1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
|
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
* Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* Please send bug reports to David M. Gay (dmg at acm dot org,
* with " at " changed at "@" and " dot " changed to "."). */
/* On a machine with IEEE extended-precision registers, it is
* necessary to specify double-precision (53-bit) rounding precision
* before invoking strtod or dtoa. If the machine uses (the equivalent
* of) Intel 80x87 arithmetic, the call
* _control87(PC_53, MCW_PC);
* does this with many compilers. Whether this or another call is
* appropriate depends on the compiler; for this to work, it may be
* necessary to #include "float.h" or another system-dependent header
* file.
*/
#include "config.h"
#include "dtoa.h"
#include <stdio.h>
#include <wtf/MathExtras.h>
#include <wtf/Threading.h>
#include <wtf/Vector.h>
#if COMPILER(MSVC)
#pragma warning(disable: 4244)
#pragma warning(disable: 4245)
#pragma warning(disable: 4554)
#endif
namespace WTF {
Mutex* s_dtoaP5Mutex;
typedef union {
double d;
uint32_t L[2];
} U;
#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
#define word0(x) (x)->L[0]
#define word1(x) (x)->L[1]
#else
#define word0(x) (x)->L[1]
#define word1(x) (x)->L[0]
#endif
#define dval(x) (x)->d
/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
* *p++ = high << 16 | low & 0xffff;
*/
static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
{
uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
#if CPU(BIG_ENDIAN)
p16[0] = high;
p16[1] = low;
#else
p16[1] = high;
p16[0] = low;
#endif
return p + 1;
}
#define Exp_shift 20
#define Exp_shift1 20
#define Exp_msk1 0x100000
#define Exp_msk11 0x100000
#define Exp_mask 0x7ff00000
#define P 53
#define Bias 1023
#define Emin (-1022)
#define Exp_1 0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask 0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask 0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#define rounded_product(a, b) a *= b
#define rounded_quotient(a, b) a /= b
#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
#define Big1 0xffffffff
#if CPU(PPC64) || CPU(X86_64)
// FIXME: should we enable this on all 64-bit CPUs?
// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
#define USE_LONG_LONG
#endif
struct BigInt {
BigInt() : sign(0) { }
int sign;
void clear()
{
sign = 0;
m_words.clear();
}
size_t size() const
{
return m_words.size();
}
void resize(size_t s)
{
m_words.resize(s);
}
uint32_t* words()
{
return m_words.data();
}
const uint32_t* words() const
{
return m_words.data();
}
void append(uint32_t w)
{
m_words.append(w);
}
Vector<uint32_t, 16> m_words;
};
static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */
{
#ifdef USE_LONG_LONG
unsigned long long carry;
#else
uint32_t carry;
#endif
int wds = b.size();
uint32_t* x = b.words();
int i = 0;
carry = a;
do {
#ifdef USE_LONG_LONG
unsigned long long y = *x * (unsigned long long)m + carry;
carry = y >> 32;
*x++ = (uint32_t)y & 0xffffffffUL;
#else
uint32_t xi = *x;
uint32_t y = (xi & 0xffff) * m + carry;
uint32_t z = (xi >> 16) * m + (y >> 16);
carry = z >> 16;
*x++ = (z << 16) + (y & 0xffff);
#endif
} while (++i < wds);
if (carry)
b.append((uint32_t)carry);
}
static int hi0bits(uint32_t x)
{
int k = 0;
if (!(x & 0xffff0000)) {
k = 16;
x <<= 16;
}
if (!(x & 0xff000000)) {
k += 8;
x <<= 8;
}
if (!(x & 0xf0000000)) {
k += 4;
x <<= 4;
}
if (!(x & 0xc0000000)) {
k += 2;
x <<= 2;
}
if (!(x & 0x80000000)) {
k++;
if (!(x & 0x40000000))
return 32;
}
return k;
}
static int lo0bits(uint32_t* y)
{
int k;
uint32_t x = *y;
if (x & 7) {
if (x & 1)
return 0;
if (x & 2) {
*y = x >> 1;
return 1;
}
*y = x >> 2;
return 2;
}
k = 0;
if (!(x & 0xffff)) {
k = 16;
x >>= 16;
}
if (!(x & 0xff)) {
k += 8;
x >>= 8;
}
if (!(x & 0xf)) {
k += 4;
x >>= 4;
}
if (!(x & 0x3)) {
k += 2;
x >>= 2;
}
if (!(x & 1)) {
k++;
x >>= 1;
