1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3LowerToAir.h"
#if ENABLE(B3_JIT)
#include "AirCCallSpecial.h"
#include "AirCode.h"
#include "AirInsertionSet.h"
#include "AirInstInlines.h"
#include "AirStackSlot.h"
#include "B3ArgumentRegValue.h"
#include "B3BasicBlockInlines.h"
#include "B3BlockWorklist.h"
#include "B3CCallValue.h"
#include "B3CheckSpecial.h"
#include "B3Commutativity.h"
#include "B3Dominators.h"
#include "B3IndexMap.h"
#include "B3IndexSet.h"
#include "B3MemoryValue.h"
#include "B3PatchpointSpecial.h"
#include "B3PatchpointValue.h"
#include "B3PhaseScope.h"
#include "B3PhiChildren.h"
#include "B3Procedure.h"
#include "B3SlotBaseValue.h"
#include "B3StackSlot.h"
#include "B3UpsilonValue.h"
#include "B3UseCounts.h"
#include "B3ValueInlines.h"
#include "B3Variable.h"
#include "B3VariableValue.h"
#include <wtf/ListDump.h>
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wreturn-type"
#endif // COMPILER(GCC) && ASSERT_DISABLED
namespace JSC { namespace B3 {
using namespace Air;
namespace {
const bool verbose = false;
class LowerToAir {
public:
LowerToAir(Procedure& procedure)
: m_valueToTmp(procedure.values().size())
, m_phiToTmp(procedure.values().size())
, m_blockToBlock(procedure.size())
, m_useCounts(procedure)
, m_phiChildren(procedure)
, m_dominators(procedure.dominators())
, m_procedure(procedure)
, m_code(procedure.code())
{
}
void run()
{
for (B3::BasicBlock* block : m_procedure)
m_blockToBlock[block] = m_code.addBlock(block->frequency());
for (Value* value : m_procedure.values()) {
switch (value->opcode()) {
case Phi: {
m_phiToTmp[value] = m_code.newTmp(Arg::typeForB3Type(value->type()));
if (verbose)
dataLog("Phi tmp for ", *value, ": ", m_phiToTmp[value], "\n");
break;
}
default:
break;
}
}
for (B3::StackSlot* stack : m_procedure.stackSlots())
m_stackToStack.add(stack, m_code.addStackSlot(stack));
for (Variable* variable : m_procedure.variables())
m_variableToTmp.add(variable, m_code.newTmp(Arg::typeForB3Type(variable->type())));
// Figure out which blocks are not rare.
m_fastWorklist.push(m_procedure[0]);
while (B3::BasicBlock* block = m_fastWorklist.pop()) {
for (B3::FrequentedBlock& successor : block->successors()) {
if (!successor.isRare())
m_fastWorklist.push(successor.block());
}
}
m_procedure.resetValueOwners(); // Used by crossesInterference().
// Lower defs before uses on a global level. This is a good heuristic to lock down a
// hoisted address expression before we duplicate it back into the loop.
for (B3::BasicBlock* block : m_procedure.blocksInPreOrder()) {
m_block = block;
// Reset some state.
m_insts.resize(0);
m_isRare = !m_fastWorklist.saw(block);
if (verbose)
dataLog("Lowering Block ", *block, ":\n");
// Process blocks in reverse order so we see uses before defs. That's what allows us
// to match patterns effectively.
for (unsigned i = block->size(); i--;) {
m_index = i;
m_value = block->at(i);
if (m_locked.contains(m_value))
continue;
m_insts.append(Vector<Inst>());
if (verbose)
dataLog("Lowering ", deepDump(m_procedure, m_value), ":\n");
lower();
if (verbose) {
for (Inst& inst : m_insts.last())
dataLog(" ", inst, "\n");
}
}
// Now append the instructions. m_insts contains them in reverse order, so we process
// it in reverse.
for (unsigned i = m_insts.size(); i--;) {
for (Inst& inst : m_insts[i])
m_blockToBlock[block]->appendInst(WTFMove(inst));
}
// Make sure that the successors are set up correctly.
ASSERT(block->successors().size() <= 2);
for (B3::FrequentedBlock successor : block->successors()) {
m_blockToBlock[block]->successors().append(
Air::FrequentedBlock(m_blockToBlock[successor.block()], successor.frequency()));
}
}
Air::InsertionSet insertionSet(m_code);
for (Inst& inst : m_prologue)
insertionSet.insertInst(0, WTFMove(inst));
insertionSet.execute(m_code[0]);
}
private:
bool shouldCopyPropagate(Value* value)
{
switch (value->opcode()) {
case Trunc:
case Identity:
return true;
default:
return false;
}
}
class ArgPromise {
public:
ArgPromise() { }
ArgPromise(const Arg& arg, Value* valueToLock = nullptr)
: m_arg(arg)
, m_value(valueToLock)
{
}
static ArgPromise tmp(Value* value)
{
ArgPromise result;
result.m_value = value;
return result;
}
explicit operator bool() const { return m_arg || m_value; }
Arg::Kind kind() const
{
if (!m_arg && m_value)
return Arg::Tmp;
return m_arg.kind();
}
const Arg& peek() const
{
return m_arg;
}
Arg consume(LowerToAir& lower) const
{
if (!m_arg && m_value)
return lower.tmp(m_value);
if (m_value)
lower.commitInternal(m_value);
return m_arg;
}
private:
// Three forms:
// Everything null: invalid.
// Arg non-null, value null: just use the arg, nothing special.
// Arg null, value non-null: it's a tmp, pin it when necessary.
// Arg non-null, value non-null: use the arg, lock the value.
Arg m_arg;
Value* m_value;
};
// Consider using tmpPromise() in cases where you aren't sure that you want to pin the value yet.
// Here are three canonical ways of using tmp() and tmpPromise():
//
// Idiom #1: You know that you want a tmp() and you know that it will be valid for the
// instruction you're emitting.
//
// append(Foo, tmp(bar));
//
// Idiom #2: You don't know if you want to use a tmp() because you haven't determined if the
// instruction will accept it, so you query first. Note that the call to tmp() happens only after
// you are sure that you will use it.
//
// if (isValidForm(Foo, Arg::Tmp))
// append(Foo, tmp(bar))
//
// Idiom #3: Same as Idiom #2, but using tmpPromise. Notice that this calls consume() only after
// it's sure it will use the tmp. That's deliberate.
//
// ArgPromise promise = tmpPromise(bar);
// if (isValidForm(Foo, promise.kind()))
// append(Foo, promise.consume(*this))
//
// In both idiom #2 and idiom #3, we don't pin the value to a temporary except when we actually
// emit the instruction. Both tmp() and tmpPromise().consume(*this) will pin it. Pinning means
// that we will henceforth require that the value of 'bar' is generated as a separate
// instruction. We don't want to pin the value to a temporary if we might change our minds, and
// pass an address operand representing 'bar' to Foo instead.
//
// Because tmp() pins, the following is not an idiom you should use:
//
// Tmp tmp = this->tmp(bar);
// if (isValidForm(Foo, tmp.kind()))
// append(Foo, tmp);
//
// That's because if isValidForm() returns false, you will have already pinned the 'bar' to a
// temporary. You might later want to try to do something like loadPromise(), and that will fail.
// This arises in operations that have both a Addr,Tmp and Tmp,Addr forms. The following code
// seems right, but will actually fail to ever match the Tmp,Addr form because by then, the right
// value is already pinned.
//
// auto tryThings = [this] (const Arg& left, const Arg& right) {
// if (isValidForm(Foo, left.kind(), right.kind()))
// return Inst(Foo, m_value, left, right);
// return Inst();
// };
// if (Inst result = tryThings(loadAddr(left), tmp(right)))
// return result;
// if (Inst result = tryThings(tmp(left), loadAddr(right))) // this never succeeds.
// return result;
// return Inst(Foo, m_value, tmp(left), tmp(right));
//
// If you imagine that loadAddr(value) is just loadPromise(value).consume(*this), then this code
// will run correctly - it will generate OK code - but the second form is never matched.
// loadAddr(right) will never succeed because it will observe that 'right' is already pinned.
// Of course, it's exactly because of the risky nature of such code that we don't have a
// loadAddr() helper and require you to balance ArgPromise's in code like this. Such code will
// work fine if written as:
//
// auto tryThings = [this] (const ArgPromise& left, const ArgPromise& right) {
// if (isValidForm(Foo, left.kind(), right.kind()))
// return Inst(Foo, m_value, left.consume(*this), right.consume(*this));
// return Inst();
// };
// if (Inst result = tryThings(loadPromise(left), tmpPromise(right)))
// return result;
// if (Inst result = tryThings(tmpPromise(left), loadPromise(right)))
// return result;
// return Inst(Foo, m_value, tmp(left), tmp(right));
//
// Notice that we did use tmp in the fall-back case at the end, because by then, we know for sure
// that we want a tmp. But using tmpPromise in the tryThings() calls ensures that doing so
// doesn't prevent us from trying loadPromise on the same value.
