1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* Copyright (C) 2013-2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStrengthReductionPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractHeap.h"
#include "DFGClobberize.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "DFGPredictionPropagationPhase.h"
#include "DFGVariableAccessDataDump.h"
#include "JSCInlines.h"
#include <cstdlib>
namespace JSC { namespace DFG {
class StrengthReductionPhase : public Phase {
public:
StrengthReductionPhase(Graph& graph)
: Phase(graph, "strength reduction")
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_fixpointState == FixpointNotConverged);
m_changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
m_block = m_graph.block(blockIndex);
if (!m_block)
continue;
for (m_nodeIndex = 0; m_nodeIndex < m_block->size(); ++m_nodeIndex) {
m_node = m_block->at(m_nodeIndex);
handleNode();
}
m_insertionSet.execute(m_block);
}
return m_changed;
}
private:
void handleNode()
{
switch (m_node->op()) {
case BitOr:
handleCommutativity();
if (m_node->child1().useKind() != UntypedUse && m_node->child2()->isInt32Constant() && !m_node->child2()->asInt32()) {
convertToIdentityOverChild1();
break;
}
break;
case BitXor:
case BitAnd:
handleCommutativity();
break;
case BitLShift:
case BitRShift:
case BitURShift:
if (m_node->child1().useKind() != UntypedUse && m_node->child2()->isInt32Constant() && !(m_node->child2()->asInt32() & 0x1f)) {
convertToIdentityOverChild1();
break;
}
break;
case UInt32ToNumber:
if (m_node->child1()->op() == BitURShift
&& m_node->child1()->child2()->isInt32Constant()
&& (m_node->child1()->child2()->asInt32() & 0x1f)
&& m_node->arithMode() != Arith::DoOverflow) {
m_node->convertToIdentity();
m_changed = true;
break;
}
break;
case ArithAdd:
handleCommutativity();
if (m_node->child2()->isInt32Constant() && !m_node->child2()->asInt32()) {
convertToIdentityOverChild1();
break;
}
break;
case ArithMul: {
handleCommutativity();
Edge& child2 = m_node->child2();
if (child2->isNumberConstant() && child2->asNumber() == 2) {
switch (m_node->binaryUseKind()) {
case DoubleRepUse:
// It is always valuable to get rid of a double multiplication by 2.
// We won't have half-register dependencies issues on x86 and we won't have to load the constants.
m_node->setOp(ArithAdd);
child2.setNode(m_node->child1().node());
m_changed = true;
break;
#if USE(JSVALUE64)
case Int52RepUse:
#endif
case Int32Use:
// For integers, we can only convert compatible modes.
// ArithAdd does handle do negative zero check for example.
if (m_node->arithMode() == Arith::CheckOverflow || m_node->arithMode() == Arith::Unchecked) {
m_node->setOp(ArithAdd);
child2.setNode(m_node->child1().node());
m_changed = true;
}
break;
default:
break;
}
}
break;
}
case ArithSub:
if (m_node->child2()->isInt32Constant()
&& m_node->isBinaryUseKind(Int32Use)) {
int32_t value = m_node->child2()->asInt32();
if (-value != value) {
m_node->setOp(ArithAdd);
m_node->child2().setNode(
m_insertionSet.insertConstant(
m_nodeIndex, m_node->origin, jsNumber(-value)));
m_changed = true;
break;
}
}
break;
case ArithPow:
if (m_node->child2()->isNumberConstant()) {
double yOperandValue = m_node->child2()->asNumber();
if (yOperandValue == 1) {
convertToIdentityOverChild1();
} else if (yOperandValue == 0.5) {
m_insertionSet.insertCheck(m_nodeIndex, m_node);
m_node->convertToArithSqrt();
m_changed = true;
}
}
break;
case ArithMod:
// On Integers
// In: ArithMod(ArithMod(x, const1), const2)
// Out: Identity(ArithMod(x, const1))
// if const1 <= const2.
if (m_node->binaryUseKind() == Int32Use
&& m_node->child2()->isInt32Constant()
&& m_node->child1()->op() == ArithMod
&& m_node->child1()->binaryUseKind() == Int32Use
&& m_node->child1()->child2()->isInt32Constant()
&& std::abs(m_node->child1()->child2()->asInt32()) <= std::abs(m_node->child2()->asInt32())) {
convertToIdentityOverChild1();
}
break;
case ValueRep:
case Int52Rep:
case DoubleRep: {
// This short-circuits circuitous conversions, like ValueRep(DoubleRep(value)) or
// even more complicated things. Like, it can handle a beast like
// ValueRep(DoubleRep(Int52Rep(value))).