if (!x)
return 32;
}
*y = x;
return k;
}
static void i2b(BigInt& b, int i)
{
b.sign = 0;
b.resize(1);
b.words()[0] = i;
}
static void mult(BigInt& aRef, const BigInt& bRef)
{
const BigInt* a = &aRef;
const BigInt* b = &bRef;
BigInt c;
int wa, wb, wc;
const uint32_t* x = 0;
const uint32_t* xa;
const uint32_t* xb;
const uint32_t* xae;
const uint32_t* xbe;
uint32_t* xc;
uint32_t* xc0;
uint32_t y;
#ifdef USE_LONG_LONG
unsigned long long carry, z;
#else
uint32_t carry, z;
#endif
if (a->size() < b->size()) {
const BigInt* tmp = a;
a = b;
b = tmp;
}
wa = a->size();
wb = b->size();
wc = wa + wb;
c.resize(wc);
for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
*xc = 0;
xa = a->words();
xae = xa + wa;
xb = b->words();
xbe = xb + wb;
xc0 = c.words();
#ifdef USE_LONG_LONG
for (; xb < xbe; xc0++) {
if ((y = *xb++)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * (unsigned long long)y + *xc + carry;
carry = z >> 32;
*xc++ = (uint32_t)z & 0xffffffffUL;
} while (x < xae);
*xc = (uint32_t)carry;
}
}
#else
for (; xb < xbe; xb++, xc0++) {
if ((y = *xb & 0xffff)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
carry = z >> 16;
uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
carry = z2 >> 16;
xc = storeInc(xc, z2, z);
} while (x < xae);
*xc = carry;
}
if ((y = *xb >> 16)) {
x = xa;
xc = xc0;
carry = 0;
uint32_t z2 = *xc;
do {
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
carry = z >> 16;
xc = storeInc(xc, z, z2);
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
carry = z2 >> 16;
} while (x < xae);
*xc = z2;
}
}
#endif
for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
c.resize(wc);
aRef = c;
}
struct P5Node {
WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
public:
P5Node() { }
BigInt val;
P5Node* next;
};
static P5Node* p5s;
static int p5sCount;
static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
{
static int p05[3] = { 5, 25, 125 };
if (int i = k & 3)
multadd(b, p05[i - 1], 0);
if (!(k >>= 2))
return;
s_dtoaP5Mutex->lock();
P5Node* p5 = p5s;
if (!p5) {
/* first time */
p5 = new P5Node;
i2b(p5->val, 625);
p5->next = 0;
p5s = p5;
p5sCount = 1;
}
int p5sCountLocal = p5sCount;
s_dtoaP5Mutex->unlock();
int p5sUsed = 0;
for (;;) {
if (k & 1)
mult(b, p5->val);
if (!(k >>= 1))
break;
if (++p5sUsed == p5sCountLocal) {
s_dtoaP5Mutex->lock();
if (p5sUsed == p5sCount) {
ASSERT(!p5->next);
p5->next = new P5Node;
p5->next->next = 0;
p5->next->val = p5->val;
mult(p5->next->val, p5->next->val);
++p5sCount;
}
p5sCountLocal = p5sCount;
s_dtoaP5Mutex->unlock();
}
p5 = p5->next;
}
}
static ALWAYS_INLINE void lshift(BigInt& b, int k)
{
int n = k >> 5;
int origSize = b.size();
int n1 = n + origSize + 1;
if (k &= 0x1f)
b.resize(b.size() + n + 1);
else
b.resize(b.size() + n);
const uint32_t* srcStart = b.words();
uint32_t* dstStart = b.words();
const uint32_t* src = srcStart + origSize - 1;
uint32_t* dst = dstStart + n1 - 1;
if (k) {
uint32_t hiSubword = 0;
int s = 32 - k;
for (; src >= srcStart; --src) {
*dst-- = hiSubword | *src >> s;
hiSubword = *src << k;
}
*dst = hiSubword;
ASSERT(dst == dstStart + n);
b.resize(origSize + n + !!b.words()[n1 - 1]);
}
else {
do {
*--dst = *src--;
} while (src >= srcStart);
}
for (dst = dstStart + n; dst != dstStart; )
*--dst = 0;
ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
}
static int cmp(const BigInt& a, const BigInt& b)
{
const uint32_t *xa, *xa0, *xb, *xb0;
int i, j;
i = a.size();
j = b.size();
ASSERT(i <= 1 || a.words()[i - 1]);
ASSERT(j <= 1 || b.words()[j - 1]);
if (i -= j)
return i;
xa0 = a.words();
xa = xa0 + j;
xb0 = b.words();
xb = xb0 + j;
for (;;) {
if (*--xa != *--xb)
return *xa < *xb ? -1 : 1;
if (xa <= xa0)
break;
}
return 0;
}
static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
{
const BigInt* a = &aRef;
const BigInt* b = &bRef;
int i, wa, wb;
uint32_t* xc;
i = cmp(*a, *b);
if (!i) {
c.sign = 0;
c.resize(1);
c.words()[0] = 0;
return;
}
