1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*
* Copyright (C) 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef AirCustom_h
#define AirCustom_h
#if ENABLE(B3_JIT)
#include "AirInst.h"
#include "AirSpecial.h"
#include "B3Value.h"
namespace JSC { namespace B3 { namespace Air {
// This defines the behavior of custom instructions - i.e. those whose behavior cannot be
// described using AirOpcode.opcodes. If you define an opcode as "custom Foo" in that file, then
// you will need to create a "struct FooCustom" here that implements the custom behavior
// methods.
//
// The customizability granted by the custom instruction mechanism is strictly less than what
// you get using the Patch instruction and implementing a Special. However, that path requires
// allocating a Special object and ensuring that it's the first operand. For many instructions,
// that is not as convenient as using Custom, which makes the instruction look like any other
// instruction. Note that both of those extra powers of the Patch instruction happen because we
// special-case that instruction in many phases and analyses. Non-special-cased behaviors of
// Patch are implemented using the custom instruction mechanism.
//
// Specials are still more flexible if you need to list extra clobbered registers and you'd like
// that to be expressed as a bitvector rather than an arglist. They are also more flexible if
// you need to carry extra state around with the instruction. Also, Specials mean that you
// always have access to Code& even in methods that don't take a GenerationContext.
// Definition of Patch instruction. Patch is used to delegate the behavior of the instruction to the
// Special object, which will be the first argument to the instruction.
struct PatchCustom {
template<typename Functor>
static void forEachArg(Inst& inst, const Functor& functor)
{
// This is basically bogus, but it works for analyses that model Special as an
// immediate.
functor(inst.args[0], Arg::Use, Arg::GP, Arg::pointerWidth());
inst.args[0].special()->forEachArg(inst, scopedLambda<Inst::EachArgCallback>(functor));
}
template<typename... Arguments>
static bool isValidFormStatic(Arguments...)
{
return false;
}
static bool isValidForm(Inst& inst);
static bool admitsStack(Inst& inst, unsigned argIndex)
{
if (!argIndex)
return false;
return inst.args[0].special()->admitsStack(inst, argIndex);
}
static Optional<unsigned> shouldTryAliasingDef(Inst& inst)
{
return inst.args[0].special()->shouldTryAliasingDef(inst);
}
static bool hasNonArgNonControlEffects(Inst& inst)
{
return inst.args[0].special()->hasNonArgNonControlEffects();
}
static CCallHelpers::Jump generate(
Inst& inst, CCallHelpers& jit, GenerationContext& context)
{
return inst.args[0].special()->generate(inst, jit, context);
}
};
// Definition of CCall instruction. CCall is used for hot path C function calls. It's lowered to a
// Patch with an Air CCallSpecial along with code to marshal instructions. The lowering happens
// before register allocation, so that the register allocator sees the clobbers.
struct CCallCustom {
template<typename Functor>
static void forEachArg(Inst& inst, const Functor& functor)
{
Value* value = inst.origin;
unsigned index = 0;
functor(inst.args[index++], Arg::Use, Arg::GP, Arg::pointerWidth()); // callee
if (value->type() != Void) {
functor(
inst.args[index++], Arg::Def,
Arg::typeForB3Type(value->type()),
Arg::widthForB3Type(value->type()));
}
for (unsigned i = 1; i < value->numChildren(); ++i) {
Value* child = value->child(i);
functor(
inst.args[index++], Arg::Use,
Arg::typeForB3Type(child->type()),
Arg::widthForB3Type(child->type()));
}
}
template<typename... Arguments>
static bool isValidFormStatic(Arguments...)
{
return false;
}
static bool isValidForm(Inst&);
static bool admitsStack(Inst&, unsigned)
{
return true;
}
static bool hasNonArgNonControlEffects(Inst&)
{
return true;
}
// This just crashes, since we expect C calls to be lowered before generation.
static CCallHelpers::Jump generate(Inst&, CCallHelpers&, GenerationContext&);
};
struct ColdCCallCustom : CCallCustom {
template<typename Functor>
static void forEachArg(Inst& inst, const Functor& functor)
{
// This is just like a call, but uses become cold.
CCallCustom::forEachArg(
inst,
[&] (Arg& arg, Arg::Role role, Arg::Type type, Arg::Width width) {
functor(arg, Arg::cooled(role), type, width);
});
}
};
struct ShuffleCustom {
template<typename Functor>
static void forEachArg(Inst& inst, const Functor& functor)
{
unsigned limit = inst.args.size() / 3 * 3;
for (unsigned i = 0; i < limit; i += 3) {
Arg& src = inst.args[i + 0];
Arg& dst = inst.args[i + 1];
Arg& widthArg = inst.args[i + 2];
Arg::Width width = widthArg.width();
Arg::Type type = src.isGP() && dst.isGP() ? Arg::GP : Arg::FP;
functor(src, Arg::Use, type, width);
functor(dst, Arg::Def, type, width);
functor(widthArg, Arg::Use, Arg::GP, Arg::Width8);
}
}
template<typename... Arguments>
static bool isValidFormStatic(Arguments...)
{
return false;
}
static bool isValidForm(Inst&);
static bool admitsStack(Inst&, unsigned index)
{
switch (index % 3) {
case 0:
case 1:
return true;
default:
return false;
}
}
static bool hasNonArgNonControlEffects(Inst&)
{
return false;
}
static CCallHelpers::Jump generate(Inst&, CCallHelpers&, GenerationContext&);
};
} } } // namespace JSC::B3::Air
#endif // ENABLE(B3_JIT)
#endif // AirCustom_h
|