1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/*
* Copyright (C) 2014-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "PathUtilities.h"
#include "AffineTransform.h"
#include "FloatPoint.h"
#include "FloatRect.h"
#include "GeometryUtilities.h"
#include <math.h>
#include <wtf/MathExtras.h>
namespace WebCore {
class FloatPointGraph {
WTF_MAKE_NONCOPYABLE(FloatPointGraph);
public:
FloatPointGraph() { }
class Node : public FloatPoint {
WTF_MAKE_NONCOPYABLE(Node);
public:
Node(FloatPoint point)
: FloatPoint(point)
{ }
const Vector<Node*>& nextPoints() const { return m_nextPoints; }
void addNextPoint(Node* node)
{
if (!m_nextPoints.contains(node))
m_nextPoints.append(node);
}
bool isVisited() const { return m_visited; }
void visit() { m_visited = true; }
void reset() { m_visited = false; m_nextPoints.clear(); }
private:
Vector<Node*> m_nextPoints;
bool m_visited { false };
};
typedef std::pair<Node*, Node*> Edge;
typedef Vector<Edge> Polygon;
Node* findOrCreateNode(FloatPoint);
void reset()
{
for (auto& node : m_allNodes)
node->reset();
}
private:
Vector<std::unique_ptr<Node>> m_allNodes;
};
FloatPointGraph::Node* FloatPointGraph::findOrCreateNode(FloatPoint point)
{
for (auto& testNode : m_allNodes) {
if (areEssentiallyEqual(*testNode, point))
return testNode.get();
}
m_allNodes.append(std::make_unique<FloatPointGraph::Node>(point));
return m_allNodes.last().get();
}
static bool findLineSegmentIntersection(const FloatPointGraph::Edge& edgeA, const FloatPointGraph::Edge& edgeB, FloatPoint& intersectionPoint)
{
if (!findIntersection(*edgeA.first, *edgeA.second, *edgeB.first, *edgeB.second, intersectionPoint))
return false;
FloatPoint edgeAVec(*edgeA.second - *edgeA.first);
FloatPoint edgeBVec(*edgeB.second - *edgeB.first);
float dotA = edgeAVec.dot(toFloatPoint(intersectionPoint - *edgeA.first));
if (dotA < 0 || dotA > edgeAVec.lengthSquared())
return false;
float dotB = edgeBVec.dot(toFloatPoint(intersectionPoint - *edgeB.first));
if (dotB < 0 || dotB > edgeBVec.lengthSquared())
return false;
return true;
}
static bool addIntersectionPoints(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
bool foundAnyIntersections = false;
Vector<FloatPointGraph::Edge> allEdges;
for (auto& poly : polys)
allEdges.appendVector(poly);
for (const FloatPointGraph::Edge& edgeA : allEdges) {
Vector<FloatPointGraph::Node*> intersectionPoints({edgeA.first, edgeA.second});
for (const FloatPointGraph::Edge& edgeB : allEdges) {
if (&edgeA == &edgeB)
continue;
FloatPoint intersectionPoint;
if (!findLineSegmentIntersection(edgeA, edgeB, intersectionPoint))
continue;
foundAnyIntersections = true;
intersectionPoints.append(graph.findOrCreateNode(intersectionPoint));
}
std::sort(intersectionPoints.begin(), intersectionPoints.end(), [edgeA] (FloatPointGraph::Node* a, FloatPointGraph::Node* b) {
return FloatPoint(*edgeA.first - *b).lengthSquared() > FloatPoint(*edgeA.first - *a).lengthSquared();
});
for (unsigned pointIndex = 1; pointIndex < intersectionPoints.size(); pointIndex++)
intersectionPoints[pointIndex - 1]->addNextPoint(intersectionPoints[pointIndex]);
}
return foundAnyIntersections;
}
static FloatPointGraph::Polygon walkGraphAndExtractPolygon(FloatPointGraph::Node* startNode)
{
FloatPointGraph::Polygon outPoly;
FloatPointGraph::Node* currentNode = startNode;
FloatPointGraph::Node* previousNode = startNode;
do {
currentNode->visit();
FloatPoint currentVec(*previousNode - *currentNode);
currentVec.normalize();
// Walk the graph, at each node choosing the next non-visited
// point with the greatest internal angle.
FloatPointGraph::Node* nextNode = nullptr;
float nextNodeAngle = 0;
for (auto* potentialNextNode : currentNode->nextPoints()) {
if (potentialNextNode == currentNode)
continue;
// If we can get back to the start, we should, ignoring the fact that we already visited it.