Tmp tmp(Value* value)
{
Tmp& tmp = m_valueToTmp[value];
if (!tmp) {
while (shouldCopyPropagate(value))
value = value->child(0);
if (value->opcode() == FramePointer)
return Tmp(GPRInfo::callFrameRegister);
Tmp& realTmp = m_valueToTmp[value];
if (!realTmp) {
realTmp = m_code.newTmp(Arg::typeForB3Type(value->type()));
if (m_procedure.isFastConstant(value->key()))
m_code.addFastTmp(realTmp);
if (verbose)
dataLog("Tmp for ", *value, ": ", realTmp, "\n");
}
tmp = realTmp;
}
return tmp;
}
ArgPromise tmpPromise(Value* value)
{
return ArgPromise::tmp(value);
}
bool canBeInternal(Value* value)
{
// If one of the internal things has already been computed, then we don't want to cause
// it to be recomputed again.
if (m_valueToTmp[value])
return false;
// We require internals to have only one use - us. It's not clear if this should be numUses() or
// numUsingInstructions(). Ideally, it would be numUsingInstructions(), except that it's not clear
// if we'd actually do the right thing when matching over such a DAG pattern. For now, it simply
// doesn't matter because we don't implement patterns that would trigger this.
if (m_useCounts.numUses(value) != 1)
return false;
return true;
}
// If you ask canBeInternal() and then construct something from that, and you commit to emitting
// that code, then you must commitInternal() on that value. This is tricky, and you only need to
// do it if you're pattern matching by hand rather than using the patterns language. Long story
// short, you should avoid this by using the pattern matcher to match patterns.
void commitInternal(Value* value)
{
m_locked.add(value);
}
bool crossesInterference(Value* value)
{
// If it's in a foreign block, then be conservative. We could handle this if we were
// willing to do heavier analysis. For example, if we had liveness, then we could label
// values as "crossing interference" if they interfere with anything that they are live
// across. But, it's not clear how useful this would be.
if (value->owner != m_value->owner)
return true;
Effects effects = value->effects();
for (unsigned i = m_index; i--;) {
Value* otherValue = m_block->at(i);
if (otherValue == value)
return false;
if (effects.interferes(otherValue->effects()))
return true;
}
ASSERT_NOT_REACHED();
return true;
}
// This turns the given operand into an address.
Arg effectiveAddr(Value* address, int32_t offset, Arg::Width width)
{
ASSERT(Arg::isValidAddrForm(offset, width));
auto fallback = [&] () -> Arg {
return Arg::addr(tmp(address), offset);
};
static const unsigned lotsOfUses = 10; // This is arbitrary and we should tune it eventually.
// Only match if the address value isn't used in some large number of places.
if (m_useCounts.numUses(address) > lotsOfUses)
return fallback();
switch (address->opcode()) {
case Add: {
Value* left = address->child(0);
Value* right = address->child(1);
auto tryIndex = [&] (Value* index, Value* base) -> Arg {
if (index->opcode() != Shl)
return Arg();
if (m_locked.contains(index->child(0)) || m_locked.contains(base))
return Arg();
if (!index->child(1)->hasInt32())
return Arg();
unsigned scale = 1 << (index->child(1)->asInt32() & 31);
if (!Arg::isValidIndexForm(scale, offset, width))
return Arg();
return Arg::index(tmp(base), tmp(index->child(0)), scale, offset);
};
if (Arg result = tryIndex(left, right))
return result;
if (Arg result = tryIndex(right, left))
return result;
if (m_locked.contains(left) || m_locked.contains(right)
|| !Arg::isValidIndexForm(1, offset, width))
return fallback();
return Arg::index(tmp(left), tmp(right), 1, offset);
}
case Shl: {
Value* left = address->child(0);
// We'll never see child(1)->isInt32(0), since that would have been reduced. If the shift
// amount is greater than 1, then there isn't really anything smart that we could do here.
// We avoid using baseless indexes because their encoding isn't particularly efficient.
if (m_locked.contains(left) || !address->child(1)->isInt32(1)
|| !Arg::isValidIndexForm(1, offset, width))
return fallback();
return Arg::index(tmp(left), tmp(left), 1, offset);
}
case FramePointer:
return Arg::addr(Tmp(GPRInfo::callFrameRegister), offset);
case SlotBase:
return Arg::stack(m_stackToStack.get(address->as<SlotBaseValue>()->slot()), offset);
default:
return fallback();
}
}
// This gives you the address of the given Load or Store. If it's not a Load or Store, then
// it returns Arg().
Arg addr(Value* memoryValue)
{
MemoryValue* value = memoryValue->as<MemoryValue>();
if (!value)
return Arg();
int32_t offset = value->offset();
Arg::Width width = Arg::widthForBytes(value->accessByteSize());
Arg result = effectiveAddr(value->lastChild(), offset, width);
ASSERT(result.isValidForm(width));
return result;
}
ArgPromise loadPromiseAnyOpcode(Value* loadValue)
{
if (!canBeInternal(loadValue))
return Arg();
if (crossesInterference(loadValue))
return Arg();
return ArgPromise(addr(loadValue), loadValue);
}
ArgPromise loadPromise(Value* loadValue, B3::Opcode loadOpcode)
{
if (loadValue->opcode() != loadOpcode)
return Arg();
return loadPromiseAnyOpcode(loadValue);
}
ArgPromise loadPromise(Value* loadValue)
{
return loadPromise(loadValue, Load);
}
Arg imm(Value* value)
{
if (value->hasInt()) {
int64_t intValue = value->asInt();
if (Arg::isValidImmForm(intValue))
return Arg::imm(intValue);
}
return Arg();
}
Arg bitImm(Value* value)
{
if (value->hasInt()) {
int64_t intValue = value->asInt();
if (Arg::isValidBitImmForm(intValue))
return Arg::bitImm(intValue);
}
return Arg();
}
Arg bitImm64(Value* value)
{
if (value->hasInt()) {
int64_t intValue = value->asInt();
if (Arg::isValidBitImm64Form(intValue))
return Arg::bitImm64(intValue);
}
return Arg();
}
Arg immOrTmp(Value* value)
{
if (Arg result = imm(value))
return result;
return tmp(value);
}
// By convention, we use Oops to mean "I don't know".
Air::Opcode tryOpcodeForType(
Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
{
Air::Opcode opcode;
switch (type) {
case Int32:
opcode = opcode32;
break;
case Int64:
opcode = opcode64;
break;
case Float:
opcode = opcodeFloat;
break;
case Double:
opcode = opcodeDouble;
break;
default:
opcode = Air::Oops;
break;
}
return opcode;
}
Air::Opcode tryOpcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
{
return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
}
Air::Opcode opcodeForType(
Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type)
{
Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, type);
RELEASE_ASSERT(opcode != Air::Oops);
return opcode;
}
Air::Opcode opcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type)
{
return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type);
}
template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble = Air::Oops, Air::Opcode opcodeFloat = Air::Oops>
void appendUnOp(Value* value)
{
Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, value->type());
Tmp result = tmp(m_value);
// Two operand forms like:
// Op a, b
// mean something like:
// b = Op a
ArgPromise addr = loadPromise(value);
if (isValidForm(opcode, addr.kind(), Arg::Tmp)) {
append(opcode, addr.consume(*this), result);
return;
}
if (isValidForm(opcode, Arg::Tmp, Arg::Tmp)) {
append(opcode, tmp(value), result);
return;
}
ASSERT(value->type() == m_value->type());
append(relaxedMoveForType(m_value->type()), tmp(value), result);
append(opcode, result);
}
// Call this method when doing two-operand lowering of a commutative operation. You have a choice of
// which incoming Value is moved into the result. This will select which one is likely to be most
// profitable to use as the result. Doing the right thing can have big performance consequences in tight
// kernels.
bool preferRightForResult(Value* left, Value* right)
{
// The default is to move left into result, because that's required for non-commutative instructions.
// The value that we want to move into result position is the one that dies here. So, if we're
// compiling a commutative operation and we know that actually right is the one that dies right here,
// then we can flip things around to help coalescing, which then kills the move instruction.
//
// But it's more complicated:
// - Used-once is a bad estimate of whether the variable dies here.
// - A child might be a candidate for coalescing with this value.
//
// Currently, we have machinery in place to recognize super obvious forms of the latter issue.
// We recognize when a child is a Phi that has this value as one of its children. We're very
// conservative about this; for example we don't even consider transitive Phi children.
bool leftIsPhiWithThis = m_phiChildren[left].transitivelyUses(m_value);
bool rightIsPhiWithThis = m_phiChildren[right].transitivelyUses(m_value);
if (leftIsPhiWithThis != rightIsPhiWithThis)
return rightIsPhiWithThis;
if (m_useCounts.numUsingInstructions(right) != 1)
return false;
if (m_useCounts.numUsingInstructions(left) != 1)
return true;
// The use count might be 1 if the variable is live around a loop. We can guarantee that we
// pick the the variable that is least likely to suffer this problem if we pick the one that
// is closest to us in an idom walk. By convention, we slightly bias this in favor of
// returning true.
