1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
|
/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_Vector_h
#define WTF_Vector_h
#include <wtf/Alignment.h>
#include <wtf/CheckedArithmetic.h>
#include <wtf/FastAllocBase.h>
#include <wtf/Noncopyable.h>
#include <wtf/NotFound.h>
#include <wtf/StdLibExtras.h>
#include <wtf/ValueCheck.h>
#include <wtf/VectorTraits.h>
#include <limits>
#include <utility>
namespace WTF {
template <bool needsDestruction, typename T>
struct VectorDestructor;
template<typename T>
struct VectorDestructor<false, T>
{
static void destruct(T*, T*) {}
};
template<typename T>
struct VectorDestructor<true, T>
{
static void destruct(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
cur->~T();
}
};
template <bool needsInitialization, bool canInitializeWithMemset, typename T>
struct VectorInitializer;
template<bool ignore, typename T>
struct VectorInitializer<false, ignore, T>
{
static void initialize(T*, T*) {}
};
template<typename T>
struct VectorInitializer<true, false, T>
{
static void initialize(T* begin, T* end)
{
for (T* cur = begin; cur != end; ++cur)
new (NotNull, cur) T;
}
};
template<typename T>
struct VectorInitializer<true, true, T>
{
static void initialize(T* begin, T* end)
{
memset(begin, 0, reinterpret_cast<char*>(end) - reinterpret_cast<char*>(begin));
}
};
template <bool canMoveWithMemcpy, typename T>
struct VectorMover;
template<typename T>
struct VectorMover<false, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
#if COMPILER(SUNCC) && __SUNPRO_CC <= 0x590
const_cast<T*>(src)->~T(); // Work around obscure SunCC 12 compiler bug.
#else
src->~T();
#endif
++dst;
++src;
}
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
if (src > dst)
move(src, srcEnd, dst);
else {
T* dstEnd = dst + (srcEnd - src);
while (src != srcEnd) {
--srcEnd;
--dstEnd;
new (NotNull, dstEnd) T(*srcEnd);
srcEnd->~T();
}
}
}
};
template<typename T>
struct VectorMover<true, T>
{
static void move(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
memmove(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canCopyWithMemcpy, typename T>
struct VectorCopier;
template<typename T>
struct VectorCopier<false, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
while (src != srcEnd) {
new (NotNull, dst) T(*src);
++dst;
++src;
}
}
};
template<typename T>
struct VectorCopier<true, T>
{
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
memcpy(dst, src, reinterpret_cast<const char*>(srcEnd) - reinterpret_cast<const char*>(src));
}
};
template <bool canFillWithMemset, typename T>
struct VectorFiller;
template<typename T>
struct VectorFiller<false, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
while (dst != dstEnd) {
new (NotNull, dst) T(val);
++dst;
}
}
};
template<typename T>
struct VectorFiller<true, T>
{
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
ASSERT(sizeof(T) == sizeof(char));
#if COMPILER(GCC) && defined(_FORTIFY_SOURCE)
if (!__builtin_constant_p(dstEnd - dst) || (!(dstEnd - dst)))
#endif
memset(dst, val, dstEnd - dst);
}
};
template<bool canCompareWithMemcmp, typename T>
struct VectorComparer;
template<typename T>
struct VectorComparer<false, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
for (size_t i = 0; i < size; ++i)
if (!(a[i] == b[i]))
return false;
return true;
}
};
template<typename T>
struct VectorComparer<true, T>
{
static bool compare(const T* a, const T* b, size_t size)
{
return memcmp(a, b, sizeof(T) * size) == 0;
}
};
template<typename T>
struct VectorTypeOperations
{
static void destruct(T* begin, T* end)
{
VectorDestructor<VectorTraits<T>::needsDestruction, T>::destruct(begin, end);
}
static void initialize(T* begin, T* end)
{
VectorInitializer<VectorTraits<T>::needsInitialization, VectorTraits<T>::canInitializeWithMemset, T>::initialize(begin, end);
}
static void move(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::move(src, srcEnd, dst);
}
