1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef B3Value_h
#define B3Value_h
#if ENABLE(B3_JIT)
#include "AirArg.h"
#include "B3Effects.h"
#include "B3Opcode.h"
#include "B3Origin.h"
#include "B3SparseCollection.h"
#include "B3Type.h"
#include "B3ValueKey.h"
#include <wtf/CommaPrinter.h>
#include <wtf/FastMalloc.h>
#include <wtf/Noncopyable.h>
namespace JSC { namespace B3 {
class BasicBlock;
class CheckValue;
class PhiChildren;
class Procedure;
class JS_EXPORT_PRIVATE Value {
WTF_MAKE_FAST_ALLOCATED;
public:
typedef Vector<Value*, 3> AdjacencyList;
static const char* const dumpPrefix;
static bool accepts(Opcode) { return true; }
virtual ~Value();
unsigned index() const { return m_index; }
// Note that the opcode is immutable, except for replacing values with Identity or Nop.
Opcode opcode() const { return m_opcode; }
Origin origin() const { return m_origin; }
void setOrigin(Origin origin) { m_origin = origin; }
Value*& child(unsigned index) { return m_children[index]; }
Value* child(unsigned index) const { return m_children[index]; }
Value*& lastChild() { return m_children.last(); }
Value* lastChild() const { return m_children.last(); }
unsigned numChildren() const { return m_children.size(); }
Type type() const { return m_type; }
void setType(Type type) { m_type = type; }
// This is useful when lowering. Note that this is only valid for non-void values.
Air::Arg::Type airType() const { return Air::Arg::typeForB3Type(type()); }
Air::Arg::Width airWidth() const { return Air::Arg::widthForB3Type(type()); }
AdjacencyList& children() { return m_children; }
const AdjacencyList& children() const { return m_children; }
void replaceWithIdentity(Value*);
void replaceWithNop();
void replaceWithPhi();
void dump(PrintStream&) const;
void deepDump(const Procedure*, PrintStream&) const;
// This is how you cast Values. For example, if you want to do something provided that we have a
// ArgumentRegValue, you can do:
//
// if (ArgumentRegValue* argumentReg = value->as<ArgumentRegValue>()) {
// things
// }
//
// This will return null if this opcode() != ArgumentReg. This works because this returns nullptr
// if T::accepts(opcode()) returns false.
template<typename T>
T* as();
template<typename T>
const T* as() const;
// What follows are a bunch of helpers for inspecting and modifying values. Note that we have a
// bunch of different idioms for implementing such helpers. You can use virtual methods, and
// override from the various Value subclasses. You can put the method inside Value and make it
// non-virtual, and the implementation can switch on opcode. The method could be inline or not.
// If a method is specific to some Value subclass, you could put it in the subclass, or you could
// put it on Value anyway. It's fine to pick whatever feels right, and we shouldn't restrict
// ourselves to any particular idiom.
bool isConstant() const;
bool isInteger() const;
virtual Value* negConstant(Procedure&) const;
virtual Value* addConstant(Procedure&, int32_t other) const;
virtual Value* addConstant(Procedure&, const Value* other) const;
virtual Value* subConstant(Procedure&, const Value* other) const;
virtual Value* mulConstant(Procedure&, const Value* other) const;
virtual Value* checkAddConstant(Procedure&, const Value* other) const;
virtual Value* checkSubConstant(Procedure&, const Value* other) const;
virtual Value* checkMulConstant(Procedure&, const Value* other) const;
virtual Value* checkNegConstant(Procedure&) const;
virtual Value* divConstant(Procedure&, const Value* other) const; // This chooses ChillDiv semantics for integers.
virtual Value* modConstant(Procedure&, const Value* other) const; // This chooses ChillMod semantics.
virtual Value* bitAndConstant(Procedure&, const Value* other) const;
virtual Value* bitOrConstant(Procedure&, const Value* other) const;
virtual Value* bitXorConstant(Procedure&, const Value* other) const;
virtual Value* shlConstant(Procedure&, const Value* other) const;
virtual Value* sShrConstant(Procedure&, const Value* other) const;
virtual Value* zShrConstant(Procedure&, const Value* other) const;
virtual Value* bitwiseCastConstant(Procedure&) const;
virtual Value* doubleToFloatConstant(Procedure&) const;
virtual Value* floatToDoubleConstant(Procedure&) const;
virtual Value* absConstant(Procedure&) const;
virtual Value* ceilConstant(Procedure&) const;
virtual Value* floorConstant(Procedure&) const;
virtual Value* sqrtConstant(Procedure&) const;
virtual TriState equalConstant(const Value* other) const;
virtual TriState notEqualConstant(const Value* other) const;
virtual TriState lessThanConstant(const Value* other) const;
virtual TriState greaterThanConstant(const Value* other) const;
virtual TriState lessEqualConstant(const Value* other) const;
virtual TriState greaterEqualConstant(const Value* other) const;
virtual TriState aboveConstant(const Value* other) const;
virtual TriState belowConstant(const Value* other) const;
virtual TriState aboveEqualConstant(const Value* other) const;
virtual TriState belowEqualConstant(const Value* other) const;
virtual TriState equalOrUnorderedConstant(const Value* other) const;
// If the value is a comparison then this returns the inverted form of that comparison, if
// possible. It can be impossible for double comparisons, where for example LessThan and
// GreaterEqual behave differently. If this returns a value, it is a new value, which must be
// either inserted into some block or deleted.
