1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*
* Copyright (C) 2008 Apple Inc. All Rights Reserved.
* Copyright (C) 2013 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTF_StdLibExtras_h
#define WTF_StdLibExtras_h
#include <wtf/Assertions.h>
#include <wtf/CheckedArithmetic.h>
// Use these to declare and define a static local variable (static T;) so that
// it is leaked so that its destructors are not called at exit. Using this
// macro also allows workarounds a compiler bug present in Apple's version of GCC 4.0.1.
#ifndef DEFINE_STATIC_LOCAL
#if COMPILER(GCC) && defined(__APPLE_CC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 0 && __GNUC_PATCHLEVEL__ == 1
#define DEFINE_STATIC_LOCAL(type, name, arguments) \
static type* name##Ptr = new type arguments; \
type& name = *name##Ptr
#else
#define DEFINE_STATIC_LOCAL(type, name, arguments) \
static type& name = *new type arguments
#endif
#endif
// Use this macro to declare and define a debug-only global variable that may have a
// non-trivial constructor and destructor. When building with clang, this will suppress
// warnings about global constructors and exit-time destructors.
#ifndef NDEBUG
#if COMPILER(CLANG)
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \
_Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \
static type name arguments; \
_Pragma("clang diagnostic pop")
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \
static type name arguments;
#endif // COMPILER(CLANG)
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments)
#endif // NDEBUG
// OBJECT_OFFSETOF: Like the C++ offsetof macro, but you can use it with classes.
// The magic number 0x4000 is insignificant. We use it to avoid using NULL, since
// NULL can cause compiler problems, especially in cases of multiple inheritance.
#define OBJECT_OFFSETOF(class, field) (reinterpret_cast<ptrdiff_t>(&(reinterpret_cast<class*>(0x4000)->field)) - 0x4000)
// STRINGIZE: Can convert any value to quoted string, even expandable macros
#define STRINGIZE(exp) #exp
#define STRINGIZE_VALUE_OF(exp) STRINGIZE(exp)
/*
* The reinterpret_cast<Type1*>([pointer to Type2]) expressions - where
* sizeof(Type1) > sizeof(Type2) - cause the following warning on ARM with GCC:
* increases required alignment of target type.
*
* An implicit or an extra static_cast<void*> bypasses the warning.
* For more info see the following bugzilla entries:
* - https://bugs.webkit.org/show_bug.cgi?id=38045
* - http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43976
*/
#if (CPU(ARM) || CPU(MIPS)) && COMPILER(GCC)
template<typename Type>
bool isPointerTypeAlignmentOkay(Type* ptr)
{
return !(reinterpret_cast<intptr_t>(ptr) % __alignof__(Type));
}
template<typename TypePtr>
TypePtr reinterpret_cast_ptr(void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
template<typename TypePtr>
TypePtr reinterpret_cast_ptr(const void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
#else
template<typename Type>
bool isPointerTypeAlignmentOkay(Type*)
{
return true;
}
#define reinterpret_cast_ptr reinterpret_cast
#endif
namespace WTF {
static const size_t KB = 1024;
static const size_t MB = 1024 * 1024;
inline bool isPointerAligned(void* p)
{
return !((intptr_t)(p) & (sizeof(char*) - 1));
}
inline bool is8ByteAligned(void* p)
{
return !((uintptr_t)(p) & (sizeof(double) - 1));
}
/*
* C++'s idea of a reinterpret_cast lacks sufficient cojones.
*/
template<typename TO, typename FROM>
inline TO bitwise_cast(FROM from)
{
COMPILE_ASSERT(sizeof(TO) == sizeof(FROM), WTF_bitwise_cast_sizeof_casted_types_is_equal);
union {
FROM from;
TO to;
} u;
u.from = from;
return u.to;
}
template<typename To, typename From>
inline To safeCast(From value)
{
ASSERT(isInBounds<To>(value));
return static_cast<To>(value);
}
// Returns a count of the number of bits set in 'bits'.
inline size_t bitCount(unsigned bits)
{
bits = bits - ((bits >> 1) & 0x55555555);
bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
return (((bits + (bits >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
// Macro that returns a compile time constant with the length of an array, but gives an error if passed a non-array.
template<typename T, size_t Size> char (&ArrayLengthHelperFunction(T (&)[Size]))[Size];
// GCC needs some help to deduce a 0 length array.
