1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "LowLevelInterpreter.h"
#if ENABLE(LLINT)
#include "LLIntOfflineAsmConfig.h"
#include <wtf/InlineASM.h>
#if ENABLE(LLINT_C_LOOP)
#include "CodeBlock.h"
#include "LLIntCLoop.h"
#include "LLIntSlowPaths.h"
#include "Operations.h"
#include "VMInspector.h"
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
using namespace JSC::LLInt;
// LLInt C Loop opcodes
// ====================
// In the implementation of the C loop, the LLint trampoline glue functions
// (e.g. llint_program_prologue, llint_eval_prologue, etc) are addressed as
// if they are bytecode handlers. That means the names of the trampoline
// functions will be added to the OpcodeID list via the
// FOR_EACH_LLINT_OPCODE_EXTENSION() macro that FOR_EACH_OPCODE_ID()
// includes.
//
// In addition, some JIT trampoline functions which are needed by LLInt
// (e.g. getHostCallReturnValue, ctiOpThrowNotCaught) are also added as
// bytecodes, and the CLoop will provide bytecode handlers for them.
//
// In the CLoop, we can only dispatch indirectly to these bytecodes
// (including the LLInt and JIT extensions). All other dispatches
// (i.e. goto's) must be to a known label (i.e. local / global labels).
// How are the opcodes named?
// ==========================
// Here is a table to show examples of how each of the manifestation of the
// opcodes are named:
//
// Type: Opcode Trampoline Glue
// ====== ===============
// [In the llint .asm files]
// llint labels: llint_op_enter llint_program_prologue
//
// OpcodeID: op_enter llint_program
// [in Opcode.h] [in LLIntOpcode.h]
//
// When using a switch statement dispatch in the CLoop, each "opcode" is
// a case statement:
// Opcode: case op_enter: case llint_program_prologue:
//
// When using a computed goto dispatch in the CLoop, each opcode is a label:
// Opcode: op_enter: llint_program_prologue:
//============================================================================
// Define the opcode dispatch mechanism when using the C loop:
//
// These are for building a C Loop interpreter:
#define OFFLINE_ASM_BEGIN
#define OFFLINE_ASM_END
#define OFFLINE_ASM_OPCODE_LABEL(opcode) DEFINE_OPCODE(opcode)
#if ENABLE(COMPUTED_GOTO_OPCODES)
#define OFFLINE_ASM_GLUE_LABEL(label) label:
#else
#define OFFLINE_ASM_GLUE_LABEL(label) case label: label:
#endif
#define OFFLINE_ASM_LOCAL_LABEL(label) label:
//============================================================================
// Some utilities:
//
namespace JSC {
namespace LLInt {
#if USE(JSVALUE32_64)
static double Ints2Double(uint32_t lo, uint32_t hi)
{
union {
double dval;
uint64_t ival64;
} u;
u.ival64 = (static_cast<uint64_t>(hi) << 32) | lo;
return u.dval;
}
static void Double2Ints(double val, uint32_t& lo, uint32_t& hi)
{
union {
double dval;
uint64_t ival64;
} u;
u.dval = val;
hi = static_cast<uint32_t>(u.ival64 >> 32);
lo = static_cast<uint32_t>(u.ival64);
}
#endif // USE(JSVALUE32_64)
} // namespace LLint
//============================================================================
// CLoopRegister is the storage for an emulated CPU register.
// It defines the policy of how ints smaller than intptr_t are packed into the
// pseudo register, as well as hides endianness differences.
