1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2008 Eric Seidel <eric@webkit.org>
* Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
* Copyright (C) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasPathMethods.h"
#include "AffineTransform.h"
#include "ExceptionCode.h"
#include "FloatRect.h"
#include <wtf/MathExtras.h>
namespace WebCore {
void CanvasPathMethods::closePath()
{
if (m_path.isEmpty())
return;
FloatRect boundRect = m_path.fastBoundingRect();
if (boundRect.width() || boundRect.height())
m_path.closeSubpath();
}
void CanvasPathMethods::moveTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
m_path.moveTo(FloatPoint(x, y));
}
void CanvasPathMethods::lineTo(FloatPoint point)
{
lineTo(point.x(), point.y());
}
void CanvasPathMethods::lineTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
FloatPoint p1 = FloatPoint(x, y);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 != m_path.currentPoint())
m_path.addLineTo(p1);
}
void CanvasPathMethods::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cpx, cpy));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp = FloatPoint(cpx, cpy);
if (p1 != m_path.currentPoint() || p1 != cp)
m_path.addQuadCurveTo(cp, p1);
}
void CanvasPathMethods::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cp1x, cp1y));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp1 = FloatPoint(cp1x, cp1y);
FloatPoint cp2 = FloatPoint(cp2x, cp2y);
if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
m_path.addBezierCurveTo(cp1, cp2, p1);
}
void CanvasPathMethods::arcTo(float x1, float y1, float x2, float y2, float r, ExceptionCode& ec)
{
ec = 0;
if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
return;
if (r < 0) {
ec = INDEX_SIZE_ERR;
return;
}
if (!hasInvertibleTransform())
return;
FloatPoint p1 = FloatPoint(x1, y1);
FloatPoint p2 = FloatPoint(x2, y2);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
lineTo(x1, y1);
else
m_path.addArcTo(p1, p2, r);
}
static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
{
float newStartAngle = startAngle;
if (newStartAngle < 0)
newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
else
newStartAngle = fmodf(newStartAngle, 2 * piFloat);
float delta = newStartAngle - startAngle;
startAngle = newStartAngle;
endAngle = endAngle + delta;
ASSERT(newStartAngle >= 0 && newStartAngle < 2 * piFloat);
if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
endAngle = startAngle - 2 * piFloat;
else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
endAngle = startAngle + 2 * piFloat;
}
void CanvasPathMethods::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise, ExceptionCode& ec)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return;
if (radius < 0) {
ec = INDEX_SIZE_ERR;
return;
}
if (!hasInvertibleTransform())
return;
normalizeAngles(startAngle, endAngle, anticlockwise);
if (!radius || startAngle == endAngle) {
// The arc is empty but we still need to draw the connecting line.
lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
return;
}
m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise);
}
void CanvasPathMethods::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise, ExceptionCode& ec)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return;
if (radiusX < 0 || radiusY < 0) {
ec = INDEX_SIZE_ERR;
return;
}
if (!hasInvertibleTransform())
return;
normalizeAngles(startAngle, endAngle, anticlockwise);
if ((!radiusX && !radiusY) || startAngle == endAngle) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
return;
}
if (!radiusX || !radiusY) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
if (!anticlockwise) {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
} else {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
}
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
return;
}
m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise);
}
void CanvasPathMethods::rect(float x, float y, float width, float height)
{
if (!hasInvertibleTransform())
return;
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return;
if (!width && !height) {
m_path.moveTo(FloatPoint(x, y));
return;
}
m_path.addRect(FloatRect(x, y, width, height));
}
}
|