1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef AirCode_h
#define AirCode_h
#if ENABLE(B3_JIT)
#include "AirArg.h"
#include "AirBasicBlock.h"
#include "AirSpecial.h"
#include "AirStackSlot.h"
#include "AirTmp.h"
#include "B3SparseCollection.h"
#include "RegisterAtOffsetList.h"
#include "StackAlignment.h"
namespace JSC { namespace B3 {
class Procedure;
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wreturn-type"
#endif // COMPILER(GCC) && ASSERT_DISABLED
namespace Air {
class BlockInsertionSet;
class CCallSpecial;
// This is an IR that is very close to the bare metal. It requires about 40x more bytes than the
// generated machine code - for example if you're generating 1MB of machine code, you need about
// 40MB of Air.
class Code {
WTF_MAKE_NONCOPYABLE(Code);
WTF_MAKE_FAST_ALLOCATED;
public:
~Code();
Procedure& proc() { return m_proc; }
JS_EXPORT_PRIVATE BasicBlock* addBlock(double frequency = 1);
// Note that you can rely on stack slots always getting indices that are larger than the index
// of any prior stack slot. In fact, all stack slots you create in the future will have an index
// that is >= stackSlots().size().
JS_EXPORT_PRIVATE StackSlot* addStackSlot(
unsigned byteSize, StackSlotKind, B3::StackSlot* = nullptr);
StackSlot* addStackSlot(B3::StackSlot*);
Special* addSpecial(std::unique_ptr<Special>);
// This is the special you need to make a C call!
CCallSpecial* cCallSpecial();
Tmp newTmp(Arg::Type type)
{
switch (type) {
case Arg::GP:
return Tmp::gpTmpForIndex(m_numGPTmps++);
case Arg::FP:
return Tmp::fpTmpForIndex(m_numFPTmps++);
}
ASSERT_NOT_REACHED();
}
unsigned numTmps(Arg::Type type)
{
switch (type) {
case Arg::GP:
return m_numGPTmps;
case Arg::FP:
return m_numFPTmps;
}
ASSERT_NOT_REACHED();
}
unsigned callArgAreaSize() const { return m_callArgAreaSize; }
// You can call this before code generation to force a minimum call arg area size.
void requestCallArgAreaSize(unsigned size)
{
m_callArgAreaSize = std::max(
m_callArgAreaSize,
static_cast<unsigned>(WTF::roundUpToMultipleOf(stackAlignmentBytes(), size)));
}
unsigned frameSize() const { return m_frameSize; }
// Only phases that do stack allocation are allowed to set this. Currently, only
// Air::allocateStack() does this.
void setFrameSize(unsigned frameSize)
{
m_frameSize = frameSize;
}
const RegisterAtOffsetList& calleeSaveRegisters() const { return m_calleeSaveRegisters; }
RegisterAtOffsetList& calleeSaveRegisters() { return m_calleeSaveRegisters; }
// Recomputes predecessors and deletes unreachable blocks.
void resetReachability();
void dump(PrintStream&) const;
unsigned size() const { return m_blocks.size(); }
BasicBlock* at(unsigned index) const { return m_blocks[index].get(); }
BasicBlock* operator[](unsigned index) const { return at(index); }
// This is used by phases that optimize the block list. You shouldn't use this unless you really know
// what you're doing.
Vector<std::unique_ptr<BasicBlock>>& blockList() { return m_blocks; }
// Finds the smallest index' such that at(index') != null and index' >= index.
unsigned findFirstBlockIndex(unsigned index) const;
// Finds the smallest index' such that at(index') != null and index' > index.
unsigned findNextBlockIndex(unsigned index) const;
BasicBlock* findNextBlock(BasicBlock*) const;
class iterator {
public:
iterator()
: m_code(nullptr)
, m_index(0)
{
}
iterator(const Code& code, unsigned index)
: m_code(&code)
, m_index(m_code->findFirstBlockIndex(index))
{
}
BasicBlock* operator*()
{
return m_code->at(m_index);
}
iterator& operator++()
{
m_index = m_code->findFirstBlockIndex(m_index + 1);
return *this;
}
bool operator==(const iterator& other) const
{
return m_index == other.m_index;
}
bool operator!=(const iterator& other) const
{
return !(*this == other);
}
private:
const Code* m_code;
unsigned m_index;
};
iterator begin() const { return iterator(*this, 0); }
iterator end() const { return iterator(*this, size()); }
const SparseCollection<StackSlot>& stackSlots() const { return m_stackSlots; }
SparseCollection<StackSlot>& stackSlots() { return m_stackSlots; }
const SparseCollection<Special>& specials() const { return m_specials; }
SparseCollection<Special>& specials() { return m_specials; }
template<typename Callback>
void forAllTmps(const Callback& callback) const
{
for (unsigned i = m_numGPTmps; i--;)
callback(Tmp::gpTmpForIndex(i));
for (unsigned i = m_numFPTmps; i--;)
callback(Tmp::fpTmpForIndex(i));
}
void addFastTmp(Tmp);
bool isFastTmp(Tmp tmp) const { return m_fastTmps.contains(tmp); }
// The name has to be a string literal, since we don't do any memory management for the string.
void setLastPhaseName(const char* name)
{
m_lastPhaseName = name;
}
const char* lastPhaseName() const { return m_lastPhaseName; }
private:
friend class ::JSC::B3::Procedure;
friend class BlockInsertionSet;
Code(Procedure&);
Procedure& m_proc; // Some meta-data, like byproducts, is stored in the Procedure.
SparseCollection<StackSlot> m_stackSlots;
Vector<std::unique_ptr<BasicBlock>> m_blocks;
SparseCollection<Special> m_specials;
HashSet<Tmp> m_fastTmps;
CCallSpecial* m_cCallSpecial { nullptr };
unsigned m_numGPTmps { 0 };
unsigned m_numFPTmps { 0 };
unsigned m_frameSize { 0 };
unsigned m_callArgAreaSize { 0 };
RegisterAtOffsetList m_calleeSaveRegisters;
const char* m_lastPhaseName;
};
} } } // namespace JSC::B3::Air
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic pop
#endif // COMPILER(GCC) && ASSERT_DISABLED
#endif // ENABLE(B3_JIT)
#endif // AirCode_h
|