// The only speculation that we would do beyond validating that we have a type that
// can be represented a certain way is an Int32 check that would appear on Int52Rep
// nodes. For now, if we see this and the final type we want is an Int52, we use it
// as an excuse not to fold. The only thing we would need is a Int52RepInt32Use kind.
bool hadInt32Check = false;
if (m_node->op() == Int52Rep) {
if (m_node->child1().useKind() != Int32Use)
break;
hadInt32Check = true;
}
for (Node* node = m_node->child1().node(); ; node = node->child1().node()) {
if (canonicalResultRepresentation(node->result()) ==
canonicalResultRepresentation(m_node->result())) {
m_insertionSet.insertCheck(m_nodeIndex, m_node);
if (hadInt32Check) {
// FIXME: Consider adding Int52RepInt32Use or even DoubleRepInt32Use,
// which would be super weird. The latter would only arise in some
// seriously circuitous conversions.
if (canonicalResultRepresentation(node->result()) != NodeResultJS)
break;
m_insertionSet.insertCheck(
m_nodeIndex, m_node->origin, Edge(node, Int32Use));
}
m_node->child1() = node->defaultEdge();
m_node->convertToIdentity();
m_changed = true;
break;
}
switch (node->op()) {
case Int52Rep:
if (node->child1().useKind() != Int32Use)
break;
hadInt32Check = true;
continue;
case DoubleRep:
case ValueRep:
continue;
default:
break;
}
break;
}
break;
}
case Flush: {
ASSERT(m_graph.m_form != SSA);
Node* setLocal = nullptr;
VirtualRegister local = m_node->local();
for (unsigned i = m_nodeIndex; i--;) {
Node* node = m_block->at(i);
if (node->op() == SetLocal && node->local() == local) {
setLocal = node;
break;
}
if (accessesOverlap(m_graph, node, AbstractHeap(Stack, local)))
break;
}
if (!setLocal)
break;
// The Flush should become a PhantomLocal at this point. This means that we want the
// local's value during OSR, but we don't care if the value is stored to the stack. CPS
// rethreading can canonicalize PhantomLocals for us.
m_node->convertFlushToPhantomLocal();
m_graph.dethread();
m_changed = true;
break;
}
// FIXME: we should probably do this in constant folding but this currently relies on an OSR exit rule.
// https://bugs.webkit.org/show_bug.cgi?id=154832
case OverridesHasInstance: {
if (!m_node->child2().node()->isCellConstant())
break;
if (m_node->child2().node()->asCell() != m_graph.globalObjectFor(m_node->origin.semantic)->functionProtoHasInstanceSymbolFunction()) {
m_graph.convertToConstant(m_node, jsBoolean(true));
m_changed = true;
} else if (!m_graph.hasExitSite(m_node->origin.semantic, BadTypeInfoFlags)) {
// We optimistically assume that we will not see a function that has a custom instanceof operation as they should be rare.
m_insertionSet.insertNode(m_nodeIndex, SpecNone, CheckTypeInfoFlags, m_node->origin, OpInfo(ImplementsDefaultHasInstance), Edge(m_node->child1().node(), CellUse));
m_graph.convertToConstant(m_node, jsBoolean(false));
m_changed = true;
}
break;
}
default:
break;
}
}
void convertToIdentityOverChild(unsigned childIndex)
{
m_insertionSet.insertCheck(m_nodeIndex, m_node);
m_node->children.removeEdge(childIndex ^ 1);
m_node->convertToIdentity();
m_changed = true;
}
void convertToIdentityOverChild1()
{
convertToIdentityOverChild(0);
}
void convertToIdentityOverChild2()
{
convertToIdentityOverChild(1);
}
void handleCommutativity()
{
// If the right side is a constant then there is nothing left to do.
if (m_node->child2()->hasConstant())
return;
// This case ensures that optimizations that look for x + const don't also have
// to look for const + x.
if (m_node->child1()->hasConstant()) {
std::swap(m_node->child1(), m_node->child2());
m_changed = true;
return;
}
// This case ensures that CSE is commutativity-aware.
if (m_node->child1().node() > m_node->child2().node()) {
std::swap(m_node->child1(), m_node->child2());
m_changed = true;
return;
}
}
InsertionSet m_insertionSet;
BasicBlock* m_block;
unsigned m_nodeIndex;
Node* m_node;
bool m_changed;
};
bool performStrengthReduction(Graph& graph)
{
SamplingRegion samplingRegion("DFG Strength Reduction Phase");
return runPhase<StrengthReductionPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|