struct CLoopRegister {
union {
intptr_t i;
uintptr_t u;
#if USE(JSVALUE64)
#if CPU(BIG_ENDIAN)
struct {
int32_t i32padding;
int32_t i32;
};
struct {
uint32_t u32padding;
uint32_t u32;
};
struct {
int8_t i8padding[7];
int8_t i8;
};
struct {
uint8_t u8padding[7];
uint8_t u8;
};
#else // !CPU(BIG_ENDIAN)
struct {
int32_t i32;
int32_t i32padding;
};
struct {
uint32_t u32;
uint32_t u32padding;
};
struct {
int8_t i8;
int8_t i8padding[7];
};
struct {
uint8_t u8;
uint8_t u8padding[7];
};
#endif // !CPU(BIG_ENDIAN)
#else // !USE(JSVALUE64)
int32_t i32;
uint32_t u32;
#if CPU(BIG_ENDIAN)
struct {
int8_t i8padding[3];
int8_t i8;
};
struct {
uint8_t u8padding[3];
uint8_t u8;
};
#else // !CPU(BIG_ENDIAN)
struct {
int8_t i8;
int8_t i8padding[3];
};
struct {
uint8_t u8;
uint8_t u8padding[3];
};
#endif // !CPU(BIG_ENDIAN)
#endif // !USE(JSVALUE64)
int8_t* i8p;
void* vp;
ExecState* execState;
void* instruction;
NativeFunction nativeFunc;
#if USE(JSVALUE64)
int64_t i64;
uint64_t u64;
EncodedJSValue encodedJSValue;
double castToDouble;
#endif
Opcode opcode;
};
#if USE(JSVALUE64)
inline void clearHighWord() { i32padding = 0; }
#else
inline void clearHighWord() { }
#endif
};
//============================================================================
// The llint C++ interpreter loop:
//
JSValue CLoop::execute(CallFrame* callFrame, OpcodeID bootstrapOpcodeId,
bool isInitializationPass)
{
#define CAST reinterpret_cast
#define SIGN_BIT32(x) ((x) & 0x80000000)
// One-time initialization of our address tables. We have to put this code
// here because our labels are only in scope inside this function. The
// caller (or one of its ancestors) is responsible for ensuring that this
// is only called once during the initialization of the VM before threads
// are at play.
if (UNLIKELY(isInitializationPass)) {
#if ENABLE(COMPUTED_GOTO_OPCODES)
Opcode* opcodeMap = LLInt::opcodeMap();
#define OPCODE_ENTRY(__opcode, length) \
opcodeMap[__opcode] = bitwise_cast<void*>(&&__opcode);
FOR_EACH_OPCODE_ID(OPCODE_ENTRY)
#undef OPCODE_ENTRY
#define LLINT_OPCODE_ENTRY(__opcode, length) \
opcodeMap[__opcode] = bitwise_cast<void*>(&&__opcode);
FOR_EACH_LLINT_NATIVE_HELPER(LLINT_OPCODE_ENTRY)
#undef LLINT_OPCODE_ENTRY
#endif
// Note: we can only set the exceptionInstructions after we have
// initialized the opcodeMap above. This is because getCodePtr()
// can depend on the opcodeMap.
Instruction* exceptionInstructions = LLInt::exceptionInstructions();
for (int i = 0; i < maxOpcodeLength + 1; ++i)
exceptionInstructions[i].u.pointer =
LLInt::getCodePtr(llint_throw_from_slow_path_trampoline);
return JSValue();
}
ASSERT(callFrame->vm().topCallFrame == callFrame);
// Define the pseudo registers used by the LLINT C Loop backend:
ASSERT(sizeof(CLoopRegister) == sizeof(intptr_t));
union CLoopDoubleRegister {
double d;
#if USE(JSVALUE64)
int64_t castToInt64;
#endif
};
// The CLoop llint backend is initially based on the ARMv7 backend, and
// then further enhanced with a few instructions from the x86 backend to
// support building for X64 targets. Hence, the shape of the generated
// code and the usage convention of registers will look a lot like the
// ARMv7 backend's.
//
// For example, on a 32-bit build:
// 1. Outgoing args will be set up as follows:
// arg1 in t0 (r0 on ARM)
// arg2 in t1 (r1 on ARM)
// 2. 32 bit return values will be in t0 (r0 on ARM).
// 3. 64 bit return values (e.g. doubles) will be in t0,t1 (r0,r1 on ARM).
//
// But instead of naming these simulator registers based on their ARM
// counterparts, we'll name them based on their original llint asm names.
// This will make it easier to correlate the generated code with the
// original llint asm code.
//
// On a 64-bit build, it more like x64 in that the registers are 64 bit.
// Hence:
// 1. Outgoing args are still the same: arg1 in t0, arg2 in t1, etc.
// 2. 32 bit result values will be in the low 32-bit of t0.
// 3. 64 bit result values will be in t0.
