1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_MathExtras_h
#define WTF_MathExtras_h
#include <algorithm>
#include <cmath>
#include <float.h>
#include <limits>
#include <stdint.h>
#include <stdlib.h>
#include <wtf/StdLibExtras.h>
#if OS(SOLARIS)
#include <ieeefp.h>
#endif
#if OS(OPENBSD)
#include <sys/types.h>
#include <machine/ieee.h>
#endif
#if OS(QNX)
// FIXME: Look into a way to have cmath import its functions into both the standard and global
// namespace. For now, we include math.h since the QNX cmath header only imports its functions
// into the standard namespace.
#include <math.h>
// These macros from math.h conflict with the real functions in the std namespace.
#undef signbit
#undef isnan
#undef isinf
#undef isfinite
#endif
#ifndef M_PI
const double piDouble = 3.14159265358979323846;
const float piFloat = 3.14159265358979323846f;
#else
const double piDouble = M_PI;
const float piFloat = static_cast<float>(M_PI);
#endif
#ifndef M_PI_2
const double piOverTwoDouble = 1.57079632679489661923;
const float piOverTwoFloat = 1.57079632679489661923f;
#else
const double piOverTwoDouble = M_PI_2;
const float piOverTwoFloat = static_cast<float>(M_PI_2);
#endif
#ifndef M_PI_4
const double piOverFourDouble = 0.785398163397448309616;
const float piOverFourFloat = 0.785398163397448309616f;
#else
const double piOverFourDouble = M_PI_4;
const float piOverFourFloat = static_cast<float>(M_PI_4);
#endif
#if OS(DARWIN)
// Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
#define ceil(x) wtf_ceil(x)
#endif
#if OS(SOLARIS)
namespace std {
#ifndef isfinite
inline bool isfinite(double x) { return finite(x) && !isnand(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { return copysign(1.0, x) < 0; }
#endif
#ifndef isinf
inline bool isinf(double x) { return !finite(x) && !isnand(x); }
#endif
} // namespace std
#endif
#if OS(OPENBSD)
namespace std {
#ifndef isfinite
inline bool isfinite(double x) { return finite(x); }
#endif
#ifndef signbit
inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
#endif
} // namespace std
#endif
#if COMPILER(MSVC)
#if _MSC_VER < 1800
// We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
static double round(double num)
{
double integer = ceil(num);
if (num > 0)
return integer - num > 0.5 ? integer - 1.0 : integer;
return integer - num >= 0.5 ? integer - 1.0 : integer;
}
static float roundf(float num)
{
float integer = ceilf(num);
if (num > 0)
return integer - num > 0.5f ? integer - 1.0f : integer;
return integer - num >= 0.5f ? integer - 1.0f : integer;
}
#endif
inline long long llround(double num) { return static_cast<long long>(round(num)); }
inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
inline long lround(double num) { return static_cast<long>(round(num)); }
inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
#endif
#if COMPILER(GCC) && OS(QNX)
// The stdlib on QNX doesn't contain long abs(long). See PR #104666.
inline long long abs(long num) { return labs(num); }
#endif
#if OS(ANDROID) || COMPILER(MSVC)
// ANDROID and MSVC's math.h does not currently supply log2 or log2f.
inline double log2(double num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows and Android.
return log(num) / 0.693147180559945309417232121458176568;
}
inline float log2f(float num)
{
// This constant is roughly M_LN2, which is not provided by default on Windows and Android.
return logf(num) / 0.693147180559945309417232121458176568f;
}
#endif
#if COMPILER(MSVC)
// The 64bit version of abs() is already defined in stdlib.h which comes with VC10
#if COMPILER(MSVC9_OR_LOWER)
inline long long abs(long long num) { return _abs64(num); }
#endif
namespace std {
inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
inline bool isnan(double num) { return !!_isnan(num); }
inline bool isfinite(double x) { return _finite(x); }
#if _MSC_VER < 1800
inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
#endif
} // namespace std
inline double nextafter(double x, double y) { return _nextafter(x, y); }
inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
inline double copysign(double x, double y) { return _copysign(x, y); }
// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
extern "C" inline double wtf_atan2(double x, double y)
{
double posInf = std::numeric_limits<double>::infinity();
double negInf = -std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
double result = nan;
if (x == posInf && y == posInf)
result = piOverFourDouble;
else if (x == posInf && y == negInf)
result = 3 * piOverFourDouble;
else if (x == negInf && y == posInf)
result = -piOverFourDouble;
else if (x == negInf && y == negInf)
result = -3 * piOverFourDouble;
else
result = ::atan2(x, y);
return result;
}
// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
extern "C" inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
extern "C" inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
#define atan2(x, y) wtf_atan2(x, y)
#define fmod(x, y) wtf_fmod(x, y)
#define pow(x, y) wtf_pow(x, y)
// MSVC's math functions do not bring lrint.
inline long int lrint(double flt)
{
int64_t intgr;
#if CPU(X86)
__asm {
fld flt
fistp intgr
};
#else
ASSERT(std::isfinite(flt));
double rounded = round(flt);
intgr = static_cast<int64_t>(rounded);
// If the fractional part is exactly 0.5, we need to check whether
// the rounded result is even. If it is not we need to add 1 to
// negative values and subtract one from positive values.
