1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef Uint16WithFraction_h
#define Uint16WithFraction_h
#include <wtf/MathExtras.h>
namespace JSC {
// Would be nice if this was a static const member, but the OS X linker
// seems to want a symbol in the binary in that case...
#define oneGreaterThanMaxUInt16 0x10000
// A uint16_t with an infinite precision fraction. Upon overflowing
// the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16.
// This is used in converting the fraction part of a number to a string.
class Uint16WithFraction {
public:
explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0)
{
ASSERT(number && std::isfinite(number) && !std::signbit(number));
// Check for values out of uint16_t range.
if (number >= oneGreaterThanMaxUInt16) {
m_values.append(oneGreaterThanMaxUInt16);
m_leadingZeros = 0;
return;
}
// Append the units to m_values.
double integerPart = floor(number);
m_values.append(static_cast<uint32_t>(integerPart));
bool sign;
int32_t exponent;
uint64_t mantissa;
decomposeDouble(number - integerPart, sign, exponent, mantissa);
ASSERT(!sign && exponent < 0);
exponent -= divideByExponent;
int32_t zeroBits = -exponent;
--zeroBits;
// Append the append words for to m_values.
while (zeroBits >= 32) {
m_values.append(0);
zeroBits -= 32;
}
// Left align the 53 bits of the mantissa within 96 bits.
uint32_t values[3];
values[0] = static_cast<uint32_t>(mantissa >> 21);
values[1] = static_cast<uint32_t>(mantissa << 11);
values[2] = 0;
// Shift based on the remainder of the exponent.
if (zeroBits) {
values[2] = values[1] << (32 - zeroBits);
values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits));
values[0] = (values[0] >> zeroBits);
}
m_values.append(values[0]);
m_values.append(values[1]);
m_values.append(values[2]);
// Canonicalize; remove any trailing zeros.
while (m_values.size() > 1 && !m_values.last())
m_values.removeLast();
// Count the number of leading zero, this is useful in optimizing multiplies.
m_leadingZeros = 0;
while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
++m_leadingZeros;
}
Uint16WithFraction& operator*=(uint16_t multiplier)
{
ASSERT(checkConsistency());
// iteratate backwards over the fraction until we reach the leading zeros,
// passing the carry from one calculation into the next.
uint64_t accumulator = 0;
for (size_t i = m_values.size(); i > m_leadingZeros; ) {
--i;
accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier);
m_values[i] = static_cast<uint32_t>(accumulator);
accumulator >>= 32;
}
if (!m_leadingZeros) {
// With a multiplicand and multiplier in the uint16_t range, this cannot carry
// (even allowing for the infinity value).
ASSERT(!accumulator);
// Check for overflow & clamp to 'infinity'.
if (m_values[0] >= oneGreaterThanMaxUInt16) {
m_values.shrink(1);
m_values[0] = oneGreaterThanMaxUInt16;
m_leadingZeros = 0;
return *this;
}
} else if (accumulator) {
// Check for carry from the last multiply, if so overwrite last leading zero.
m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator);
// The limited range of the multiplier should mean that even if we carry into
// the units, we don't need to check for overflow of the uint16_t range.
ASSERT(m_values[0] < oneGreaterThanMaxUInt16);
}
// Multiplication by an even value may introduce trailing zeros; if so, clean them
// up. (Keeping the value in a normalized form makes some of the comparison operations
// more efficient).
while (m_values.size() > 1 && !m_values.last())
m_values.removeLast();
ASSERT(checkConsistency());
return *this;
}
bool operator<(const Uint16WithFraction& other)
{
ASSERT(checkConsistency());
ASSERT(other.checkConsistency());
// Iterate over the common lengths of arrays.
size_t minSize = std::min(m_values.size(), other.m_values.size());
for (size_t index = 0; index < minSize; ++index) {
// If we find a value that is not equal, compare and return.
uint32_t fromThis = m_values[index];
uint32_t fromOther = other.m_values[index];
if (fromThis != fromOther)
return fromThis < fromOther;
}
// If these numbers have the same lengths, they are equal,
// otherwise which ever number has a longer fraction in larger.
return other.m_values.size() > minSize;
}
// Return the floor (non-fractional portion) of the number, clearing this to zero,
// leaving the fractional part unchanged.
uint32_t floorAndSubtract()
{
// 'floor' is simple the integer portion of the value.
uint32_t floor = m_values[0];
// If floor is non-zero,
if (floor) {
m_values[0] = 0;
m_leadingZeros = 1;
while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
++m_leadingZeros;
}
return floor;
}
// Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater.
int comparePoint5()
{
ASSERT(checkConsistency());
// If units != 0, this is greater than 0.5.
if (m_values[0])
return 1;
// If size == 1 this value is 0, hence < 0.5.
if (m_values.size() == 1)
return -1;
// Compare to 0.5.
if (m_values[1] > 0x80000000ul)
return 1;
if (m_values[1] < 0x80000000ul)
return -1;
// Check for more words - since normalized numbers have no trailing zeros, if
// there are more that two digits we can assume at least one more is non-zero,
// and hence the value is > 0.5.
return m_values.size() > 2 ? 1 : 0;
}
// Return true if the sum of this plus addend would be greater than 1.
bool sumGreaterThanOne(const Uint16WithFraction& addend)
{
ASSERT(checkConsistency());
ASSERT(addend.checkConsistency());
// First, sum the units. If the result is greater than one, return true.
// If equal to one, return true if either number has a fractional part.
uint32_t sum = m_values[0] + addend.m_values[0];
if (sum)
return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1;
// We could still produce a result greater than zero if addition of the next
// word from the fraction were to carry, leaving a result > 0.
// Iterate over the common lengths of arrays.
size_t minSize = std::min(m_values.size(), addend.m_values.size());
for (size_t index = 1; index < minSize; ++index) {
// Sum the next word from this & the addend.
uint32_t fromThis = m_values[index];
uint32_t fromAddend = addend.m_values[index];
sum = fromThis + fromAddend;
// Check for overflow. If so, check whether the remaining result is non-zero,
// or if there are any further words in the fraction.
if (sum < fromThis)
return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size());
// If the sum is uint32_t max, then we would carry a 1 if addition of the next
// digits in the number were to overflow.
if (sum != 0xFFFFFFFF)
return false;
}
return false;
}
private:
bool checkConsistency() const
{
// All values should have at least one value.
return (m_values.size())
// The units value must be a uint16_t, or the value is the overflow value.
&& (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1))
// There should be no trailing zeros (unless this value is zero!).
&& (m_values.last() || m_values.size() == 1);
}
// The internal storage of the number. This vector is always at least one entry in size,
// with the first entry holding the portion of the number greater than zero. The first
// value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to
// indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16,
// there can be no fraction (size must be 1).
//
// Subsequent values in the array represent portions of the fractional part of this number.
// The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i
// in the array. The vector should contain no trailing zeros, except for the value '0',
// represented by a vector contianing a single zero value. These constraints are checked
// by 'checkConsistency()', above.
//
// The inline capacity of the vector is set to be able to contain any IEEE double (1 for
// the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for
// bits taken from the mantissa).
Vector<uint32_t, 36> m_values;
// Cache a count of the number of leading zeros in m_values. We can use this to optimize
// methods that would otherwise need visit all words in the vector, e.g. multiplication.
size_t m_leadingZeros;
};
}
#endif
|