static void moveOverlapping(const T* src, const T* srcEnd, T* dst)
{
VectorMover<VectorTraits<T>::canMoveWithMemcpy, T>::moveOverlapping(src, srcEnd, dst);
}
static void uninitializedCopy(const T* src, const T* srcEnd, T* dst)
{
VectorCopier<VectorTraits<T>::canCopyWithMemcpy, T>::uninitializedCopy(src, srcEnd, dst);
}
static void uninitializedFill(T* dst, T* dstEnd, const T& val)
{
VectorFiller<VectorTraits<T>::canFillWithMemset, T>::uninitializedFill(dst, dstEnd, val);
}
static bool compare(const T* a, const T* b, size_t size)
{
return VectorComparer<VectorTraits<T>::canCompareWithMemcmp, T>::compare(a, b, size);
}
};
template<typename T>
class VectorBufferBase {
WTF_MAKE_NONCOPYABLE(VectorBufferBase);
public:
void allocateBuffer(size_t newCapacity)
{
ASSERT(newCapacity);
if (newCapacity > std::numeric_limits<unsigned>::max() / sizeof(T))
CRASH();
size_t sizeToAllocate = fastMallocGoodSize(newCapacity * sizeof(T));
m_capacity = sizeToAllocate / sizeof(T);
m_buffer = static_cast<T*>(fastMalloc(sizeToAllocate));
}
bool tryAllocateBuffer(size_t newCapacity)
{
ASSERT(newCapacity);
if (newCapacity > std::numeric_limits<unsigned>::max() / sizeof(T))
return false;
size_t sizeToAllocate = fastMallocGoodSize(newCapacity * sizeof(T));
T* newBuffer;
if (tryFastMalloc(sizeToAllocate).getValue(newBuffer)) {
m_capacity = sizeToAllocate / sizeof(T);
m_buffer = newBuffer;
return true;
}
return false;
}
bool shouldReallocateBuffer(size_t newCapacity) const
{
return VectorTraits<T>::canMoveWithMemcpy && m_capacity && newCapacity;
}
void reallocateBuffer(size_t newCapacity)
{
ASSERT(shouldReallocateBuffer(newCapacity));
if (newCapacity > std::numeric_limits<size_t>::max() / sizeof(T))
CRASH();
size_t sizeToAllocate = fastMallocGoodSize(newCapacity * sizeof(T));
m_capacity = sizeToAllocate / sizeof(T);
m_buffer = static_cast<T*>(fastRealloc(m_buffer, sizeToAllocate));
}
void deallocateBuffer(T* bufferToDeallocate)
{
if (!bufferToDeallocate)
return;
if (m_buffer == bufferToDeallocate) {
m_buffer = 0;
m_capacity = 0;
}
fastFree(bufferToDeallocate);
}
T* buffer() { return m_buffer; }
const T* buffer() const { return m_buffer; }
size_t capacity() const { return m_capacity; }
T* releaseBuffer()
{
T* buffer = m_buffer;
m_buffer = 0;
m_capacity = 0;
return buffer;
}
protected:
VectorBufferBase()
: m_buffer(0)
, m_capacity(0)
{
}
VectorBufferBase(T* buffer, size_t capacity)
: m_buffer(buffer)
, m_capacity(capacity)
{
}
~VectorBufferBase()
{
// FIXME: It would be nice to find a way to ASSERT that m_buffer hasn't leaked here.
}
T* m_buffer;
unsigned m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer;
template<typename T>
class VectorBuffer<T, 0> : private VectorBufferBase<T> {
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
{
}
VectorBuffer(size_t capacity)
{
// Calling malloc(0) might take a lock and may actually do an
// allocation on some systems.
if (capacity)
allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
void swap(VectorBuffer<T, 0>& other)
{
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
void restoreInlineBufferIfNeeded() { }
using Base::allocateBuffer;
using Base::tryAllocateBuffer;
using Base::shouldReallocateBuffer;
using Base::reallocateBuffer;
using Base::deallocateBuffer;
using Base::buffer;
using Base::capacity;
using Base::releaseBuffer;
private:
using Base::m_buffer;
using Base::m_capacity;
};
template<typename T, size_t inlineCapacity>
class VectorBuffer : private VectorBufferBase<T> {
WTF_MAKE_NONCOPYABLE(VectorBuffer);
private:
typedef VectorBufferBase<T> Base;
public:
VectorBuffer()
: Base(inlineBuffer(), inlineCapacity)
{
}
VectorBuffer(size_t capacity)
: Base(inlineBuffer(), inlineCapacity)
{
if (capacity > inlineCapacity)
Base::allocateBuffer(capacity);
}
~VectorBuffer()
{
deallocateBuffer(buffer());
}
void allocateBuffer(size_t newCapacity)
{
// FIXME: This should ASSERT(!m_buffer) to catch misuse/leaks.
