1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
/*
* Copyright (C) 2007-2008, 2010, 2012-2015 Apple Inc. All rights reserved.
* Copyright (C) 2007 Justin Haygood (jhaygood@reaktix.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef Atomics_h
#define Atomics_h
#include <atomic>
#include <wtf/StdLibExtras.h>
#if OS(WINDOWS)
#if !COMPILER(GCC_OR_CLANG)
extern "C" void _ReadWriteBarrier(void);
#pragma intrinsic(_ReadWriteBarrier)
#endif
#include <windows.h>
#endif
namespace WTF {
// Atomic wraps around std::atomic with the sole purpose of making the compare_exchange
// operations not alter the expected value. This is more in line with how we typically
// use CAS in our code.
//
// Atomic is a struct without explicitly defined constructors so that it can be
// initialized at compile time.
template<typename T>
struct Atomic {
// Don't pass a non-default value for the order parameter unless you really know
// what you are doing and have thought about it very hard. The cost of seq_cst
// is usually not high enough to justify the risk.
T load(std::memory_order order = std::memory_order_seq_cst) const { return value.load(order); }
void store(T desired, std::memory_order order = std::memory_order_seq_cst) { value.store(desired, order); }
bool compareExchangeWeak(T expected, T desired, std::memory_order order = std::memory_order_seq_cst)
{
#if OS(WINDOWS)
// Windows makes strange assertions about the argument to compare_exchange_weak, and anyway,
// Windows is X86 so seq_cst is cheap.
order = std::memory_order_seq_cst;
#endif
T expectedOrActual = expected;
return value.compare_exchange_weak(expectedOrActual, desired, order);
}
bool compareExchangeStrong(T expected, T desired, std::memory_order order = std::memory_order_seq_cst)
{
#if OS(WINDOWS)
// See above.
order = std::memory_order_seq_cst;
#endif
T expectedOrActual = expected;
return value.compare_exchange_strong(expectedOrActual, desired, order);
}
std::atomic<T> value;
};
// This is a weak CAS function that takes a direct pointer and has no portable fencing guarantees.
template<typename T>
inline bool weakCompareAndSwap(volatile T* location, T expected, T newValue)
{
return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeak(expected, newValue, std::memory_order_relaxed);
}
// Just a compiler fence. Has no effect on the hardware, but tells the compiler
// not to move things around this call. Should not affect the compiler's ability
// to do things like register allocation and code motion over pure operations.
inline void compilerFence()
{
#if OS(WINDOWS) && !COMPILER(GCC_OR_CLANG)
_ReadWriteBarrier();
#else
asm volatile("" ::: "memory");
#endif
}
#if CPU(ARM_THUMB2) || CPU(ARM64)
// Full memory fence. No accesses will float above this, and no accesses will sink
// below it.
inline void armV7_dmb()
{
asm volatile("dmb sy" ::: "memory");
}
// Like the above, but only affects stores.
inline void armV7_dmb_st()
{
asm volatile("dmb st" ::: "memory");
}
inline void loadLoadFence() { armV7_dmb(); }
inline void loadStoreFence() { armV7_dmb(); }
inline void storeLoadFence() { armV7_dmb(); }
inline void storeStoreFence() { armV7_dmb_st(); }
inline void memoryBarrierAfterLock() { armV7_dmb(); }
inline void memoryBarrierBeforeUnlock() { armV7_dmb(); }
#elif CPU(X86) || CPU(X86_64)
inline void x86_mfence()
{
#if OS(WINDOWS)
// I think that this does the equivalent of a dummy interlocked instruction,
// instead of using the 'mfence' instruction, at least according to MSDN. I
// know that it is equivalent for our purposes, but it would be good to
// investigate if that is actually better.
MemoryBarrier();
#else
asm volatile("mfence" ::: "memory");
#endif
}
inline void loadLoadFence() { compilerFence(); }
inline void loadStoreFence() { compilerFence(); }
inline void storeLoadFence() { x86_mfence(); }
inline void storeStoreFence() { compilerFence(); }
inline void memoryBarrierAfterLock() { compilerFence(); }
inline void memoryBarrierBeforeUnlock() { compilerFence(); }
#else
inline void loadLoadFence() { compilerFence(); }
inline void loadStoreFence() { compilerFence(); }
inline void storeLoadFence() { compilerFence(); }
inline void storeStoreFence() { compilerFence(); }
inline void memoryBarrierAfterLock() { compilerFence(); }
inline void memoryBarrierBeforeUnlock() { compilerFence(); }
#endif
} // namespace WTF
using WTF::Atomic;
#endif // Atomics_h
|