CLoopRegister t0, t1, t2, t3;
#if USE(JSVALUE64)
CLoopRegister rBasePC, tagTypeNumber, tagMask;
#endif
CLoopRegister rRetVPC;
CLoopDoubleRegister d0, d1;
// Keep the compiler happy. We don't really need this, but the compiler
// will complain. This makes the warning go away.
t0.i = 0;
t1.i = 0;
// Instantiate the pseudo JIT stack frame used by the LLINT C Loop backend:
JITStackFrame jitStackFrame;
// The llint expects the native stack pointer, sp, to be pointing to the
// jitStackFrame (which is the simulation of the native stack frame):
JITStackFrame* const sp = &jitStackFrame;
sp->vm = &callFrame->vm();
// Set up an alias for the vm ptr in the JITStackFrame:
VM* &vm = sp->vm;
CodeBlock* codeBlock = callFrame->codeBlock();
Instruction* vPC;
// rPC is an alias for vPC. Set up the alias:
CLoopRegister& rPC = *CAST<CLoopRegister*>(&vPC);
#if USE(JSVALUE32_64)
vPC = codeBlock->instructions().begin();
#else // USE(JSVALUE64)
vPC = 0;
rBasePC.vp = codeBlock->instructions().begin();
// For the ASM llint, JITStubs takes care of this initialization. We do
// it explicitly here for the C loop:
tagTypeNumber.i = 0xFFFF000000000000;
tagMask.i = 0xFFFF000000000002;
#endif // USE(JSVALUE64)
// cfr is an alias for callFrame. Set up this alias:
CLoopRegister& cfr = *CAST<CLoopRegister*>(&callFrame);
// Simulate a native return PC which should never be used:
rRetVPC.i = 0xbbadbeef;
// Interpreter variables for value passing between opcodes and/or helpers:
NativeFunction nativeFunc = 0;
JSValue functionReturnValue;
Opcode opcode;
opcode = LLInt::getOpcode(bootstrapOpcodeId);
#if ENABLE(OPCODE_STATS)
#define RECORD_OPCODE_STATS(__opcode) \
OpcodeStats::recordInstruction(__opcode)
#else
#define RECORD_OPCODE_STATS(__opcode)
#endif
#if USE(JSVALUE32_64)
#define FETCH_OPCODE() vPC->u.opcode
#else // USE(JSVALUE64)
#define FETCH_OPCODE() *bitwise_cast<Opcode*>(rBasePC.i8p + rPC.i * 8)
#endif // USE(JSVALUE64)
#define NEXT_INSTRUCTION() \
do { \
opcode = FETCH_OPCODE(); \
DISPATCH_OPCODE(); \
} while (false)
#if ENABLE(COMPUTED_GOTO_OPCODES)
//========================================================================
// Loop dispatch mechanism using computed goto statements:
#define DISPATCH_OPCODE() goto *opcode
#define DEFINE_OPCODE(__opcode) \
__opcode: \
RECORD_OPCODE_STATS(__opcode);
// Dispatch to the current PC's bytecode:
DISPATCH_OPCODE();
#else // !ENABLE(COMPUTED_GOTO_OPCODES)
//========================================================================
// Loop dispatch mechanism using a C switch statement:
#define DISPATCH_OPCODE() goto dispatchOpcode
#define DEFINE_OPCODE(__opcode) \
case __opcode: \
__opcode: \
RECORD_OPCODE_STATS(__opcode);
// Dispatch to the current PC's bytecode:
dispatchOpcode:
switch (opcode)
#endif // !ENABLE(COMPUTED_GOTO_OPCODES)
//========================================================================
// Bytecode handlers:
{
// This is the file generated by offlineasm, which contains all of the
// bytecode handlers for the interpreter, as compiled from
// LowLevelInterpreter.asm and its peers.
#include "LLIntAssembly.h"
// In the ASM llint, getHostCallReturnValue() is a piece of glue
// function provided by the JIT (see dfg/DFGOperations.cpp).
// We simulate it here with a pseduo-opcode handler.
OFFLINE_ASM_GLUE_LABEL(getHostCallReturnValue)
{
// The ASM part pops the frame:
callFrame = callFrame->callerFrame();
// The part in getHostCallReturnValueWithExecState():
JSValue result = vm->hostCallReturnValue;
#if USE(JSVALUE32_64)
t1.i = result.tag();
t0.i = result.payload();
#else
t0.encodedJSValue = JSValue::encode(result);
#endif
goto doReturnHelper;
}
OFFLINE_ASM_GLUE_LABEL(ctiOpThrowNotCaught)
{
return vm->exception;
}
#if !ENABLE(COMPUTED_GOTO_OPCODES)
default:
ASSERT(false);
#endif
} // END bytecode handler cases.