// We cannot prefer right if right is further away in an idom walk.
if (m_dominators.strictlyDominates(right->owner, left->owner))
return false;
return true;
}
template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Commutativity commutativity = NotCommutative>
void appendBinOp(Value* left, Value* right)
{
Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, left->type());
Tmp result = tmp(m_value);
// Three-operand forms like:
// Op a, b, c
// mean something like:
// c = a Op b
if (isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) {
if (commutativity == Commutative) {
if (imm(right)) {
append(opcode, imm(right), tmp(left), result);
return;
}
} else {
// A non-commutative operation could have an immediate in left.
if (imm(left)) {
append(opcode, imm(left), tmp(right), result);
return;
}
}
}
if (isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp)) {
if (commutativity == Commutative) {
if (Arg rightArg = bitImm(right)) {
append(opcode, rightArg, tmp(left), result);
return;
}
} else {
// A non-commutative operation could have an immediate in left.
if (Arg leftArg = bitImm(left)) {
append(opcode, leftArg, tmp(right), result);
return;
}
}
}
if (isValidForm(opcode, Arg::BitImm64, Arg::Tmp, Arg::Tmp)) {
if (commutativity == Commutative) {
if (Arg rightArg = bitImm64(right)) {
append(opcode, rightArg, tmp(left), result);
return;
}
} else {
// A non-commutative operation could have an immediate in left.
if (Arg leftArg = bitImm64(left)) {
append(opcode, leftArg, tmp(right), result);
return;
}
}
}
if (imm(right) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
append(opcode, tmp(left), imm(right), result);
return;
}
// Note that no extant architecture has a three-operand form of binary operations that also
// load from memory. If such an abomination did exist, we would handle it somewhere around
// here.
// Two-operand forms like:
// Op a, b
// mean something like:
// b = b Op a
// At this point, we prefer versions of the operation that have a fused load or an immediate
// over three operand forms.
if (left != right) {
if (commutativity == Commutative) {
ArgPromise leftAddr = loadPromise(left);
if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp)) {
append(relaxedMoveForType(m_value->type()), tmp(right), result);
append(opcode, leftAddr.consume(*this), result);
return;
}
}
ArgPromise rightAddr = loadPromise(right);
if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp)) {
append(relaxedMoveForType(m_value->type()), tmp(left), result);
append(opcode, rightAddr.consume(*this), result);
return;
}
}
if (imm(right) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
append(relaxedMoveForType(m_value->type()), tmp(left), result);
append(opcode, imm(right), result);
return;
}
if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
append(opcode, tmp(left), tmp(right), result);
return;
}
if (commutativity == Commutative && preferRightForResult(left, right)) {
append(relaxedMoveForType(m_value->type()), tmp(right), result);
append(opcode, tmp(left), result);
return;
}
append(relaxedMoveForType(m_value->type()), tmp(left), result);
append(opcode, tmp(right), result);
}
template<Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
void appendBinOp(Value* left, Value* right)
{
appendBinOp<opcode32, opcode64, Air::Oops, Air::Oops, commutativity>(left, right);
}
template<Air::Opcode opcode32, Air::Opcode opcode64>
void appendShift(Value* value, Value* amount)
{
Air::Opcode opcode = opcodeForType(opcode32, opcode64, value->type());
if (imm(amount)) {
if (isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
append(opcode, tmp(value), imm(amount), tmp(m_value));
return;
}
if (isValidForm(opcode, Arg::Imm, Arg::Tmp)) {
append(Move, tmp(value), tmp(m_value));
append(opcode, imm(amount), tmp(m_value));
return;
}
}
if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
append(opcode, tmp(value), tmp(amount), tmp(m_value));
return;
}
#if CPU(X86) || CPU(X86_64)
append(Move, tmp(value), tmp(m_value));
append(Move, tmp(amount), Tmp(X86Registers::ecx));
append(opcode, Tmp(X86Registers::ecx), tmp(m_value));
#endif
}
template<Air::Opcode opcode32, Air::Opcode opcode64>
bool tryAppendStoreUnOp(Value* value)
{
Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, value->type());
if (opcode == Air::Oops)
return false;
Arg storeAddr = addr(m_value);
ASSERT(storeAddr);
ArgPromise loadPromise = this->loadPromise(value);
if (loadPromise.peek() != storeAddr)
return false;
if (!isValidForm(opcode, storeAddr.kind()))
return false;
loadPromise.consume(*this);
append(opcode, storeAddr);
return true;
}
template<
Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative>
bool tryAppendStoreBinOp(Value* left, Value* right)
{
Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, left->type());
if (opcode == Air::Oops)
return false;
Arg storeAddr = addr(m_value);
ASSERT(storeAddr);
auto getLoadPromise = [&] (Value* load) -> ArgPromise {
switch (m_value->opcode()) {
case B3::Store:
if (load->opcode() != B3::Load)
return ArgPromise();
break;
case B3::Store8:
if (load->opcode() != B3::Load8Z && load->opcode() != B3::Load8S)
return ArgPromise();
break;
case B3::Store16:
if (load->opcode() != B3::Load16Z && load->opcode() != B3::Load16S)
return ArgPromise();
break;
default:
return ArgPromise();
}
return loadPromiseAnyOpcode(load);
};
ArgPromise loadPromise;
Value* otherValue = nullptr;
loadPromise = getLoadPromise(left);
if (loadPromise.peek() == storeAddr)
otherValue = right;
else if (commutativity == Commutative) {
loadPromise = getLoadPromise(right);
if (loadPromise.peek() == storeAddr)
otherValue = left;
}
if (!otherValue)
return false;
if (isValidForm(opcode, Arg::Imm, storeAddr.kind()) && imm(otherValue)) {
loadPromise.consume(*this);
append(opcode, imm(otherValue), storeAddr);
return true;
}
if (!isValidForm(opcode, Arg::Tmp, storeAddr.kind()))
return false;
loadPromise.consume(*this);
append(opcode, tmp(otherValue), storeAddr);
return true;
}
Inst createStore(Air::Opcode move, Value* value, const Arg& dest)
{
if (imm(value) && isValidForm(move, Arg::Imm, dest.kind()))
return Inst(move, m_value, imm(value), dest);
return Inst(move, m_value, tmp(value), dest);
}
Inst createStore(Value* value, const Arg& dest)
{
Air::Opcode moveOpcode = moveForType(value->type());
return createStore(moveOpcode, value, dest);
}
void appendStore(Value* value, const Arg& dest)
{
m_insts.last().append(createStore(value, dest));
}
Air::Opcode moveForType(Type type)
{
switch (type) {
case Int32:
return Move32;
case Int64:
RELEASE_ASSERT(is64Bit());
return Move;
case Float:
return MoveFloat;
case Double:
return MoveDouble;
case Void:
break;
}
RELEASE_ASSERT_NOT_REACHED();
return Air::Oops;
}
Air::Opcode relaxedMoveForType(Type type)
{
switch (type) {
case Int32:
case Int64:
// For Int32, we could return Move or Move32. It's a trade-off.
//
// Move32: Using Move32 guarantees that we use the narrower move, but in cases where the
// register allocator can't prove that the variables involved are 32-bit, this will
// disable coalescing.
//
// Move: Using Move guarantees that the register allocator can coalesce normally, but in
// cases where it can't prove that the variables are 32-bit and it doesn't coalesce,
// this will force us to use a full 64-bit Move instead of the slightly cheaper
// 32-bit Move32.
//
// Coalescing is a lot more profitable than turning Move into Move32. So, it's better to
// use Move here because in cases where the register allocator cannot prove that
// everything is 32-bit, we still get coalescing.
return Move;
case Float:
// MoveFloat is always coalescable and we never convert MoveDouble to MoveFloat, so we
// should use MoveFloat when we know that the temporaries involved are 32-bit.
return MoveFloat;
case Double:
return MoveDouble;
case Void:
break;
}
RELEASE_ASSERT_NOT_REACHED();
return Air::Oops;
}
template<typename... Arguments>
void append(Air::Opcode opcode, Arguments&&... arguments)
{
m_insts.last().append(Inst(opcode, m_value, std::forward<Arguments>(arguments)...));
}
template<typename T, typename... Arguments>
T* ensureSpecial(T*& field, Arguments&&... arguments)
{
if (!field) {
field = static_cast<T*>(
m_code.addSpecial(std::make_unique<T>(std::forward<Arguments>(arguments)...)));
}
return field;
}
template<typename... Arguments>
CheckSpecial* ensureCheckSpecial(Arguments&&... arguments)
{
CheckSpecial::Key key(std::forward<Arguments>(arguments)...);
auto result = m_checkSpecials.add(key, nullptr);
return ensureSpecial(result.iterator->value, key);
}
void fillStackmap(Inst& inst, StackmapValue* stackmap, unsigned numSkipped)
{
for (unsigned i = numSkipped; i < stackmap->numChildren(); ++i) {
ConstrainedValue value = stackmap->constrainedChild(i);
Arg arg;
switch (value.rep().kind()) {
case ValueRep::WarmAny:
case ValueRep::ColdAny:
case ValueRep::LateColdAny:
if (imm(value.value()))
arg = imm(value.value());
else if (value.value()->hasInt64())
arg = Arg::bigImm(value.value()->asInt64());
else if (value.value()->hasDouble() && canBeInternal(value.value())) {
commitInternal(value.value());
arg = Arg::bigImm(bitwise_cast<int64_t>(value.value()->asDouble()));
} else
arg = tmp(value.value());
break;
case ValueRep::SomeRegister:
arg = tmp(value.value());
break;
case ValueRep::Register:
stackmap->earlyClobbered().clear(value.rep().reg());
arg = Tmp(value.rep().reg());
append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), arg);
break;
case ValueRep::StackArgument:
arg = Arg::callArg(value.rep().offsetFromSP());
appendStore(value.value(), arg);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
inst.args.append(arg);
}
}
// Create an Inst to do the comparison specified by the given value.
template<typename CompareFunctor, typename TestFunctor, typename CompareDoubleFunctor, typename CompareFloatFunctor>
Inst createGenericCompare(
Value* value,
const CompareFunctor& compare, // Signature: (Arg::Width, Arg relCond, Arg, Arg) -> Inst
const TestFunctor& test, // Signature: (Arg::Width, Arg resCond, Arg, Arg) -> Inst
const CompareDoubleFunctor& compareDouble, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
const CompareFloatFunctor& compareFloat, // Signature: (Arg doubleCond, Arg, Arg) -> Inst
bool inverted = false)
{
// NOTE: This is totally happy to match comparisons that have already been computed elsewhere
// since on most architectures, the cost of branching on a previously computed comparison
// result is almost always higher than just doing another fused compare/branch. The only time
// it could be worse is if we have a binary comparison and both operands are variables (not
// constants), and we encounter register pressure. Even in this case, duplicating the compare
// so that we can fuse it to the branch will be more efficient most of the time, since
// register pressure is not *that* common. For this reason, this algorithm will always
// duplicate the comparison.