Value* invertedCompare(Procedure&) const;
bool hasInt32() const;
int32_t asInt32() const;
bool isInt32(int32_t) const;
bool hasInt64() const;
int64_t asInt64() const;
bool isInt64(int64_t) const;
bool hasInt() const;
int64_t asInt() const;
bool isInt(int64_t value) const;
bool hasIntPtr() const;
intptr_t asIntPtr() const;
bool isIntPtr(intptr_t) const;
bool hasDouble() const;
double asDouble() const;
bool isEqualToDouble(double) const; // We say "isEqualToDouble" because "isDouble" would be a bit equality.
bool hasFloat() const;
float asFloat() const;
bool hasNumber() const;
template<typename T> bool representableAs() const;
template<typename T> T asNumber() const;
// Booleans in B3 are Const32(0) or Const32(1). So this is true if the type is Int32 and the only
// possible return values are 0 or 1. It's OK for this method to conservatively return false.
bool returnsBool() const;
bool isNegativeZero() const;
bool isRounded() const;
TriState asTriState() const;
bool isLikeZero() const { return asTriState() == FalseTriState; }
bool isLikeNonZero() const { return asTriState() == TrueTriState; }
Effects effects() const;
// This returns a ValueKey that describes that this Value returns when it executes. Returns an
// empty ValueKey if this Value is impure. Note that an operation that returns Void could still
// have a non-empty ValueKey. This happens for example with Check operations.
ValueKey key() const;
// Makes sure that none of the children are Identity's. If a child points to Identity, this will
// repoint it at the Identity's child. For simplicity, this will follow arbitrarily long chains
// of Identity's.
void performSubstitution();
// Walk the ancestors of this value (i.e. the graph of things it transitively uses). This
// either walks phis or not, depending on whether PhiChildren is null. Your callback gets
// called with the signature:
//
// (Value*) -> WalkStatus
enum WalkStatus {
Continue,
IgnoreChildren,
Stop
};
template<typename Functor>
void walk(const Functor& functor, PhiChildren* = nullptr);
protected:
virtual Value* cloneImpl() const;
virtual void dumpChildren(CommaPrinter&, PrintStream&) const;
virtual void dumpMeta(CommaPrinter&, PrintStream&) const;
private:
friend class Procedure;
friend class SparseCollection<Value>;
// Checks that this opcode is valid for use with B3::Value.
#if ASSERT_DISABLED
static void checkOpcode(Opcode) { }
#else
static void checkOpcode(Opcode);
#endif
protected:
enum CheckedOpcodeTag { CheckedOpcode };
Value(const Value&) = default;
Value& operator=(const Value&) = default;
// Instantiate values via Procedure.
// This form requires specifying the type explicitly:
template<typename... Arguments>
explicit Value(CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, Value* firstChild, Arguments... arguments)
: m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children{ firstChild, arguments... }
{
}
// This form is for specifying the type explicitly when the opcode has no children:
explicit Value(CheckedOpcodeTag, Opcode opcode, Type type, Origin origin)
: m_opcode(opcode)
, m_type(type)
, m_origin(origin)
{
}
// This form is for those opcodes that can infer their type from the opcode and first child:
template<typename... Arguments>
explicit Value(CheckedOpcodeTag, Opcode opcode, Origin origin, Value* firstChild)
: m_opcode(opcode)
, m_type(typeFor(opcode, firstChild))
, m_origin(origin)
, m_children{ firstChild }
{
}
// This form is for those opcodes that can infer their type from the opcode and first and second child:
template<typename... Arguments>
explicit Value(CheckedOpcodeTag, Opcode opcode, Origin origin, Value* firstChild, Value* secondChild, Arguments... arguments)
: m_opcode(opcode)
, m_type(typeFor(opcode, firstChild, secondChild))
, m_origin(origin)
, m_children{ firstChild, secondChild, arguments... }
{
}
// This form is for those opcodes that can infer their type from the opcode alone, and that don't
// take any arguments:
explicit Value(CheckedOpcodeTag, Opcode opcode, Origin origin)
: m_opcode(opcode)
, m_type(typeFor(opcode, nullptr))
, m_origin(origin)
{
}
// Use this form for varargs.
explicit Value(CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, const AdjacencyList& children)
: m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children(children)
{
}
explicit Value(CheckedOpcodeTag, Opcode opcode, Type type, Origin origin, AdjacencyList&& children)
: m_opcode(opcode)
, m_type(type)
, m_origin(origin)
, m_children(WTFMove(children))
{
}
// This is the constructor you end up actually calling, if you're instantiating Value
// directly.
template<typename... Arguments>
explicit Value(Opcode opcode, Arguments&&... arguments)
: Value(CheckedOpcode, opcode, std::forward<Arguments>(arguments)...)
{
checkOpcode(opcode);
}
private:
friend class CheckValue; // CheckValue::convertToAdd() modifies m_opcode.
static Type typeFor(Opcode, Value* firstChild, Value* secondChild = nullptr);
// This group of fields is arranged to fit in 64 bits.
protected:
unsigned m_index { UINT_MAX };
private:
Opcode m_opcode;
Type m_type;
Origin m_origin;
AdjacencyList m_children;
public:
BasicBlock* owner { nullptr }; // computed by Procedure::resetValueOwners().
};
class DeepValueDump {
public:
DeepValueDump(const Procedure* proc, const Value* value)
: m_proc(proc)
, m_value(value)
{
}
void dump(PrintStream& out) const
{
if (m_value)
m_value->deepDump(m_proc, out);
else
out.print("<null>");
}
private:
const Procedure* m_proc;
const Value* m_value;
};
inline DeepValueDump deepDump(const Procedure& proc, const Value* value)
{
return DeepValueDump(&proc, value);
}
inline DeepValueDump deepDump(const Value* value)
{
return DeepValueDump(nullptr, value);
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
#endif // B3Value_h
|