1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
// The original file was copied from sqlite, and was in the public domain.
// Modifications Copyright 2006 Google Inc. All Rights Reserved
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, construct an
* MD5 instance, call addBytes as needed on buffers full of bytes,
* and then call checksum, which will fill a supplied 16-byte array
* with the digest.
*/
#include "config.h"
#include "MD5.h"
#include "Assertions.h"
#ifndef NDEBUG
#include "StringExtras.h"
#include "text/CString.h"
#endif
#include <wtf/StdLibExtras.h>
namespace WTF {
// Note: this code is harmless on little-endian machines.
static void reverseBytes(uint8_t* buf, unsigned longs)
{
ASSERT(longs > 0);
do {
uint32_t t = static_cast<uint32_t>(buf[3] << 8 | buf[2]) << 16 | buf[1] << 8 | buf[0];
ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(buf) % sizeof(t)), "alignment error of buf");
*reinterpret_cast_ptr<uint32_t *>(buf) = t;
buf += 4;
} while (--longs);
}
// The four core functions.
// F1 is originally defined as (x & y | ~x & z), but optimized somewhat: 4 bit ops -> 3 bit ops.
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
static void MD5Transform(uint32_t buf[4], const uint32_t in[16])
{
uint32_t a = buf[0];
uint32_t b = buf[1];
uint32_t c = buf[2];
uint32_t d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
MD5::MD5()
{
m_buf[0] = 0x67452301;
m_buf[1] = 0xefcdab89;
m_buf[2] = 0x98badcfe;
m_buf[3] = 0x10325476;
m_bits[0] = 0;
m_bits[1] = 0;
memset(m_in, 0, sizeof(m_in));
ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(m_in) % sizeof(uint32_t)), "alignment error of m_in");
}
void MD5::addBytes(const uint8_t* input, size_t length)
{
const uint8_t* buf = input;
// Update bitcount
uint32_t t = m_bits[0];
m_bits[0] = t + (length << 3);
if (m_bits[0] < t)
m_bits[1]++; // Carry from low to high
m_bits[1] += length >> 29;
t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data
// Handle any leading odd-sized chunks
if (t) {
uint8_t* p = m_in + t;
t = 64 - t;
if (length < t) {
memcpy(p, buf, length);
return;
}
memcpy(p, buf, t);
reverseBytes(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned.
buf += t;
length -= t;
}
// Process data in 64-byte chunks
while (length >= 64) {
memcpy(m_in, buf, 64);
reverseBytes(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned.
buf += 64;
length -= 64;
}
// Handle any remaining bytes of data.
memcpy(m_in, buf, length);
}
void MD5::checksum(Vector<uint8_t, 16>& digest)
{
// Compute number of bytes mod 64
unsigned count = (m_bits[0] >> 3) & 0x3F;
// Set the first char of padding to 0x80. This is safe since there is
// always at least one byte free
uint8_t* p = m_in + count;
*p++ = 0x80;
// Bytes of padding needed to make 64 bytes
count = 64 - 1 - count;
// Pad out to 56 mod 64
if (count < 8) {
// Two lots of padding: Pad the first block to 64 bytes
memset(p, 0, count);
reverseBytes(m_in, 16);
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t *>(m_in)); // m_in is 4-byte aligned.
// Now fill the next block with 56 bytes
memset(m_in, 0, 56);
} else {
// Pad block to 56 bytes
memset(p, 0, count - 8);
}
reverseBytes(m_in, 14);
// Append length in bits and transform
// m_in is 4-byte aligned.
(reinterpret_cast_ptr<uint32_t*>(m_in))[14] = m_bits[0];
(reinterpret_cast_ptr<uint32_t*>(m_in))[15] = m_bits[1];
MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in));
reverseBytes(reinterpret_cast<uint8_t*>(m_buf), 4);
// Now, m_buf contains checksum result.
if (!digest.isEmpty())
digest.clear();
digest.append(reinterpret_cast<uint8_t*>(m_buf), 16);
// In case it's sensitive
memset(m_buf, 0, sizeof(m_buf));
memset(m_bits, 0, sizeof(m_bits));
memset(m_in, 0, sizeof(m_in));
}
} // namespace WTF
|