//
// However, we cannot duplicate loads. The canBeInternal() on a load will assume that we
// already validated canBeInternal() on all of the values that got us to the load. So, even
// if we are sharing a value, we still need to call canBeInternal() for the purpose of
// tracking whether we are still in good shape to fuse loads.
//
// We could even have a chain of compare values that we fuse, and any member of the chain
// could be shared. Once any of them are shared, then the shared one's transitive children
// cannot be locked (i.e. commitInternal()). But if none of them are shared, then we want to
// lock all of them because that's a prerequisite to fusing the loads so that the loads don't
// get duplicated. For example, we might have:
//
// @tmp1 = LessThan(@a, @b)
// @tmp2 = Equal(@tmp1, 0)
// Branch(@tmp2)
//
// If either @a or @b are loads, then we want to have locked @tmp1 and @tmp2 so that they
// don't emit the loads a second time. But if we had another use of @tmp2, then we cannot
// lock @tmp1 (or @a or @b) because then we'll get into trouble when the other values that
// try to share @tmp1 with us try to do their lowering.
//
// There's one more wrinkle. If we don't lock an internal value, then this internal value may
// have already separately locked its children. So, if we're not locking a value then we need
// to make sure that its children aren't locked. We encapsulate this in two ways:
//
// canCommitInternal: This variable tells us if the values that we've fused so far are
// locked. This means that we're not sharing any of them with anyone. This permits us to fuse
// loads. If it's false, then we cannot fuse loads and we also need to ensure that the
// children of any values we try to fuse-by-sharing are not already locked. You don't have to
// worry about the children locking thing if you use prepareToFuse() before trying to fuse a
// sharable value. But, you do need to guard any load fusion by checking if canCommitInternal
// is true.
//
// FusionResult prepareToFuse(value): Call this when you think that you would like to fuse
// some value and that value is not a load. It will automatically handle the shared-or-locked
// issues and it will clear canCommitInternal if necessary. This will return CannotFuse
// (which acts like false) if the value cannot be locked and its children are locked. That's
// rare, but you just need to make sure that you do smart things when this happens (i.e. just
// use the value rather than trying to fuse it). After you call prepareToFuse(), you can
// still change your mind about whether you will actually fuse the value. If you do fuse it,
// you need to call commitFusion(value, fusionResult).
//
// commitFusion(value, fusionResult): Handles calling commitInternal(value) if fusionResult
// is FuseAndCommit.
bool canCommitInternal = true;
enum FusionResult {
CannotFuse,
FuseAndCommit,
Fuse
};
auto prepareToFuse = [&] (Value* value) -> FusionResult {
if (value == m_value) {
// It's not actually internal. It's the root value. We're good to go.
return Fuse;
}
if (canCommitInternal && canBeInternal(value)) {
// We are the only users of this value. This also means that the value's children
// could not have been locked, since we have now proved that m_value dominates value
// in the data flow graph. To only other way to value is from a user of m_value. If
// value's children are shared with others, then they could not have been locked
// because their use count is greater than 1. If they are only used from value, then
// in order for value's children to be locked, value would also have to be locked,
// and we just proved that it wasn't.
return FuseAndCommit;
}
// We're going to try to share value with others. It's possible that some other basic
// block had already emitted code for value and then matched over its children and then
// locked them, in which case we just want to use value instead of duplicating it. So, we
// validate the children. Note that this only arises in linear chains like:
//
// BB#1:
// @1 = Foo(...)
// @2 = Bar(@1)
// Jump(#2)
// BB#2:
// @3 = Baz(@2)
//
// Notice how we could start by generating code for BB#1 and then decide to lock @1 when
// generating code for @2, if we have some way of fusing Bar and Foo into a single
// instruction. This is legal, since indeed @1 only has one user. The fact that @2 now
// has a tmp (i.e. @2 is pinned), canBeInternal(@2) will return false, which brings us
// here. In that case, we cannot match over @2 because then we'd hit a hazard if we end
// up deciding not to fuse Foo into the fused Baz/Bar.
//
// Happily, there are only two places where this kind of child validation happens is in
// rules that admit sharing, like this and effectiveAddress().
//
// N.B. We could probably avoid the need to do value locking if we committed to a well
// chosen code generation order. For example, if we guaranteed that all of the users of
// a value get generated before that value, then there's no way for the lowering of @3 to
// see @1 locked. But we don't want to do that, since this is a greedy instruction
// selector and so we want to be able to play with order.
for (Value* child : value->children()) {
if (m_locked.contains(child))
return CannotFuse;
}
// It's safe to share value, but since we're sharing, it means that we aren't locking it.
// If we don't lock it, then fusing loads is off limits and all of value's children will
// have to go through the sharing path as well.
canCommitInternal = false;
return Fuse;
};
auto commitFusion = [&] (Value* value, FusionResult result) {
if (result == FuseAndCommit)
commitInternal(value);
};
// Chew through any inversions. This loop isn't necessary for comparisons and branches, but
// we do need at least one iteration of it for Check.
for (;;) {
bool shouldInvert =
(value->opcode() == BitXor && value->child(1)->hasInt() && (value->child(1)->asInt() & 1) && value->child(0)->returnsBool())
|| (value->opcode() == Equal && value->child(1)->isInt(0));
if (!shouldInvert)
break;
FusionResult fusionResult = prepareToFuse(value);
if (fusionResult == CannotFuse)
break;
commitFusion(value, fusionResult);
value = value->child(0);
inverted = !inverted;
}
auto createRelCond = [&] (
MacroAssembler::RelationalCondition relationalCondition,
MacroAssembler::DoubleCondition doubleCondition) {
Arg relCond = Arg::relCond(relationalCondition).inverted(inverted);
Arg doubleCond = Arg::doubleCond(doubleCondition).inverted(inverted);
Value* left = value->child(0);
Value* right = value->child(1);
if (isInt(value->child(0)->type())) {
// FIXME: We wouldn't have to worry about leftImm if we canonicalized integer
// comparisons.
// https://bugs.webkit.org/show_bug.cgi?id=150958
Arg leftImm = imm(left);
Arg rightImm = imm(right);
auto tryCompare = [&] (
Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (Inst result = compare(width, relCond, left, right))
return result;
if (Inst result = compare(width, relCond.flipped(), right, left))
return result;
return Inst();
};
auto tryCompareLoadImm = [&] (
Arg::Width width, B3::Opcode loadOpcode, Arg::Signedness signedness) -> Inst {
if (rightImm && rightImm.isRepresentableAs(width, signedness)) {
if (Inst result = tryCompare(width, loadPromise(left, loadOpcode), rightImm)) {
commitInternal(left);
return result;
}
}
if (leftImm && leftImm.isRepresentableAs(width, signedness)) {
if (Inst result = tryCompare(width, leftImm, loadPromise(right, loadOpcode))) {
commitInternal(right);
return result;
}
}
return Inst();
};
Arg::Width width = Arg::widthForB3Type(value->child(0)->type());
if (canCommitInternal) {
// First handle compares that involve fewer bits than B3's type system supports.
// This is pretty important. For example, we want this to be a single
// instruction:
//
// @1 = Load8S(...)
// @2 = Const32(...)