#if COMPILER(GCC)
template<typename T> char (&ArrayLengthHelperFunction(T (&)[0]))[0];
#endif
#define WTF_ARRAY_LENGTH(array) sizeof(::WTF::ArrayLengthHelperFunction(array))
// Efficient implementation that takes advantage of powers of two.
inline size_t roundUpToMultipleOf(size_t divisor, size_t x)
{
ASSERT(divisor && !(divisor & (divisor - 1)));
size_t remainderMask = divisor - 1;
return (x + remainderMask) & ~remainderMask;
}
template<size_t divisor> inline size_t roundUpToMultipleOf(size_t x)
{
COMPILE_ASSERT(divisor && !(divisor & (divisor - 1)), divisor_is_a_power_of_two);
return roundUpToMultipleOf(divisor, x);
}
enum BinarySearchMode {
KeyMustBePresentInArray,
KeyMightNotBePresentInArray,
ReturnAdjacentElementIfKeyIsNotPresent
};
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey, BinarySearchMode mode>
inline ArrayElementType* binarySearchImpl(ArrayType& array, size_t size, KeyType key, const ExtractKey& extractKey = ExtractKey())
{
size_t offset = 0;
while (size > 1) {
size_t pos = (size - 1) >> 1;
KeyType val = extractKey(&array[offset + pos]);
if (val == key)
return &array[offset + pos];
// The item we are looking for is smaller than the item being check; reduce the value of 'size',
// chopping off the right hand half of the array.
if (key < val)
size = pos;
// Discard all values in the left hand half of the array, up to and including the item at pos.
else {
size -= (pos + 1);
offset += (pos + 1);
}
ASSERT(mode != KeyMustBePresentInArray || size);
}
if (mode == KeyMightNotBePresentInArray && !size)
return 0;
ArrayElementType* result = &array[offset];
if (mode == KeyMightNotBePresentInArray && key != extractKey(result))
return 0;
if (mode == KeyMustBePresentInArray) {
ASSERT(size == 1);
ASSERT(key == extractKey(result));
}
return result;
}
// If the element is not found, crash if asserts are enabled, and behave like approximateBinarySearch in release builds.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(array, size, key, extractKey);
}
// Return zero if the element is not found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(array, size, key, extractKey);
}
// Return the element that is either to the left, or the right, of where the element would have been found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(array, size, key, extractKey);
}
// Variants of the above that use const.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(const_cast<ArrayType&>(array), size, key, extractKey);
}
} // namespace WTF
#if OS(WINCE)
// Windows CE CRT has does not implement bsearch().
inline void* wtf_bsearch(const void* key, const void* base, size_t count, size_t size, int (*compare)(const void *, const void *))
{
const char* first = static_cast<const char*>(base);
while (count) {
size_t pos = (count - 1) >> 1;
const char* item = first + pos * size;
int compareResult = compare(item, key);
if (!compareResult)
return const_cast<char*>(item);
if (compareResult < 0) {
count -= (pos + 1);
first += (pos + 1) * size;
} else
count = pos;
}
return 0;
}
#define bsearch(key, base, count, size, compare) wtf_bsearch(key, base, count, size, compare)
#endif
// This version of placement new omits a 0 check.
enum NotNullTag { NotNull };
inline void* operator new(size_t, NotNullTag, void* location)
{
ASSERT(location);
return location;
}
using WTF::KB;
using WTF::MB;
using WTF::isPointerAligned;
using WTF::is8ByteAligned;
using WTF::binarySearch;
using WTF::tryBinarySearch;
using WTF::approximateBinarySearch;
using WTF::bitwise_cast;
using WTF::safeCast;
#endif // WTF_StdLibExtras_h
|