if (newCapacity > inlineCapacity)
Base::allocateBuffer(newCapacity);
else {
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
}
bool tryAllocateBuffer(size_t newCapacity)
{
if (newCapacity > inlineCapacity)
return Base::tryAllocateBuffer(newCapacity);
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
return true;
}
void deallocateBuffer(T* bufferToDeallocate)
{
if (bufferToDeallocate == inlineBuffer())
return;
Base::deallocateBuffer(bufferToDeallocate);
}
bool shouldReallocateBuffer(size_t newCapacity) const
{
// We cannot reallocate the inline buffer.
return Base::shouldReallocateBuffer(newCapacity) && std::min(static_cast<size_t>(m_capacity), newCapacity) > inlineCapacity;
}
void reallocateBuffer(size_t newCapacity)
{
ASSERT(shouldReallocateBuffer(newCapacity));
Base::reallocateBuffer(newCapacity);
}
void swap(VectorBuffer<T, inlineCapacity>& other)
{
if (buffer() == inlineBuffer() && other.buffer() == other.inlineBuffer()) {
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else if (buffer() == inlineBuffer()) {
m_buffer = other.m_buffer;
other.m_buffer = other.inlineBuffer();
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else if (other.buffer() == other.inlineBuffer()) {
other.m_buffer = m_buffer;
m_buffer = inlineBuffer();
WTF::swap(m_inlineBuffer, other.m_inlineBuffer);
std::swap(m_capacity, other.m_capacity);
} else {
std::swap(m_buffer, other.m_buffer);
std::swap(m_capacity, other.m_capacity);
}
}
void restoreInlineBufferIfNeeded()
{
if (m_buffer)
return;
m_buffer = inlineBuffer();
m_capacity = inlineCapacity;
}
using Base::buffer;
using Base::capacity;
T* releaseBuffer()
{
if (buffer() == inlineBuffer())
return 0;
return Base::releaseBuffer();
}
private:
using Base::m_buffer;
using Base::m_capacity;
static const size_t m_inlineBufferSize = inlineCapacity * sizeof(T);
T* inlineBuffer() { return reinterpret_cast_ptr<T*>(m_inlineBuffer.buffer); }
const T* inlineBuffer() const { return reinterpret_cast_ptr<const T*>(m_inlineBuffer.buffer); }
AlignedBuffer<m_inlineBufferSize, WTF_ALIGN_OF(T)> m_inlineBuffer;
};
struct UnsafeVectorOverflow {
static NO_RETURN_DUE_TO_ASSERT void overflowed()
{
ASSERT_NOT_REACHED();
}
};
template<typename T, size_t inlineCapacity = 0, typename OverflowHandler = CrashOnOverflow>
class Vector : private VectorBuffer<T, inlineCapacity> {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef VectorBuffer<T, inlineCapacity> Base;
typedef VectorTypeOperations<T> TypeOperations;
public:
typedef T ValueType;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
Vector()
: m_size(0)
{
}
explicit Vector(size_t size)
: Base(size)
, m_size(size)
{
if (begin())
TypeOperations::initialize(begin(), end());
}
~Vector()
{
if (m_size)
shrink(0);
}
Vector(const Vector&);
template<size_t otherCapacity, typename otherOverflowBehaviour>
Vector(const Vector<T, otherCapacity, otherOverflowBehaviour>&);
Vector& operator=(const Vector&);
template<size_t otherCapacity, typename otherOverflowBehaviour>
Vector& operator=(const Vector<T, otherCapacity, otherOverflowBehaviour>&);
#if COMPILER_SUPPORTS(CXX_RVALUE_REFERENCES)
Vector(Vector&&);
Vector& operator=(Vector&&);
#endif
size_t size() const { return m_size; }
size_t capacity() const { return Base::capacity(); }
bool isEmpty() const { return !size(); }
T& at(size_t i)
{
if (UNLIKELY(i >= size()))
OverflowHandler::overflowed();
return Base::buffer()[i];
}
const T& at(size_t i) const
{
if (UNLIKELY(i >= size()))
OverflowHandler::overflowed();
return Base::buffer()[i];
}
T& at(Checked<size_t> i)
{
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
const T& at(Checked<size_t> i) const
{
RELEASE_ASSERT(i < size());
return Base::buffer()[i];
}
T& operator[](size_t i) { return at(i); }
const T& operator[](size_t i) const { return at(i); }
T& operator[](Checked<size_t> i) { return at(i); }
const T& operator[](Checked<size_t> i) const { return at(i); }
T* data() { return Base::buffer(); }
const T* data() const { return Base::buffer(); }
iterator begin() { return data(); }
iterator end() { return begin() + m_size; }
const_iterator begin() const { return data(); }
const_iterator end() const { return begin() + m_size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