// @3 = LessThan(@1, @2)
// Branch(@3)
if (relCond.isSignedCond()) {
if (Inst result = tryCompareLoadImm(Arg::Width8, Load8S, Arg::Signed))
return result;
}
if (relCond.isUnsignedCond()) {
if (Inst result = tryCompareLoadImm(Arg::Width8, Load8Z, Arg::Unsigned))
return result;
}
if (relCond.isSignedCond()) {
if (Inst result = tryCompareLoadImm(Arg::Width16, Load16S, Arg::Signed))
return result;
}
if (relCond.isUnsignedCond()) {
if (Inst result = tryCompareLoadImm(Arg::Width16, Load16Z, Arg::Unsigned))
return result;
}
// Now handle compares that involve a load and an immediate.
if (Inst result = tryCompareLoadImm(width, Load, Arg::Signed))
return result;
// Now handle compares that involve a load. It's not obvious that it's better to
// handle this before the immediate cases or not. Probably doesn't matter.
if (Inst result = tryCompare(width, loadPromise(left), tmpPromise(right))) {
commitInternal(left);
return result;
}
if (Inst result = tryCompare(width, tmpPromise(left), loadPromise(right))) {
commitInternal(right);
return result;
}
}
// Now handle compares that involve an immediate and a tmp.
if (leftImm && leftImm.isRepresentableAs<int32_t>()) {
if (Inst result = tryCompare(width, leftImm, tmpPromise(right)))
return result;
}
if (rightImm && rightImm.isRepresentableAs<int32_t>()) {
if (Inst result = tryCompare(width, tmpPromise(left), rightImm))
return result;
}
// Finally, handle comparison between tmps.
return compare(width, relCond, tmpPromise(left), tmpPromise(right));
}
// Floating point comparisons can't really do anything smart.
if (value->child(0)->type() == Float)
return compareFloat(doubleCond, tmpPromise(left), tmpPromise(right));
return compareDouble(doubleCond, tmpPromise(left), tmpPromise(right));
};
Arg::Width width = Arg::widthForB3Type(value->type());
Arg resCond = Arg::resCond(MacroAssembler::NonZero).inverted(inverted);
auto tryTest = [&] (
Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (Inst result = test(width, resCond, left, right))
return result;
if (Inst result = test(width, resCond, right, left))
return result;
return Inst();
};
auto attemptFused = [&] () -> Inst {
switch (value->opcode()) {
case NotEqual:
return createRelCond(MacroAssembler::NotEqual, MacroAssembler::DoubleNotEqualOrUnordered);
case Equal:
return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqual);
case LessThan:
return createRelCond(MacroAssembler::LessThan, MacroAssembler::DoubleLessThan);
case GreaterThan:
return createRelCond(MacroAssembler::GreaterThan, MacroAssembler::DoubleGreaterThan);
case LessEqual:
return createRelCond(MacroAssembler::LessThanOrEqual, MacroAssembler::DoubleLessThanOrEqual);
case GreaterEqual:
return createRelCond(MacroAssembler::GreaterThanOrEqual, MacroAssembler::DoubleGreaterThanOrEqual);
case EqualOrUnordered:
// The integer condition is never used in this case.
return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqualOrUnordered);
case Above:
// We use a bogus double condition because these integer comparisons won't got down that
// path anyway.
return createRelCond(MacroAssembler::Above, MacroAssembler::DoubleEqual);
case Below:
return createRelCond(MacroAssembler::Below, MacroAssembler::DoubleEqual);
case AboveEqual:
return createRelCond(MacroAssembler::AboveOrEqual, MacroAssembler::DoubleEqual);
case BelowEqual:
return createRelCond(MacroAssembler::BelowOrEqual, MacroAssembler::DoubleEqual);
case BitAnd: {
Value* left = value->child(0);
Value* right = value->child(1);
// FIXME: We don't actually have to worry about leftImm.
// https://bugs.webkit.org/show_bug.cgi?id=150954
Arg leftImm = imm(left);
Arg rightImm = imm(right);
auto tryTestLoadImm = [&] (Arg::Width width, B3::Opcode loadOpcode) -> Inst {
if (rightImm && rightImm.isRepresentableAs(width, Arg::Unsigned)) {
if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm)) {
commitInternal(left);
return result;
}
}
if (leftImm && leftImm.isRepresentableAs(width, Arg::Unsigned)) {
if (Inst result = tryTest(width, leftImm, loadPromise(right, loadOpcode))) {
commitInternal(right);
return result;
}
}
return Inst();
};
if (canCommitInternal) {
// First handle test's that involve fewer bits than B3's type system supports.
if (Inst result = tryTestLoadImm(Arg::Width8, Load8Z))
return result;
if (Inst result = tryTestLoadImm(Arg::Width8, Load8S))
return result;
if (Inst result = tryTestLoadImm(Arg::Width16, Load16Z))
return result;
if (Inst result = tryTestLoadImm(Arg::Width16, Load16S))
return result;
// Now handle test's that involve a load and an immediate. Note that immediates
// are 32-bit, and we want zero-extension. Hence, the immediate form is compiled
// as a 32-bit test. Note that this spits on the grave of inferior endians, such
// as the big one.
if (Inst result = tryTestLoadImm(Arg::Width32, Load))
return result;
// Now handle test's that involve a load.
Arg::Width width = Arg::widthForB3Type(value->child(0)->type());
if (Inst result = tryTest(width, loadPromise(left), tmpPromise(right))) {
commitInternal(left);
return result;
}
if (Inst result = tryTest(width, tmpPromise(left), loadPromise(right))) {
commitInternal(right);
return result;
}
}
// Now handle test's that involve an immediate and a tmp.
if (leftImm) {
if ((width == Arg::Width32 && leftImm.value() == 0xffffffff)
|| (width == Arg::Width64 && leftImm.value() == -1)) {
ArgPromise argPromise = tmpPromise(right);
if (Inst result = tryTest(width, argPromise, argPromise))
return result;
}
if (leftImm.isRepresentableAs<uint32_t>()) {
if (Inst result = tryTest(Arg::Width32, leftImm, tmpPromise(right)))
return result;
}
}
if (rightImm) {
if ((width == Arg::Width32 && rightImm.value() == 0xffffffff)
|| (width == Arg::Width64 && rightImm.value() == -1)) {
ArgPromise argPromise = tmpPromise(left);
if (Inst result = tryTest(width, argPromise, argPromise))
return result;
}
if (rightImm.isRepresentableAs<uint32_t>()) {
if (Inst result = tryTest(Arg::Width32, tmpPromise(left), rightImm))
return result;
}
}
// Finally, just do tmp's.
return tryTest(width, tmpPromise(left), tmpPromise(right));
}
default:
return Inst();
}
};
if (FusionResult fusionResult = prepareToFuse(value)) {
if (Inst result = attemptFused()) {
commitFusion(value, fusionResult);
return result;
}
}
if (Arg::isValidImmForm(-1)) {
if (canCommitInternal && value->as<MemoryValue>()) {
// Handle things like Branch(Load8Z(value))
if (Inst result = tryTest(Arg::Width8, loadPromise(value, Load8Z), Arg::imm(-1))) {
commitInternal(value);
return result;
}
if (Inst result = tryTest(Arg::Width8, loadPromise(value, Load8S), Arg::imm(-1))) {
commitInternal(value);
return result;
}
if (Inst result = tryTest(Arg::Width16, loadPromise(value, Load16Z), Arg::imm(-1))) {
commitInternal(value);
return result;
}
if (Inst result = tryTest(Arg::Width16, loadPromise(value, Load16S), Arg::imm(-1))) {
commitInternal(value);
return result;
}
if (Inst result = tryTest(width, loadPromise(value), Arg::imm(-1))) {
commitInternal(value);
return result;
}
}
if (Inst result = test(width, resCond, tmpPromise(value), Arg::imm(-1)))
return result;
}
// Sometimes this is the only form of test available. We prefer not to use this because
// it's less canonical.