if (i < 0) {
const BigInt* tmp = a;
a = b;
b = tmp;
i = 1;
} else
i = 0;
wa = a->size();
const uint32_t* xa = a->words();
const uint32_t* xae = xa + wa;
wb = b->size();
const uint32_t* xb = b->words();
const uint32_t* xbe = xb + wb;
c.resize(wa);
c.sign = i;
xc = c.words();
#ifdef USE_LONG_LONG
unsigned long long borrow = 0;
do {
unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
borrow = y >> 32 & (uint32_t)1;
*xc++ = (uint32_t)y & 0xffffffffUL;
} while (xb < xbe);
while (xa < xae) {
unsigned long long y = *xa++ - borrow;
borrow = y >> 32 & (uint32_t)1;
*xc++ = (uint32_t)y & 0xffffffffUL;
}
#else
uint32_t borrow = 0;
do {
uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
xc = storeInc(xc, z, y);
} while (xb < xbe);
while (xa < xae) {
uint32_t y = (*xa & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
uint32_t z = (*xa++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
xc = storeInc(xc, z, y);
}
#endif
while (!*--xc)
wa--;
c.resize(wa);
}
static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
{
int de, k;
uint32_t* x;
uint32_t y, z;
int i;
#define d0 word0(d)
#define d1 word1(d)
b.sign = 0;
b.resize(1);
x = b.words();
z = d0 & Frac_mask;
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
if ((de = (int)(d0 >> Exp_shift)))
z |= Exp_msk1;
if ((y = d1)) {
if ((k = lo0bits(&y))) {
x[0] = y | (z << (32 - k));
z >>= k;
} else
x[0] = y;
if (z) {
b.resize(2);
x[1] = z;
}
i = b.size();
} else {
k = lo0bits(&z);
x[0] = z;
i = 1;
b.resize(1);
k += 32;
}
if (de) {
*e = de - Bias - (P - 1) + k;
*bits = P - k;
} else {
*e = 0 - Bias - (P - 1) + 1 + k;
*bits = (32 * i) - hi0bits(x[i - 1]);
}
}
#undef d0
#undef d1
static const double tens[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
};
static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
9007199254740992. * 9007199254740992.e-256
/* = 2^106 * 1e-256 */
};
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
#define Scale_Bit 0x10
#define n_bigtens 5
static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
{
size_t n;
uint32_t* bx;
uint32_t* bxe;
uint32_t q;
uint32_t* sx;
uint32_t* sxe;
#ifdef USE_LONG_LONG
unsigned long long borrow, carry, y, ys;
#else
uint32_t borrow, carry, y, ys;
uint32_t si, z, zs;
#endif
ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
n = S.size();
ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
if (b.size() < n)
return 0;
sx = S.words();
sxe = sx + --n;
bx = b.words();
bxe = bx + n;
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
if (q) {
borrow = 0;
carry = 0;
do {
#ifdef USE_LONG_LONG
ys = *sx++ * (unsigned long long)q + carry;
carry = ys >> 32;
y = *bx - (ys & 0xffffffffUL) - borrow;
borrow = y >> 32 & (uint32_t)1;
*bx++ = (uint32_t)y & 0xffffffffUL;
#else
si = *sx++;
ys = (si & 0xffff) * q + carry;
zs = (si >> 16) * q + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
bx = storeInc(bx, z, y);
#endif
} while (sx <= sxe);
if (!*bxe) {
bx = b.words();
while (--bxe > bx && !*bxe)
--n;
b.resize(n);
}
}
if (cmp(b, S) >= 0) {
q++;
borrow = 0;
carry = 0;
bx = b.words();
sx = S.words();
do {
#ifdef USE_LONG_LONG
ys = *sx++ + carry;
carry = ys >> 32;
y = *bx - (ys & 0xffffffffUL) - borrow;
borrow = y >> 32 & (uint32_t)1;
*bx++ = (uint32_t)y & 0xffffffffUL;
#else
si = *sx++;
ys = (si & 0xffff) + carry;
zs = (si >> 16) + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
bx = storeInc(bx, z, y);
#endif
} while (sx <= sxe);
bx = b.words();
bxe = bx + n;
if (!*bxe) {
while (--bxe > bx && !*bxe)
--n;
b.resize(n);
}
}
return q;
}
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
*
* Inspired by "How to Print Floating-Point Numbers Accurately" by
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
*
* Modifications:
* 1. Rather than iterating, we use a simple numeric overestimate
* to determine k = floor(log10(d)). We scale relevant
* quantities using O(log2(k)) rather than O(k) multiplications.