T& first() { return at(0); }
const T& first() const { return at(0); }
T& last() { return at(size() - 1); }
const T& last() const { return at(size() - 1); }
template<typename U> bool contains(const U&) const;
template<typename U> size_t find(const U&) const;
template<typename U> size_t reverseFind(const U&) const;
void shrink(size_t size);
void grow(size_t size);
void resize(size_t size);
void resizeToFit(size_t size);
void reserveCapacity(size_t newCapacity);
bool tryReserveCapacity(size_t newCapacity);
void reserveInitialCapacity(size_t initialCapacity);
void shrinkCapacity(size_t newCapacity);
void shrinkToFit() { shrinkCapacity(size()); }
void clear() { shrinkCapacity(0); }
template<typename U> void append(const U*, size_t);
template<typename U> void append(const U&);
template<typename U> void uncheckedAppend(const U& val);
template<typename U, size_t otherCapacity> void appendVector(const Vector<U, otherCapacity>&);
template<typename U> bool tryAppend(const U*, size_t);
template<typename U> void insert(size_t position, const U*, size_t);
template<typename U> void insert(size_t position, const U&);
template<typename U, size_t c> void insert(size_t position, const Vector<U, c>&);
void remove(size_t position);
void remove(size_t position, size_t length);
void removeLast()
{
if (UNLIKELY(isEmpty()))
OverflowHandler::overflowed();
shrink(size() - 1);
}
Vector(size_t size, const T& val)
: Base(size)
, m_size(size)
{
if (begin())
TypeOperations::uninitializedFill(begin(), end(), val);
}
void fill(const T&, size_t);
void fill(const T& val) { fill(val, size()); }
template<typename Iterator> void appendRange(Iterator start, Iterator end);
T* releaseBuffer();
void swap(Vector<T, inlineCapacity, OverflowHandler>& other)
{
std::swap(m_size, other.m_size);
Base::swap(other);
}
void reverse();
void checkConsistency();
private:
void expandCapacity(size_t newMinCapacity);
const T* expandCapacity(size_t newMinCapacity, const T*);
bool tryExpandCapacity(size_t newMinCapacity);
const T* tryExpandCapacity(size_t newMinCapacity, const T*);
template<typename U> U* expandCapacity(size_t newMinCapacity, U*);
template<typename U> void appendSlowCase(const U&);
unsigned m_size;
using Base::buffer;
using Base::capacity;
using Base::swap;
using Base::allocateBuffer;
using Base::deallocateBuffer;
using Base::tryAllocateBuffer;
using Base::shouldReallocateBuffer;
using Base::reallocateBuffer;
using Base::restoreInlineBufferIfNeeded;
using Base::releaseBuffer;
};
template<typename T, size_t inlineCapacity, typename OverflowHandler>
Vector<T, inlineCapacity, OverflowHandler>::Vector(const Vector& other)
: Base(other.capacity())
, m_size(other.size())
{
if (begin())
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<size_t otherCapacity, typename otherOverflowBehaviour>
Vector<T, inlineCapacity, OverflowHandler>::Vector(const Vector<T, otherCapacity, otherOverflowBehaviour>& other)
: Base(other.capacity())
, m_size(other.size())
{
if (begin())
TypeOperations::uninitializedCopy(other.begin(), other.end(), begin());
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
Vector<T, inlineCapacity, OverflowHandler>& Vector<T, inlineCapacity, OverflowHandler>::operator=(const Vector<T, inlineCapacity, OverflowHandler>& other)
{
if (&other == this)
return *this;
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
if (!begin())
return *this;
}
// Works around an assert in VS2010. See https://connect.microsoft.com/VisualStudio/feedback/details/558044/std-copy-should-not-check-dest-when-first-last
#if COMPILER(MSVC) && defined(_ITERATOR_DEBUG_LEVEL) && _ITERATOR_DEBUG_LEVEL
if (!begin())
return *this;
#endif
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
inline bool typelessPointersAreEqual(const void* a, const void* b) { return a == b; }
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<size_t otherCapacity, typename otherOverflowBehaviour>
Vector<T, inlineCapacity, OverflowHandler>& Vector<T, inlineCapacity, OverflowHandler>::operator=(const Vector<T, otherCapacity, otherOverflowBehaviour>& other)
{
// If the inline capacities match, we should call the more specific
// template. If the inline capacities don't match, the two objects
// shouldn't be allocated the same address.