return test(width, resCond, tmpPromise(value), tmpPromise(value));
}
Inst createBranch(Value* value, bool inverted = false)
{
return createGenericCompare(
value,
[this] (
Arg::Width width, const Arg& relCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
if (isValidForm(Branch8, Arg::RelCond, left.kind(), right.kind())) {
return Inst(
Branch8, m_value, relCond,
left.consume(*this), right.consume(*this));
}
return Inst();
case Arg::Width16:
return Inst();
case Arg::Width32:
if (isValidForm(Branch32, Arg::RelCond, left.kind(), right.kind())) {
return Inst(
Branch32, m_value, relCond,
left.consume(*this), right.consume(*this));
}
return Inst();
case Arg::Width64:
if (isValidForm(Branch64, Arg::RelCond, left.kind(), right.kind())) {
return Inst(
Branch64, m_value, relCond,
left.consume(*this), right.consume(*this));
}
return Inst();
}
ASSERT_NOT_REACHED();
},
[this] (
Arg::Width width, const Arg& resCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
if (isValidForm(BranchTest8, Arg::ResCond, left.kind(), right.kind())) {
return Inst(
BranchTest8, m_value, resCond,
left.consume(*this), right.consume(*this));
}
return Inst();
case Arg::Width16:
return Inst();
case Arg::Width32:
if (isValidForm(BranchTest32, Arg::ResCond, left.kind(), right.kind())) {
return Inst(
BranchTest32, m_value, resCond,
left.consume(*this), right.consume(*this));
}
return Inst();
case Arg::Width64:
if (isValidForm(BranchTest64, Arg::ResCond, left.kind(), right.kind())) {
return Inst(
BranchTest64, m_value, resCond,
left.consume(*this), right.consume(*this));
}
return Inst();
}
ASSERT_NOT_REACHED();
},
[this] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (isValidForm(BranchDouble, Arg::DoubleCond, left.kind(), right.kind())) {
return Inst(
BranchDouble, m_value, doubleCond,
left.consume(*this), right.consume(*this));
}
return Inst();
},
[this] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (isValidForm(BranchFloat, Arg::DoubleCond, left.kind(), right.kind())) {
return Inst(
BranchFloat, m_value, doubleCond,
left.consume(*this), right.consume(*this));
}
return Inst();
},
inverted);
}
Inst createCompare(Value* value, bool inverted = false)
{
return createGenericCompare(
value,
[this] (
Arg::Width width, const Arg& relCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
case Arg::Width16:
return Inst();
case Arg::Width32:
if (isValidForm(Compare32, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
Compare32, m_value, relCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
case Arg::Width64:
if (isValidForm(Compare64, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
Compare64, m_value, relCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
}
ASSERT_NOT_REACHED();
},
[this] (
Arg::Width width, const Arg& resCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
case Arg::Width16:
return Inst();
case Arg::Width32:
if (isValidForm(Test32, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
Test32, m_value, resCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
case Arg::Width64:
if (isValidForm(Test64, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
Test64, m_value, resCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
}
ASSERT_NOT_REACHED();
},
[this] (const Arg& doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (isValidForm(CompareDouble, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
CompareDouble, m_value, doubleCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
},
[this] (const Arg& doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (isValidForm(CompareFloat, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) {
return Inst(
CompareFloat, m_value, doubleCond,
left.consume(*this), right.consume(*this), tmp(m_value));
}
return Inst();
},
inverted);
}
struct MoveConditionallyConfig {
Air::Opcode moveConditionally32;
Air::Opcode moveConditionally64;
Air::Opcode moveConditionallyTest32;
Air::Opcode moveConditionallyTest64;
Air::Opcode moveConditionallyDouble;
Air::Opcode moveConditionallyFloat;
};
Inst createSelect(const MoveConditionallyConfig& config)
{
auto createSelectInstruction = [&] (Air::Opcode opcode, const Arg& condition, const ArgPromise& left, const ArgPromise& right) -> Inst {
if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
Tmp result = tmp(m_value);
Tmp thenCase = tmp(m_value->child(1));
Tmp elseCase = tmp(m_value->child(2));
return Inst(
opcode, m_value, condition,
left.consume(*this), right.consume(*this), thenCase, elseCase, result);
}
if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp)) {
Tmp result = tmp(m_value);
Tmp source = tmp(m_value->child(1));
append(relaxedMoveForType(m_value->type()), tmp(m_value->child(2)), result);
return Inst(
opcode, m_value, condition,
left.consume(*this), right.consume(*this), source, result);
}
return Inst();
};
return createGenericCompare(
m_value->child(0),
[&] (
Arg::Width width, const Arg& relCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
// FIXME: Support these things.
// https://bugs.webkit.org/show_bug.cgi?id=151504
return Inst();
case Arg::Width16:
return Inst();
case Arg::Width32:
return createSelectInstruction(config.moveConditionally32, relCond, left, right);
case Arg::Width64:
return createSelectInstruction(config.moveConditionally64, relCond, left, right);
}
ASSERT_NOT_REACHED();
},
[&] (
Arg::Width width, const Arg& resCond,
const ArgPromise& left, const ArgPromise& right) -> Inst {
switch (width) {
case Arg::Width8:
// FIXME: Support more things.
// https://bugs.webkit.org/show_bug.cgi?id=151504
return Inst();
case Arg::Width16:
return Inst();
case Arg::Width32:
return createSelectInstruction(config.moveConditionallyTest32, resCond, left, right);
case Arg::Width64:
return createSelectInstruction(config.moveConditionallyTest64, resCond, left, right);
}
ASSERT_NOT_REACHED();
},
[&] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
return createSelectInstruction(config.moveConditionallyDouble, doubleCond, left, right);
},
[&] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst {
return createSelectInstruction(config.moveConditionallyFloat, doubleCond, left, right);
},
false);
}
void lower()
{
switch (m_value->opcode()) {
case B3::Nop: {
// Yes, we will totally see Nop's because some phases will replaceWithNop() instead of
// properly removing things.
return;
}
case Load: {
append(
moveForType(m_value->type()),
addr(m_value), tmp(m_value));
return;
}
case Load8S: {
append(Load8SignedExtendTo32, addr(m_value), tmp(m_value));
return;
}
case Load8Z: {
append(Load8, addr(m_value), tmp(m_value));
return;
}
case Load16S: {
append(Load16SignedExtendTo32, addr(m_value), tmp(m_value));
return;
}
case Load16Z: {
append(Load16, addr(m_value), tmp(m_value));
return;
}
case Add: {
Air::Opcode multiplyAddOpcode = tryOpcodeForType(MultiplyAdd32, MultiplyAdd64, m_value->type());
if (multiplyAddOpcode != Air::Oops
&& isValidForm(multiplyAddOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
Value* left = m_value->child(0);
Value* right = m_value->child(1);
if (!imm(right) || m_valueToTmp[right]) {
auto tryAppendMultiplyAdd = [&] (Value* left, Value* right) -> bool {
if (left->opcode() != Mul || !canBeInternal(left))
return false;
Value* multiplyLeft = left->child(0);
Value* multiplyRight = left->child(1);
if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight))
return false;
append(multiplyAddOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(right), tmp(m_value));
commitInternal(left);
return true;
};
if (tryAppendMultiplyAdd(left, right))
return;
if (tryAppendMultiplyAdd(right, left))
return;
}
}
appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(
m_value->child(0), m_value->child(1));
return;
}
case Sub: {
Air::Opcode multiplySubOpcode = tryOpcodeForType(MultiplySub32, MultiplySub64, m_value->type());
if (multiplySubOpcode != Air::Oops
&& isValidForm(multiplySubOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
Value* left = m_value->child(0);
Value* right = m_value->child(1);
if (!imm(right) || m_valueToTmp[right]) {
auto tryAppendMultiplySub = [&] () -> bool {
if (right->opcode() != Mul || !canBeInternal(right))
return false;
Value* multiplyLeft = right->child(0);
Value* multiplyRight = right->child(1);
if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight))
return false;
append(multiplySubOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(left), tmp(m_value));
commitInternal(right);
return true;
};
if (tryAppendMultiplySub())
return;
}
}
appendBinOp<Sub32, Sub64, SubDouble, SubFloat>(m_value->child(0), m_value->child(1));
return;
}
case Neg: {
Air::Opcode multiplyNegOpcode = tryOpcodeForType(MultiplyNeg32, MultiplyNeg64, m_value->type());
if (multiplyNegOpcode != Air::Oops
&& isValidForm(multiplyNegOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)
&& m_value->child(0)->opcode() == Mul
&& canBeInternal(m_value->child(0))) {
Value* multiplyOperation = m_value->child(0);
Value* multiplyLeft = multiplyOperation->child(0);
Value* multiplyRight = multiplyOperation->child(1);
if (!m_locked.contains(multiplyLeft) && !m_locked.contains(multiplyRight)) {
append(multiplyNegOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(m_value));
commitInternal(multiplyOperation);
return;
}
}
appendUnOp<Neg32, Neg64, NegateDouble, Air::Oops>(m_value->child(0));
return;
}
case Mul: {
appendBinOp<Mul32, Mul64, MulDouble, MulFloat, Commutative>(
m_value->child(0), m_value->child(1));
return;
}
case ChillDiv:
RELEASE_ASSERT(isARM64());
FALLTHROUGH;
case Div: {
#if CPU(X86) || CPU(X86_64)
if (isInt(m_value->type())) {
lowerX86Div();
append(Move, Tmp(X86Registers::eax), tmp(m_value));
return;
}
#endif
ASSERT(!isX86() || isFloat(m_value->type()));
appendBinOp<Div32, Div64, DivDouble, DivFloat>(m_value->child(0), m_value->child(1));
return;
}
case Mod: {
RELEASE_ASSERT(isX86());
#if CPU(X86) || CPU(X86_64)
lowerX86Div();
append(Move, Tmp(X86Registers::edx), tmp(m_value));
#endif
return;
}
case BitAnd: {
if (m_value->child(1)->isInt(0xff)) {
appendUnOp<ZeroExtend8To32, ZeroExtend8To32>(m_value->child(0));
return;
}
if (m_value->child(1)->isInt(0xffff)) {
appendUnOp<ZeroExtend16To32, ZeroExtend16To32>(m_value->child(0));
return;
}
if (m_value->child(1)->isInt(0xffffffff)) {
appendUnOp<Move32, Move32>(m_value->child(0));
return;
}
appendBinOp<And32, And64, AndDouble, AndFloat, Commutative>(
m_value->child(0), m_value->child(1));
return;
}
case BitOr: {
appendBinOp<Or32, Or64, Commutative>(
m_value->child(0), m_value->child(1));
return;
}
case BitXor: {
// FIXME: If canBeInternal(child), we should generate this using the comparison path.