//========================================================================
// Bytecode helpers:
doReturnHelper: {
ASSERT(!!callFrame);
if (callFrame->hasHostCallFrameFlag()) {
#if USE(JSVALUE32_64)
return JSValue(t1.i, t0.i); // returning JSValue(tag, payload);
#else
return JSValue::decode(t0.encodedJSValue);
#endif
}
// The normal ASM llint call implementation returns to the caller as
// recorded in rRetVPC, and the caller would fetch the return address
// from ArgumentCount.tag() (see the dispatchAfterCall() macro used in
// the callTargetFunction() macro in the llint asm files).
//
// For the C loop, we don't have the JIT stub to this work for us.
// So, we need to implement the equivalent of dispatchAfterCall() here
// before dispatching to the PC.
vPC = callFrame->currentVPC();
#if USE(JSVALUE64)
// Based on LowLevelInterpreter64.asm's dispatchAfterCall():
// When returning from a native trampoline call, unlike the assembly
// LLInt, we can't simply return to the caller. In our case, we grab
// the caller's VPC and resume execution there. However, the caller's
// VPC returned by callFrame->currentVPC() is in the form of the real
// address of the target bytecode, but the 64-bit llint expects the
// VPC to be a bytecode offset. Hence, we need to map it back to a
// bytecode offset before we dispatch via the usual dispatch mechanism
// i.e. NEXT_INSTRUCTION():
codeBlock = callFrame->codeBlock();
ASSERT(codeBlock);
rPC.vp = callFrame->currentVPC();
rPC.i = rPC.i8p - reinterpret_cast<int8_t*>(codeBlock->instructions().begin());
rPC.i >>= 3;
rBasePC.vp = codeBlock->instructions().begin();
#endif // USE(JSVALUE64)
NEXT_INSTRUCTION();
} // END doReturnHelper.
// Keep the compiler happy so that it doesn't complain about unused
// labels for the LLInt trampoline glue. The labels are automatically
// emitted by label macros above, and some of them are referenced by
// the llint generated code. Since we can't tell ahead of time which
// will be referenced and which will be not, we'll just passify the
// compiler on all such labels:
#define LLINT_OPCODE_ENTRY(__opcode, length) \
UNUSED_LABEL(__opcode);
FOR_EACH_OPCODE_ID(LLINT_OPCODE_ENTRY);
#undef LLINT_OPCODE_ENTRY
#undef NEXT_INSTRUCTION
#undef DEFINE_OPCODE
#undef CHECK_FOR_TIMEOUT
#undef CAST
#undef SIGN_BIT32
} // Interpreter::llintCLoopExecute()
} // namespace JSC
#else // !ENABLE(LLINT_C_LOOP)
//============================================================================
// Define the opcode dispatch mechanism when using an ASM loop:
//
// These are for building an interpreter from generated assembly code:
#define OFFLINE_ASM_BEGIN asm (
#define OFFLINE_ASM_END );
#define OFFLINE_ASM_OPCODE_LABEL(__opcode) OFFLINE_ASM_GLOBAL_LABEL(llint_##__opcode)
#define OFFLINE_ASM_GLUE_LABEL(__opcode) OFFLINE_ASM_GLOBAL_LABEL(__opcode)
#if CPU(ARM_THUMB2)
#define OFFLINE_ASM_GLOBAL_LABEL(label) \
".globl " SYMBOL_STRING(label) "\n" \
HIDE_SYMBOL(label) "\n" \
".thumb\n" \
".thumb_func " THUMB_FUNC_PARAM(label) "\n" \
SYMBOL_STRING(label) ":\n"
#else
#define OFFLINE_ASM_GLOBAL_LABEL(label) \
".globl " SYMBOL_STRING(label) "\n" \
HIDE_SYMBOL(label) "\n" \
SYMBOL_STRING(label) ":\n"
#endif
#define OFFLINE_ASM_LOCAL_LABEL(label) LOCAL_LABEL_STRING(label) ":\n"
// This is a file generated by offlineasm, which contains all of the assembly code
// for the interpreter, as compiled from LowLevelInterpreter.asm.
#include "LLIntAssembly.h"
#endif // !ENABLE(LLINT_C_LOOP)
#endif // ENABLE(LLINT)
|