ASSERT(!typelessPointersAreEqual(&other, this));
if (size() > other.size())
shrink(other.size());
else if (other.size() > capacity()) {
clear();
reserveCapacity(other.size());
if (!begin())
return *this;
}
// Works around an assert in VS2010. See https://connect.microsoft.com/VisualStudio/feedback/details/558044/std-copy-should-not-check-dest-when-first-last
#if COMPILER(MSVC) && defined(_ITERATOR_DEBUG_LEVEL) && _ITERATOR_DEBUG_LEVEL
if (!begin())
return *this;
#endif
std::copy(other.begin(), other.begin() + size(), begin());
TypeOperations::uninitializedCopy(other.begin() + size(), other.end(), end());
m_size = other.size();
return *this;
}
#if COMPILER_SUPPORTS(CXX_RVALUE_REFERENCES)
template<typename T, size_t inlineCapacity, typename OverflowHandler>
Vector<T, inlineCapacity, OverflowHandler>::Vector(Vector<T, inlineCapacity, OverflowHandler>&& other)
: m_size(0)
{
// It's a little weird to implement a move constructor using swap but this way we
// don't have to add a move constructor to VectorBuffer.
swap(other);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
Vector<T, inlineCapacity, OverflowHandler>& Vector<T, inlineCapacity, OverflowHandler>::operator=(Vector<T, inlineCapacity, OverflowHandler>&& other)
{
swap(other);
return *this;
}
#endif
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<typename U>
bool Vector<T, inlineCapacity, OverflowHandler>::contains(const U& value) const
{
return find(value) != notFound;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<typename U>
size_t Vector<T, inlineCapacity, OverflowHandler>::find(const U& value) const
{
for (size_t i = 0; i < size(); ++i) {
if (at(i) == value)
return i;
}
return notFound;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<typename U>
size_t Vector<T, inlineCapacity, OverflowHandler>::reverseFind(const U& value) const
{
for (size_t i = 1; i <= size(); ++i) {
const size_t index = size() - i;
if (at(index) == value)
return index;
}
return notFound;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::fill(const T& val, size_t newSize)
{
if (size() > newSize)
shrink(newSize);
else if (newSize > capacity()) {
clear();
reserveCapacity(newSize);
if (!begin())
return;
}
std::fill(begin(), end(), val);
TypeOperations::uninitializedFill(end(), begin() + newSize, val);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
template<typename Iterator>
void Vector<T, inlineCapacity, OverflowHandler>::appendRange(Iterator start, Iterator end)
{
for (Iterator it = start; it != end; ++it)
append(*it);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::expandCapacity(size_t newMinCapacity)
{
reserveCapacity(std::max(newMinCapacity, std::max(static_cast<size_t>(16), capacity() + capacity() / 4 + 1)));
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
const T* Vector<T, inlineCapacity, OverflowHandler>::expandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
expandCapacity(newMinCapacity);
return ptr;
}
size_t index = ptr - begin();
expandCapacity(newMinCapacity);
return begin() + index;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
bool Vector<T, inlineCapacity, OverflowHandler>::tryExpandCapacity(size_t newMinCapacity)
{
return tryReserveCapacity(std::max(newMinCapacity, std::max(static_cast<size_t>(16), capacity() + capacity() / 4 + 1)));
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
const T* Vector<T, inlineCapacity, OverflowHandler>::tryExpandCapacity(size_t newMinCapacity, const T* ptr)
{
if (ptr < begin() || ptr >= end()) {
if (!tryExpandCapacity(newMinCapacity))
return 0;
return ptr;
}
size_t index = ptr - begin();
if (!tryExpandCapacity(newMinCapacity))
return 0;
return begin() + index;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
inline U* Vector<T, inlineCapacity, OverflowHandler>::expandCapacity(size_t newMinCapacity, U* ptr)
{
expandCapacity(newMinCapacity);
return ptr;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::resize(size_t size)