// https://bugs.webkit.org/show_bug.cgi?id=152367
if (m_value->child(1)->isInt(-1)) {
appendUnOp<Not32, Not64>(m_value->child(0));
return;
}
appendBinOp<Xor32, Xor64, XorDouble, XorFloat, Commutative>(
m_value->child(0), m_value->child(1));
return;
}
case Shl: {
if (m_value->child(1)->isInt32(1)) {
appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(m_value->child(0), m_value->child(0));
return;
}
appendShift<Lshift32, Lshift64>(m_value->child(0), m_value->child(1));
return;
}
case SShr: {
appendShift<Rshift32, Rshift64>(m_value->child(0), m_value->child(1));
return;
}
case ZShr: {
appendShift<Urshift32, Urshift64>(m_value->child(0), m_value->child(1));
return;
}
case Clz: {
appendUnOp<CountLeadingZeros32, CountLeadingZeros64>(m_value->child(0));
return;
}
case Abs: {
RELEASE_ASSERT_WITH_MESSAGE(!isX86(), "Abs is not supported natively on x86. It must be replaced before generation.");
appendUnOp<Air::Oops, Air::Oops, AbsDouble, AbsFloat>(m_value->child(0));
return;
}
case Ceil: {
appendUnOp<Air::Oops, Air::Oops, CeilDouble, CeilFloat>(m_value->child(0));
return;
}
case Floor: {
appendUnOp<Air::Oops, Air::Oops, FloorDouble, FloorFloat>(m_value->child(0));
return;
}
case Sqrt: {
appendUnOp<Air::Oops, Air::Oops, SqrtDouble, SqrtFloat>(m_value->child(0));
return;
}
case BitwiseCast: {
appendUnOp<Move32ToFloat, Move64ToDouble, MoveDoubleTo64, MoveFloatTo32>(m_value->child(0));
return;
}
case Store: {
Value* valueToStore = m_value->child(0);
if (canBeInternal(valueToStore)) {
bool matched = false;
switch (valueToStore->opcode()) {
case Add:
matched = tryAppendStoreBinOp<Add32, Add64, Commutative>(
valueToStore->child(0), valueToStore->child(1));
break;
case Sub:
if (valueToStore->child(0)->isInt(0)) {
matched = tryAppendStoreUnOp<Neg32, Neg64>(valueToStore->child(1));
break;
}
matched = tryAppendStoreBinOp<Sub32, Sub64>(
valueToStore->child(0), valueToStore->child(1));
break;
case BitAnd:
matched = tryAppendStoreBinOp<And32, And64, Commutative>(
valueToStore->child(0), valueToStore->child(1));
break;
case BitXor:
if (valueToStore->child(1)->isInt(-1)) {
matched = tryAppendStoreUnOp<Not32, Not64>(valueToStore->child(0));
break;
}
matched = tryAppendStoreBinOp<Xor32, Xor64, Commutative>(
valueToStore->child(0), valueToStore->child(1));
break;
default:
break;
}
if (matched) {
commitInternal(valueToStore);
return;
}
}
appendStore(valueToStore, addr(m_value));
return;
}
case B3::Store8: {
Value* valueToStore = m_value->child(0);
if (canBeInternal(valueToStore)) {
bool matched = false;
switch (valueToStore->opcode()) {
case Add:
matched = tryAppendStoreBinOp<Add8, Air::Oops, Commutative>(
valueToStore->child(0), valueToStore->child(1));
break;
default:
break;
}
if (matched) {
commitInternal(valueToStore);
return;
}
}
m_insts.last().append(createStore(Air::Store8, valueToStore, addr(m_value)));
return;
}
case B3::Store16: {
Value* valueToStore = m_value->child(0);
if (canBeInternal(valueToStore)) {
bool matched = false;
switch (valueToStore->opcode()) {
case Add:
matched = tryAppendStoreBinOp<Add16, Air::Oops, Commutative>(
valueToStore->child(0), valueToStore->child(1));
break;
default:
break;
}
if (matched) {
commitInternal(valueToStore);
return;
}
}
m_insts.last().append(createStore(Air::Store16, valueToStore, addr(m_value)));
return;
}
case Trunc: {
ASSERT(tmp(m_value->child(0)) == tmp(m_value));
return;
}
case SExt8: {
appendUnOp<SignExtend8To32, Air::Oops>(m_value->child(0));
return;
}
case SExt16: {
appendUnOp<SignExtend16To32, Air::Oops>(m_value->child(0));
return;
}
case ZExt32: {
appendUnOp<Move32, Air::Oops>(m_value->child(0));
return;
}
case SExt32: {
// FIXME: We should have support for movsbq/movswq
// https://bugs.webkit.org/show_bug.cgi?id=152232
appendUnOp<SignExtend32ToPtr, Air::Oops>(m_value->child(0));
return;
}
case FloatToDouble: {
appendUnOp<Air::Oops, Air::Oops, Air::Oops, ConvertFloatToDouble>(m_value->child(0));
return;
}
case DoubleToFloat: {
appendUnOp<Air::Oops, Air::Oops, ConvertDoubleToFloat>(m_value->child(0));
return;
}
case ArgumentReg: {
m_prologue.append(Inst(
moveForType(m_value->type()), m_value,
Tmp(m_value->as<ArgumentRegValue>()->argumentReg()),
tmp(m_value)));
return;
}
case Const32:
case Const64: {
if (imm(m_value))
append(Move, imm(m_value), tmp(m_value));
else
append(Move, Arg::bigImm(m_value->asInt()), tmp(m_value));
return;
}
case ConstDouble:
case ConstFloat: {
// We expect that the moveConstants() phase has run, and any doubles referenced from
// stackmaps get fused.
RELEASE_ASSERT(m_value->opcode() == ConstFloat || isIdentical(m_value->asDouble(), 0.0));
RELEASE_ASSERT(m_value->opcode() == ConstDouble || isIdentical(m_value->asFloat(), 0.0));
append(MoveZeroToDouble, tmp(m_value));
return;
}
case FramePointer: {
ASSERT(tmp(m_value) == Tmp(GPRInfo::callFrameRegister));
return;
}
case SlotBase: {
append(
Lea,
Arg::stack(m_stackToStack.get(m_value->as<SlotBaseValue>()->slot())),
tmp(m_value));
return;
}
case Equal:
case NotEqual:
case LessThan:
case GreaterThan:
case LessEqual:
case GreaterEqual:
case Above:
case Below:
case AboveEqual:
case BelowEqual:
case EqualOrUnordered: {
m_insts.last().append(createCompare(m_value));
return;
}
case Select: {
MoveConditionallyConfig config;
if (isInt(m_value->type())) {
config.moveConditionally32 = MoveConditionally32;
config.moveConditionally64 = MoveConditionally64;
config.moveConditionallyTest32 = MoveConditionallyTest32;
config.moveConditionallyTest64 = MoveConditionallyTest64;
config.moveConditionallyDouble = MoveConditionallyDouble;
config.moveConditionallyFloat = MoveConditionallyFloat;
} else {
// FIXME: it's not obvious that these are particularly efficient.
config.moveConditionally32 = MoveDoubleConditionally32;
config.moveConditionally64 = MoveDoubleConditionally64;
config.moveConditionallyTest32 = MoveDoubleConditionallyTest32;
config.moveConditionallyTest64 = MoveDoubleConditionallyTest64;
config.moveConditionallyDouble = MoveDoubleConditionallyDouble;
config.moveConditionallyFloat = MoveDoubleConditionallyFloat;
}
m_insts.last().append(createSelect(config));
return;
}
case IToD: {
appendUnOp<ConvertInt32ToDouble, ConvertInt64ToDouble>(m_value->child(0));
return;
}
case B3::CCall: {
CCallValue* cCall = m_value->as<CCallValue>();
Inst inst(m_isRare ? Air::ColdCCall : Air::CCall, cCall);
// We have a ton of flexibility regarding the callee argument, but currently, we don't
// use it yet. It gets weird for reasons:
// 1) We probably will never take advantage of this. We don't have C calls to locations
// loaded from addresses. We have JS calls like that, but those use Patchpoints.
// 2) On X86_64 we still don't support call with BaseIndex.
// 3) On non-X86, we don't natively support any kind of loading from address.
// 4) We don't have an isValidForm() for the CCallSpecial so we have no smart way to
// decide.
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=151052
inst.args.append(tmp(cCall->child(0)));
if (cCall->type() != Void)
inst.args.append(tmp(cCall));
for (unsigned i = 1; i < cCall->numChildren(); ++i)
inst.args.append(immOrTmp(cCall->child(i)));
m_insts.last().append(WTFMove(inst));
return;
}
case Patchpoint: {
PatchpointValue* patchpointValue = m_value->as<PatchpointValue>();
ensureSpecial(m_patchpointSpecial);
Inst inst(Patch, patchpointValue, Arg::special(m_patchpointSpecial));
Vector<Inst> after;
if (patchpointValue->type() != Void) {
switch (patchpointValue->resultConstraint.kind()) {
case ValueRep::WarmAny:
case ValueRep::ColdAny:
case ValueRep::LateColdAny:
case ValueRep::SomeRegister:
inst.args.append(tmp(patchpointValue));
break;
case ValueRep::Register: {
Tmp reg = Tmp(patchpointValue->resultConstraint.reg());
inst.args.append(reg);
after.append(Inst(
relaxedMoveForType(patchpointValue->type()), m_value, reg, tmp(patchpointValue)));
break;
}
case ValueRep::StackArgument: {
Arg arg = Arg::callArg(patchpointValue->resultConstraint.offsetFromSP());
inst.args.append(arg);
after.append(Inst(
moveForType(patchpointValue->type()), m_value, arg, tmp(patchpointValue)));
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
fillStackmap(inst, patchpointValue, 0);
if (patchpointValue->resultConstraint.isReg())
patchpointValue->lateClobbered().clear(patchpointValue->resultConstraint.reg());
for (unsigned i = patchpointValue->numGPScratchRegisters; i--;)
inst.args.append(m_code.newTmp(Arg::GP));
for (unsigned i = patchpointValue->numFPScratchRegisters; i--;)
inst.args.append(m_code.newTmp(Arg::FP));
m_insts.last().append(WTFMove(inst));
m_insts.last().appendVector(after);
return;
}
case CheckAdd:
case CheckSub:
case CheckMul: {
CheckValue* checkValue = m_value->as<CheckValue>();
Value* left = checkValue->child(0);
Value* right = checkValue->child(1);
Tmp result = tmp(m_value);
// Handle checked negation.