// Otherwise we'll head inside the shape.
if (potentialNextNode == startNode) {
nextNode = startNode;
break;
}
if (potentialNextNode->isVisited())
continue;
FloatPoint nextVec(*potentialNextNode - *currentNode);
nextVec.normalize();
float angle = acos(nextVec.dot(currentVec));
float crossZ = nextVec.x() * currentVec.y() - nextVec.y() * currentVec.x();
if (crossZ < 0)
angle = (2 * piFloat) - angle;
if (!nextNode || angle > nextNodeAngle) {
nextNode = potentialNextNode;
nextNodeAngle = angle;
}
}
// If we don't end up at a node adjacent to the starting node,
// something went wrong (there's probably a hole in the shape),
// so bail out. We'll use a bounding box instead.
if (!nextNode)
return FloatPointGraph::Polygon();
outPoly.append(std::make_pair(currentNode, nextNode));
previousNode = currentNode;
currentNode = nextNode;
} while (currentNode != startNode);
return outPoly;
}
static FloatPointGraph::Node* findUnvisitedPolygonStartPoint(Vector<FloatPointGraph::Polygon>& polys)
{
for (auto& poly : polys) {
for (auto& edge : poly) {
if (edge.first->isVisited() || edge.second->isVisited())
goto nextPolygon;
}
// FIXME: We should make sure we find an outside edge to start with.
return poly[0].first;
nextPolygon:
continue;
}
return nullptr;
}
static Vector<FloatPointGraph::Polygon> unitePolygons(Vector<FloatPointGraph::Polygon>& polys, FloatPointGraph& graph)
{
graph.reset();
// There are no intersections, so the polygons are disjoint (we already removed wholly-contained rects in an earlier step).
if (!addIntersectionPoints(polys, graph))
return polys;
Vector<FloatPointGraph::Polygon> unitedPolygons;
while (FloatPointGraph::Node* startNode = findUnvisitedPolygonStartPoint(polys)) {
FloatPointGraph::Polygon unitedPolygon = walkGraphAndExtractPolygon(startNode);
if (unitedPolygon.isEmpty())
return Vector<FloatPointGraph::Polygon>();
unitedPolygons.append(unitedPolygon);
}
return unitedPolygons;
}
static FloatPointGraph::Polygon edgesForRect(FloatRect rect, FloatPointGraph& graph)
{
auto minMin = graph.findOrCreateNode(rect.minXMinYCorner());
auto minMax = graph.findOrCreateNode(rect.minXMaxYCorner());
auto maxMax = graph.findOrCreateNode(rect.maxXMaxYCorner());
auto maxMin = graph.findOrCreateNode(rect.maxXMinYCorner());
return FloatPointGraph::Polygon({
std::make_pair(minMin, maxMin),
std::make_pair(maxMin, maxMax),
std::make_pair(maxMax, minMax),
std::make_pair(minMax, minMin)
});
}
Vector<Path> PathUtilities::pathsWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
Vector<Path> paths;
if (rects.isEmpty())
return paths;
if (rects.size() > 20) {
Path path;
path.addRoundedRect(unionRect(rects), FloatSize(radius, radius));
paths.append(path);
return paths;
}
Vector<FloatRect> sortedRects = rects;
std::sort(sortedRects.begin(), sortedRects.end(), [](FloatRect a, FloatRect b) { return b.y() > a.y(); });
FloatPointGraph graph;
Vector<FloatPointGraph::Polygon> rectPolygons;
rectPolygons.reserveInitialCapacity(sortedRects.size());
for (auto& rect : sortedRects) {
bool isContained = false;
for (auto& otherRect : sortedRects) {
if (&rect == &otherRect)
continue;
if (otherRect.contains(rect)) {
isContained = true;
break;
}
}
if (!isContained)
rectPolygons.append(edgesForRect(rect, graph));
}
Vector<FloatPointGraph::Polygon> polys = unitePolygons(rectPolygons, graph);
if (polys.isEmpty()) {
Path path;
path.addRoundedRect(unionRect(sortedRects), FloatSize(radius, radius));
paths.append(path);
return paths;
}
for (auto& poly : polys) {
Path path;
for (unsigned i = 0; i < poly.size(); i++) {
FloatPointGraph::Edge& toEdge = poly[i];
// Connect the first edge to the last.
FloatPointGraph::Edge& fromEdge = (i > 0) ? poly[i - 1] : poly[poly.size() - 1];
FloatPoint fromEdgeVec = toFloatPoint(*fromEdge.second - *fromEdge.first);
FloatPoint toEdgeVec = toFloatPoint(*toEdge.second - *toEdge.first);
// Clamp the radius to no more than half the length of either adjacent edge,
// because we want a smooth curve and don't want unequal radii.
float clampedRadius = std::min(radius, fabsf(fromEdgeVec.x() ? fromEdgeVec.x() : fromEdgeVec.y()) / 2);
clampedRadius = std::min(clampedRadius, fabsf(toEdgeVec.x() ? toEdgeVec.x() : toEdgeVec.y()) / 2);
FloatPoint fromEdgeNorm = fromEdgeVec;
fromEdgeNorm.normalize();
FloatPoint toEdgeNorm = toEdgeVec;
toEdgeNorm.normalize();
// Project the radius along the incoming and outgoing edge.
FloatSize fromOffset = clampedRadius * toFloatSize(fromEdgeNorm);
FloatSize toOffset = clampedRadius * toFloatSize(toEdgeNorm);
if (!i)
path.moveTo(*fromEdge.second - fromOffset);
else
path.addLineTo(*fromEdge.second - fromOffset);
path.addArcTo(*fromEdge.second, *toEdge.first + toOffset, clampedRadius);
}
path.closeSubpath();
paths.append(path);
}
return paths;
}
Path PathUtilities::pathWithShrinkWrappedRects(const Vector<FloatRect>& rects, float radius)
{
Vector<Path> paths = pathsWithShrinkWrappedRects(rects, radius);
Path unionPath;
for (const auto& path : paths)
unionPath.addPath(path, AffineTransform());
return unionPath;
}
}
|