay_ms=*/0,
/*current_audio_delay_ms=*/0,
&total_audio_delay_ms, &total_video_delay_ms));
EXPECT_EQ(0, total_audio_delay_ms);
// The delay is not allowed to change more than this.
EXPECT_EQ(kAudioDelayMs / kSmoothingFilter, total_video_delay_ms);
// Simulate 0 minimum delay in the VCM.
total_video_delay_ms = 0;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, /*video_delay_ms=*/0,
/*current_audio_delay_ms=*/0,
&total_audio_delay_ms, &total_video_delay_ms));
EXPECT_EQ(0, total_audio_delay_ms);
EXPECT_EQ(2 * kAudioDelayMs / kSmoothingFilter, total_video_delay_ms);
// Simulate 0 minimum delay in the VCM.
total_video_delay_ms = 0;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(kAudioDelayMs, /*video_delay_ms=*/0,
/*current_audio_delay_ms=*/0,
&total_audio_delay_ms, &total_video_delay_ms));
EXPECT_EQ(0, total_audio_delay_ms);
EXPECT_EQ(3 * kAudioDelayMs / kSmoothingFilter, total_video_delay_ms);
}
TEST_F(StreamSynchronizationTest, AudioDelayed) {
const int kVideoDelayMs = 200;
int current_audio_delay_ms = 0;
int total_audio_delay_ms = 0;
int total_video_delay_ms = 0;
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
// The delay is not allowed to change more than this.
EXPECT_EQ(kVideoDelayMs / kSmoothingFilter, total_audio_delay_ms);
int last_total_audio_delay_ms = total_audio_delay_ms;
// Set new current audio delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms, kVideoDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Set new current audio delay.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms, kVideoDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Simulate that NetEQ for some reason reduced the delay.
current_audio_delay_ms = 10;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms, kVideoDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Simulate that NetEQ for some reason significantly increased the delay.
current_audio_delay_ms = 350;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(800);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms, kVideoDelayMs),
total_audio_delay_ms);
}
TEST_F(StreamSynchronizationTest, NoAudioIncomingUnboundedIncrease) {
// Test how audio delay can grow unbounded when audio stops coming in.
// This is handled in caller of RtpStreamsSynchronizer, for example in
// RtpStreamsSynchronizer by not updating delays when audio samples stop
// coming in.
const int kVideoDelayMs = 300;
const int kAudioDelayMs = 100;
int current_audio_delay_ms = kAudioDelayMs;
int total_audio_delay_ms = 0;
int total_video_delay_ms = 0;
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
// The delay is not allowed to change more than this.
EXPECT_EQ((kVideoDelayMs - kAudioDelayMs) / kSmoothingFilter,
total_audio_delay_ms);
int last_total_audio_delay_ms = total_audio_delay_ms;
// Set new current audio delay: simulate audio samples are flowing in.
current_audio_delay_ms = total_audio_delay_ms;
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
EXPECT_EQ(last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms, kVideoDelayMs),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
// Simulate no incoming audio by not update audio delay.
const int kSimulationSecs = 300; // 5min
const int kMaxDeltaDelayMs = 10000; // max delay for audio in webrtc
for (auto time_secs = 0; time_secs < kSimulationSecs; time_secs++) {
clock_sender_.AdvanceTimeMilliseconds(1000);
clock_receiver_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(DelayedStreams(/*audio_delay_ms=*/0, kVideoDelayMs,
current_audio_delay_ms, &total_audio_delay_ms,
&total_video_delay_ms));
EXPECT_EQ(0, total_video_delay_ms);
// Audio delay does not go above kMaxDeltaDelayMs.
EXPECT_EQ(std::min(kMaxDeltaDelayMs,
last_total_audio_delay_ms +
MaxAudioDelayChangeMs(current_audio_delay_ms,
kVideoDelayMs)),
total_audio_delay_ms);
last_total_audio_delay_ms = total_audio_delay_ms;
}
// By now the audio delay has grown unbounded to kMaxDeltaDelayMs.
EXPECT_EQ(kMaxDeltaDelayMs, last_total_audio_delay_ms);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoLater) {
BothDelayedVideoLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterAudioClockDrift) {
audio_clock_drift_ = 1.05;
BothDelayedVideoLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterVideoClockDrift) {
video_clock_drift_ = 1.05;
BothDelayedVideoLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothDelayedAudioLater) {
BothDelayedAudioLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothDelayedAudioClockDrift) {
audio_clock_drift_ = 1.05;
BothDelayedAudioLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoClockDrift) {
video_clock_drift_ = 1.05;
BothDelayedAudioLaterTest(0);
}
TEST_F(StreamSynchronizationTest, BothEquallyDelayed) {
const int kDelayMs = 2000;
int current_audio_delay_ms = kDelayMs;
int total_audio_delay_ms = 0;
int total_video_delay_ms = kDelayMs;
// In sync, expect no change.
EXPECT_FALSE(DelayedStreams(kDelayMs, kDelayMs, current_audio_delay_ms,
&total_audio_delay_ms, &total_video_delay_ms));
// Trigger another call with the same values, delay should not be modified.
total_video_delay_ms = kDelayMs;
EXPECT_FALSE(DelayedStreams(kDelayMs, kDelayMs, current_audio_delay_ms,
&total_audio_delay_ms, &total_video_delay_ms));
// Change delay value, delay should not be modified.
const int kDelayMs2 = 5000;
current_audio_delay_ms = kDelayMs2;
total_video_delay_ms = kDelayMs2;
EXPECT_FALSE(DelayedStreams(kDelayMs2, kDelayMs2, current_audio_delay_ms,
&total_audio_delay_ms, &total_video_delay_ms));
}
TEST_F(StreamSynchronizationTest, BothDelayedAudioLaterWithBaseDelay) {
const int kBaseTargetDelayMs = 3000;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
BothDelayedAudioLaterTest(kBaseTargetDelayMs);
}
TEST_F(StreamSynchronizationTest, BothDelayedAudioClockDriftWithBaseDelay) {
const int kBaseTargetDelayMs = 3000;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
audio_clock_drift_ = 1.05;
BothDelayedAudioLaterTest(kBaseTargetDelayMs);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoClockDriftWithBaseDelay) {
const int kBaseTargetDelayMs = 3000;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
video_clock_drift_ = 1.05;
BothDelayedAudioLaterTest(kBaseTargetDelayMs);
}
TEST_F(StreamSynchronizationTest, BothDelayedVideoLaterWithBaseDelay) {
const int kBaseTargetDelayMs = 2000;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
BothDelayedVideoLaterTest(kBaseTargetDelayMs);
}
TEST_F(StreamSynchronizationTest,
BothDelayedVideoLaterAudioClockDriftWithBaseDelay) {
const int kBaseTargetDelayMs = 2000;
audio_clock_drift_ = 1.05;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
BothDelayedVideoLaterTest(kBaseTargetDelayMs);
}
TEST_F(StreamSynchronizationTest,
BothDelayedVideoLaterVideoClockDriftWithBaseDelay) {
const int kBaseTargetDelayMs = 2000;
video_clock_drift_ = 1.05;
sync_.SetTargetBufferingDelay(kBaseTargetDelayMs);
BothDelayedVideoLaterTest(kBaseTargetDelayMs);
}
} // namespace webrtc
|