if (checkValue->opcode() == CheckSub && left->isInt(0)) {
append(Move, tmp(right), result);
Air::Opcode opcode =
opcodeForType(BranchNeg32, BranchNeg64, checkValue->type());
CheckSpecial* special = ensureCheckSpecial(opcode, 2);
Inst inst(Patch, checkValue, Arg::special(special));
inst.args.append(Arg::resCond(MacroAssembler::Overflow));
inst.args.append(result);
fillStackmap(inst, checkValue, 2);
m_insts.last().append(WTFMove(inst));
return;
}
Air::Opcode opcode = Air::Oops;
Commutativity commutativity = NotCommutative;
StackmapSpecial::RoleMode stackmapRole = StackmapSpecial::SameAsRep;
switch (m_value->opcode()) {
case CheckAdd:
opcode = opcodeForType(BranchAdd32, BranchAdd64, m_value->type());
stackmapRole = StackmapSpecial::ForceLateUseUnlessRecoverable;
commutativity = Commutative;
break;
case CheckSub:
opcode = opcodeForType(BranchSub32, BranchSub64, m_value->type());
break;
case CheckMul:
opcode = opcodeForType(BranchMul32, BranchMul64, checkValue->type());
stackmapRole = StackmapSpecial::ForceLateUse;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
// FIXME: It would be great to fuse Loads into these. We currently don't do it because the
// rule for stackmaps is that all addresses are just stack addresses. Maybe we could relax
// this rule here.
// https://bugs.webkit.org/show_bug.cgi?id=151228
Vector<Arg, 2> sources;
if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Imm, Arg::Tmp)) {
sources.append(tmp(left));
sources.append(imm(right));
} else if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Imm, Arg::Tmp)) {
sources.append(imm(right));
append(Move, tmp(left), result);
} else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
sources.append(tmp(left));
sources.append(tmp(right));
} else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp)) {
if (commutativity == Commutative && preferRightForResult(left, right)) {
sources.append(tmp(left));
append(Move, tmp(right), result);
} else {
sources.append(tmp(right));
append(Move, tmp(left), result);
}
} else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
sources.append(tmp(left));
sources.append(tmp(right));
sources.append(m_code.newTmp(Arg::typeForB3Type(m_value->type())));
sources.append(m_code.newTmp(Arg::typeForB3Type(m_value->type())));
}
// There is a really hilarious case that arises when we do BranchAdd32(%x, %x). We won't emit
// such code, but the coalescing in our register allocator also does copy propagation, so
// although we emit:
//
// Move %tmp1, %tmp2
// BranchAdd32 %tmp1, %tmp2
//
// The register allocator may turn this into:
//
// BranchAdd32 %rax, %rax
//
// Currently we handle this by ensuring that even this kind of addition can be undone. We can
// undo it by using the carry flag. It's tempting to get rid of that code and just "fix" this
// here by forcing LateUse on the stackmap. If we did that unconditionally, we'd lose a lot of
// performance. So it's tempting to do it only if left == right. But that creates an awkward
// constraint on Air: it means that Air would not be allowed to do any copy propagation.
// Notice that the %rax,%rax situation happened after Air copy-propagated the Move we are
// emitting. We know that copy-propagating over that Move causes add-to-self. But what if we
// emit something like a Move - or even do other kinds of copy-propagation on tmp's -
// somewhere else in this code. The add-to-self situation may only emerge after some other Air
// optimizations remove other Move's or identity-like operations. That's why we don't use
// LateUse here to take care of add-to-self.
CheckSpecial* special = ensureCheckSpecial(opcode, 2 + sources.size(), stackmapRole);
Inst inst(Patch, checkValue, Arg::special(special));
inst.args.append(Arg::resCond(MacroAssembler::Overflow));
inst.args.appendVector(sources);
inst.args.append(result);
fillStackmap(inst, checkValue, 2);
m_insts.last().append(WTFMove(inst));
return;
}
case Check: {
Inst branch = createBranch(m_value->child(0));
CheckSpecial* special = ensureCheckSpecial(branch);
CheckValue* checkValue = m_value->as<CheckValue>();
Inst inst(Patch, checkValue, Arg::special(special));
inst.args.appendVector(branch.args);
fillStackmap(inst, checkValue, 1);
m_insts.last().append(WTFMove(inst));
return;
}
case Upsilon: {
Value* value = m_value->child(0);
append(
relaxedMoveForType(value->type()), immOrTmp(value),
m_phiToTmp[m_value->as<UpsilonValue>()->phi()]);
return;
}
case Phi: {
// Snapshot the value of the Phi. It may change under us because you could do:
// a = Phi()
// Upsilon(@x, ^a)
// @a => this should get the value of the Phi before the Upsilon, i.e. not @x.
append(relaxedMoveForType(m_value->type()), m_phiToTmp[m_value], tmp(m_value));
return;
}
case Set: {
Value* value = m_value->child(0);
append(
relaxedMoveForType(value->type()), immOrTmp(value),
m_variableToTmp.get(m_value->as<VariableValue>()->variable()));
return;
}
case Get: {
append(
relaxedMoveForType(m_value->type()),
m_variableToTmp.get(m_value->as<VariableValue>()->variable()), tmp(m_value));
return;
}
case Branch: {
m_insts.last().append(createBranch(m_value->child(0)));
return;
}
case B3::Jump: {
append(Air::Jump);
return;
}
case Identity: {
ASSERT(tmp(m_value->child(0)) == tmp(m_value));
return;
}
case Return: {
Value* value = m_value->child(0);
Tmp returnValueGPR = Tmp(GPRInfo::returnValueGPR);
Tmp returnValueFPR = Tmp(FPRInfo::returnValueFPR);
switch (value->type()) {
case Void:
// It's impossible for a void value to be used as a child. If we did want to have a
// void return, we'd introduce a different opcode, like ReturnVoid.
RELEASE_ASSERT_NOT_REACHED();
break;
case Int32:
append(Move, immOrTmp(value), returnValueGPR);
append(Ret32, returnValueGPR);
break;
case Int64:
append(Move, immOrTmp(value), returnValueGPR);
append(Ret64, returnValueGPR);
break;
case Float:
append(MoveFloat, tmp(value), returnValueFPR);
append(RetFloat, returnValueFPR);
break;
case Double:
append(MoveDouble, tmp(value), returnValueFPR);
append(RetDouble, returnValueFPR);
break;
}
return;
}
case B3::Oops: {
append(Air::Oops);
return;
}
default:
break;
}
dataLog("FATAL: could not lower ", deepDump(m_procedure, m_value), "\n");
RELEASE_ASSERT_NOT_REACHED();
}
#if CPU(X86) || CPU(X86_64)
void lowerX86Div()
{
Tmp eax = Tmp(X86Registers::eax);
Tmp edx = Tmp(X86Registers::edx);
Air::Opcode convertToDoubleWord;
Air::Opcode div;
switch (m_value->type()) {
case Int32:
convertToDoubleWord = X86ConvertToDoubleWord32;
div = X86Div32;
break;
case Int64:
convertToDoubleWord = X86ConvertToQuadWord64;
div = X86Div64;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
return;
}
append(Move, tmp(m_value->child(0)), eax);
append(convertToDoubleWord, eax, edx);
append(div, eax, edx, tmp(m_value->child(1)));
}
#endif
IndexSet<Value> m_locked; // These are values that will have no Tmp in Air.
IndexMap<Value, Tmp> m_valueToTmp; // These are values that must have a Tmp in Air. We say that a Value* with a non-null Tmp is "pinned".
IndexMap<Value, Tmp> m_phiToTmp; // Each Phi gets its own Tmp.
IndexMap<B3::BasicBlock, Air::BasicBlock*> m_blockToBlock;
HashMap<B3::StackSlot*, Air::StackSlot*> m_stackToStack;
HashMap<Variable*, Tmp> m_variableToTmp;
UseCounts m_useCounts;
PhiChildren m_phiChildren;
BlockWorklist m_fastWorklist;
Dominators& m_dominators;
Vector<Vector<Inst, 4>> m_insts;
Vector<Inst> m_prologue;
B3::BasicBlock* m_block;
bool m_isRare;
unsigned m_index;
Value* m_value;
PatchpointSpecial* m_patchpointSpecial { nullptr };
HashMap<CheckSpecial::Key, CheckSpecial*> m_checkSpecials;
Procedure& m_procedure;
Code& m_code;
};
} // anonymous namespace
void lowerToAir(Procedure& procedure)
{
PhaseScope phaseScope(procedure, "lowerToAir");
LowerToAir lowerToAir(procedure);
lowerToAir.run();
}
} } // namespace JSC::B3
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic pop
#endif // COMPILER(GCC) && ASSERT_DISABLED
#endif // ENABLE(B3_JIT)
|