if ((fabs(intgr - flt) == 0.5) & intgr)
intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
#endif
return static_cast<long int>(intgr);
}
#endif // COMPILER(MSVC)
inline double deg2rad(double d) { return d * piDouble / 180.0; }
inline double rad2deg(double r) { return r * 180.0 / piDouble; }
inline double deg2grad(double d) { return d * 400.0 / 360.0; }
inline double grad2deg(double g) { return g * 360.0 / 400.0; }
inline double turn2deg(double t) { return t * 360.0; }
inline double deg2turn(double d) { return d / 360.0; }
inline double rad2grad(double r) { return r * 200.0 / piDouble; }
inline double grad2rad(double g) { return g * piDouble / 200.0; }
inline float deg2rad(float d) { return d * piFloat / 180.0f; }
inline float rad2deg(float r) { return r * 180.0f / piFloat; }
inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
inline float turn2deg(float t) { return t * 360.0f; }
inline float deg2turn(float d) { return d / 360.0f; }
inline float rad2grad(float r) { return r * 200.0f / piFloat; }
inline float grad2rad(float g) { return g * piFloat / 200.0f; }
// std::numeric_limits<T>::min() returns the smallest positive value for floating point types
template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
{
if (value >= static_cast<double>(max))
return max;
if (value <= static_cast<double>(min))
return min;
return static_cast<T>(value);
}
template<> long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
inline int clampToInteger(double value)
{
return clampTo<int>(value);
}
inline float clampToFloat(double value)
{
return clampTo<float>(value);
}
inline int clampToPositiveInteger(double value)
{
return clampTo<int>(value, 0);
}
inline int clampToInteger(float value)
{
return clampTo<int>(value);
}
inline int clampToInteger(unsigned x)
{
const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
if (x >= intMax)
return std::numeric_limits<int>::max();
return static_cast<int>(x);
}
inline bool isWithinIntRange(float x)
{
return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
}
template<typename T> inline bool hasOneBitSet(T value)
{
return !((value - 1) & value) && value;
}
template<typename T> inline bool hasZeroOrOneBitsSet(T value)
{
return !((value - 1) & value);
}
template<typename T> inline bool hasTwoOrMoreBitsSet(T value)
{
return !hasZeroOrOneBitsSet(value);
}
template <typename T> inline unsigned getLSBSet(T value)
{
unsigned result = 0;
while (value >>= 1)
++result;
return result;
}
template<typename T> inline T timesThreePlusOneDividedByTwo(T value)
{
// Mathematically equivalent to:
// (value * 3 + 1) / 2;
// or:
// (unsigned)ceil(value * 1.5));
// This form is not prone to internal overflow.
return value + (value >> 1) + (value & 1);
}
template<typename T> inline bool isNotZeroAndOrdered(T value)
{
return value > 0.0 || value < 0.0;
}
template<typename T> inline bool isZeroOrUnordered(T value)
{
return !isNotZeroAndOrdered(value);
}
#ifndef UINT64_C
#if COMPILER(MSVC)
#define UINT64_C(c) c ## ui64
#else
#define UINT64_C(c) c ## ull
#endif
#endif
#if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
inline double wtf_pow(double x, double y)
{
// MinGW-w64 has a custom implementation for pow.
// This handles certain special cases that are different.
if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
double f;
if (modf(y, &f) != 0.0)
return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0;
}
if (x == 2.0) {
int yInt = static_cast<int>(y);
if (y == yInt)
return ldexp(1.0, yInt);
}
return pow(x, y);
}
#define pow(x, y) wtf_pow(x, y)
#endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
// decompose 'number' to its sign, exponent, and mantissa components.
// The result is interpreted as:
// (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52))
inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa)
{
ASSERT(std::isfinite(number));
sign = std::signbit(number);
uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
mantissa = bits & 0xFFFFFFFFFFFFFull;
// Check for zero/denormal values; if so, adjust the exponent,
// if not insert the implicit, omitted leading 1 bit.
if (exponent == -0x3ff)
exponent = mantissa ? -0x3fe : 0;
else
mantissa |= 0x10000000000000ull;
}
// Calculate d % 2^{64}.
inline void doubleToInteger(double d, unsigned long long& value)
{
if (std::isnan(d) || std::isinf(d))
value = 0;
else {
// -2^{64} < fmodValue < 2^{64}.
double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
if (fmodValue >= 0) {
// 0 <= fmodValue < 2^{64}.
// 0 <= value < 2^{64}. This cast causes no loss.
value = static_cast<unsigned long long>(fmodValue);
} else {
// -2^{64} < fmodValue < 0.
// 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
// -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
// 0 < value < 2^{64}.
value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
}
}
}
namespace WTF {
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
inline uint32_t roundUpToPowerOfTwo(uint32_t v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned fastLog2(unsigned i)
{
unsigned log2 = 0;
if (i & (i - 1))
log2 += 1;
if (i >> 16)
log2 += 16, i >>= 16;
if (i >> 8)
log2 += 8, i >>= 8;
if (i >> 4)
log2 += 4, i >>= 4;
if (i >> 2)
log2 += 2, i >>= 2;
if (i >> 1)
log2 += 1;
return log2;
}
} // namespace WTF
#endif // #ifndef WTF_MathExtras_h
|