{
if (size <= m_size)
TypeOperations::destruct(begin() + size, end());
else {
if (size > capacity())
expandCapacity(size);
if (begin())
TypeOperations::initialize(end(), begin() + size);
}
m_size = size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::resizeToFit(size_t size)
{
reserveCapacity(size);
resize(size);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::shrink(size_t size)
{
ASSERT(size <= m_size);
TypeOperations::destruct(begin() + size, end());
m_size = size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::grow(size_t size)
{
ASSERT(size >= m_size);
if (size > capacity())
expandCapacity(size);
if (begin())
TypeOperations::initialize(end(), begin() + size);
m_size = size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::reserveCapacity(size_t newCapacity)
{
if (newCapacity <= capacity())
return;
T* oldBuffer = begin();
T* oldEnd = end();
Base::allocateBuffer(newCapacity);
if (begin())
TypeOperations::move(oldBuffer, oldEnd, begin());
Base::deallocateBuffer(oldBuffer);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
bool Vector<T, inlineCapacity, OverflowHandler>::tryReserveCapacity(size_t newCapacity)
{
if (newCapacity <= capacity())
return true;
T* oldBuffer = begin();
T* oldEnd = end();
if (!Base::tryAllocateBuffer(newCapacity))
return false;
ASSERT(begin());
TypeOperations::move(oldBuffer, oldEnd, begin());
Base::deallocateBuffer(oldBuffer);
return true;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::reserveInitialCapacity(size_t initialCapacity)
{
ASSERT(!m_size);
ASSERT(capacity() == inlineCapacity);
if (initialCapacity > inlineCapacity)
Base::allocateBuffer(initialCapacity);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void Vector<T, inlineCapacity, OverflowHandler>::shrinkCapacity(size_t newCapacity)
{
if (newCapacity >= capacity())
return;
if (newCapacity < size())
shrink(newCapacity);
T* oldBuffer = begin();
if (newCapacity > 0) {
if (Base::shouldReallocateBuffer(newCapacity)) {
Base::reallocateBuffer(newCapacity);
return;
}
T* oldEnd = end();
Base::allocateBuffer(newCapacity);
if (begin() != oldBuffer)
TypeOperations::move(oldBuffer, oldEnd, begin());
}
Base::deallocateBuffer(oldBuffer);
Base::restoreInlineBufferIfNeeded();
}
// Templatizing these is better than just letting the conversion happen implicitly,
// because for instance it allows a PassRefPtr to be appended to a RefPtr vector
// without refcount thrash.
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
void Vector<T, inlineCapacity, OverflowHandler>::append(const U* data, size_t dataSize)
{
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
if (!begin())
return;
}
if (newSize < m_size)
CRASH();
T* dest = end();
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &dest[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
bool Vector<T, inlineCapacity, OverflowHandler>::tryAppend(const U* data, size_t dataSize)
{
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = tryExpandCapacity(newSize, data);
if (!data)
return false;
ASSERT(begin());
}
if (newSize < m_size)
return false;
T* dest = end();
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &dest[i]) T(data[i]);
m_size = newSize;
return true;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
ALWAYS_INLINE void Vector<T, inlineCapacity, OverflowHandler>::append(const U& val)
{
if (size() != capacity()) {
new (NotNull, end()) T(val);
++m_size;
return;
}
appendSlowCase(val);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
void Vector<T, inlineCapacity, OverflowHandler>::appendSlowCase(const U& val)
{
ASSERT(size() == capacity());
const U* ptr = &val;
ptr = expandCapacity(size() + 1, ptr);
if (!begin())
return;
new (NotNull, end()) T(*ptr);
++m_size;
}
// This version of append saves a branch in the case where you know that the
// vector's capacity is large enough for the append to succeed.
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
inline void Vector<T, inlineCapacity, OverflowHandler>::uncheckedAppend(const U& val)
{
ASSERT(size() < capacity());
const U* ptr = &val;
new (NotNull, end()) T(*ptr);
++m_size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U, size_t otherCapacity>
inline void Vector<T, inlineCapacity, OverflowHandler>::appendVector(const Vector<U, otherCapacity>& val)
{
append(val.begin(), val.size());
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
void Vector<T, inlineCapacity, OverflowHandler>::insert(size_t position, const U* data, size_t dataSize)
{
ASSERT_WITH_SECURITY_IMPLICATION(position <= size());
size_t newSize = m_size + dataSize;
if (newSize > capacity()) {
data = expandCapacity(newSize, data);
if (!begin())
return;
}
if (newSize < m_size)
CRASH();
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + dataSize);
for (size_t i = 0; i < dataSize; ++i)
new (NotNull, &spot[i]) T(data[i]);
m_size = newSize;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U>
inline void Vector<T, inlineCapacity, OverflowHandler>::insert(size_t position, const U& val)
{
ASSERT_WITH_SECURITY_IMPLICATION(position <= size());
const U* data = &val;
if (size() == capacity()) {
data = expandCapacity(size() + 1, data);
if (!begin())
return;
}
T* spot = begin() + position;
TypeOperations::moveOverlapping(spot, end(), spot + 1);
new (NotNull, spot) T(*data);
++m_size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler> template<typename U, size_t c>
inline void Vector<T, inlineCapacity, OverflowHandler>::insert(size_t position, const Vector<U, c>& val)
{
insert(position, val.begin(), val.size());
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::remove(size_t position)
{
ASSERT_WITH_SECURITY_IMPLICATION(position < size());
T* spot = begin() + position;
spot->~T();
TypeOperations::moveOverlapping(spot + 1, end(), spot);
--m_size;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::remove(size_t position, size_t length)
{
ASSERT_WITH_SECURITY_IMPLICATION(position <= size());
ASSERT_WITH_SECURITY_IMPLICATION(position + length <= size());
T* beginSpot = begin() + position;
T* endSpot = beginSpot + length;
TypeOperations::destruct(beginSpot, endSpot);
TypeOperations::moveOverlapping(endSpot, end(), beginSpot);
m_size -= length;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::reverse()
{
for (size_t i = 0; i < m_size / 2; ++i)
std::swap(at(i), at(m_size - 1 - i));
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline T* Vector<T, inlineCapacity, OverflowHandler>::releaseBuffer()
{
T* buffer = Base::releaseBuffer();
if (inlineCapacity && !buffer && m_size) {
// If the vector had some data, but no buffer to release,
// that means it was using the inline buffer. In that case,
// we create a brand new buffer so the caller always gets one.
size_t bytes = m_size * sizeof(T);
buffer = static_cast<T*>(fastMalloc(bytes));
memcpy(buffer, data(), bytes);
}
m_size = 0;
return buffer;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void Vector<T, inlineCapacity, OverflowHandler>::checkConsistency()
{
#if !ASSERT_DISABLED
for (size_t i = 0; i < size(); ++i)
ValueCheck<T>::checkConsistency(at(i));
#endif
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
void deleteAllValues(const Vector<T, inlineCapacity, OverflowHandler>& collection)
{
typedef typename Vector<T, inlineCapacity, OverflowHandler>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete *it;
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline void swap(Vector<T, inlineCapacity, OverflowHandler>& a, Vector<T, inlineCapacity, OverflowHandler>& b)
{
a.swap(b);
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
bool operator==(const Vector<T, inlineCapacity, OverflowHandler>& a, const Vector<T, inlineCapacity, OverflowHandler>& b)
{
if (a.size() != b.size())
return false;
return VectorTypeOperations<T>::compare(a.data(), b.data(), a.size());
}
template<typename T, size_t inlineCapacity, typename OverflowHandler>
inline bool operator!=(const Vector<T, inlineCapacity, OverflowHandler>& a, const Vector<T, inlineCapacity, OverflowHandler>& b)
{
return !(a == b);
}
#if !ASSERT_DISABLED
template<typename T> struct ValueCheck<Vector<T> > {
typedef Vector<T> TraitType;
static void checkConsistency(const Vector<T>& v)
{
v.checkConsistency();
}
};
#endif
} // namespace WTF
using WTF::Vector;
using WTF::UnsafeVectorOverflow;
#endif // WTF_Vector_h
|