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
* try to generate digits strictly left to right. Instead, we
* compute with fewer bits and propagate the carry if necessary
* when rounding the final digit up. This is often faster.
* 3. Under the assumption that input will be rounded nearest,
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
* That is, we allow equality in stopping tests when the
* round-nearest rule will give the same floating-point value
* as would satisfaction of the stopping test with strict
* inequality.
* 4. We remove common factors of powers of 2 from relevant
* quantities.
* 5. When converting floating-point integers less than 1e16,
* we use floating-point arithmetic rather than resorting
* to multiple-precision integers.
* 6. When asked to produce fewer than 15 digits, we first try
* to get by with floating-point arithmetic; we resort to
* multiple-precision integer arithmetic only if we cannot
* guarantee that the floating-point calculation has given
* the correctly rounded result. For k requested digits and
* "uniformly" distributed input, the probability is
* something like 10^(k-15) that we must resort to the int32_t
* calculation.
*
* Note: 'leftright' translates to 'generate shortest possible string'.
*/
template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
{
// Exactly one rounding mode must be specified.
ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
// roundingNone only allowed (only sensible?) with leftright set.
ASSERT(!roundingNone || leftright);
ASSERT(std::isfinite(dd));
int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
j, j1, k, k0, k_check, m2, m5, s2, s5,
spec_case;
int32_t L;
int denorm;
uint32_t x;
BigInt b, delta, mlo, mhi, S;
U d2, eps, u;
double ds;
char* s;
char* s0;
u.d = dd;
/* Infinity or NaN */
ASSERT((word0(&u) & Exp_mask) != Exp_mask);
// JavaScript toString conversion treats -0 as 0.
if (!dval(&u)) {
signOut = false;
exponentOut = 0;
precisionOut = 1;
result[0] = '0';
result[1] = '\0';
return;
}
if (word0(&u) & Sign_bit) {
signOut = true;
word0(&u) &= ~Sign_bit; // clear sign bit
} else
signOut = false;
d2b(b, &u, &be, &bbits);
if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
dval(&d2) = dval(&u);
word0(&d2) &= Frac_mask1;
word0(&d2) |= Exp_11;
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
*
* This suggests computing an approximation k to log10(d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
*
* We want k to be too large rather than too small.
* The error in the first-order Taylor series approximation
* is in our favor, so we just round up the constant enough
* to compensate for any error in the multiplication of
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
* adding 1e-13 to the constant term more than suffices.
* Hence we adjust the constant term to 0.1760912590558.
* (We could get a more accurate k by invoking log10,
* but this is probably not worthwhile.)
*/
i -= Bias;
denorm = 0;
} else {
/* d is denormalized */
i = bbits + be + (Bias + (P - 1) - 1);
x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
: word1(&u) << (32 - i);
dval(&d2) = x;
word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
i -= (Bias + (P - 1) - 1) + 1;
denorm = 1;
}
ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
k = (int)ds;
if (ds < 0. && ds != k)
k--; /* want k = floor(ds) */
k_check = 1;
if (k >= 0 && k <= Ten_pmax) {
if (dval(&u) < tens[k])
k--;
k_check = 0;
}
j = bbits - i - 1;
if (j >= 0) {
b2 = 0;
s2 = j;
} else {
b2 = -j;
s2 = 0;
}
if (k >= 0) {
b5 = 0;
s5 = k;
s2 += k;
} else {
b2 -= k;
b5 = -k;
s5 = 0;
}
if (roundingNone) {
ilim = ilim1 = -1;
i = 18;
ndigits = 0;
}
if (roundingSignificantFigures) {
if (ndigits <= 0)
ndigits = 1;
ilim = ilim1 = i = ndigits;
}
if (roundingDecimalPlaces) {
i = ndigits + k + 1;
ilim = i;
ilim1 = i - 1;
if (i <= 0)
i = 1;
}
s = s0 = result;
if (ilim >= 0 && ilim <= Quick_max) {
/* Try to get by with floating-point arithmetic. */
i = 0;
dval(&d2) = dval(&u);
k0 = k;
ilim0 = ilim;
ieps = 2; /* conservative */
if (k > 0) {
ds = tens[k & 0xf];
j = k >> 4;
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
dval(&u) /= bigtens[n_bigtens - 1];
ieps++;
}
for (; j; j >>= 1, i++) {
if (j & 1) {
ieps++;
ds *= bigtens[i];
}
}
dval(&u) /= ds;
} else if ((j1 = -k)) {
dval(&u) *= tens[j1 & 0xf];
for (j = j1 >> 4; j; j >>= 1, i++) {
if (j & 1) {
ieps++;
dval(&u) *= bigtens[i];
}
}
}
if (k_check && dval(&u) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fastFailed;
ilim = ilim1;
k--;
dval(&u) *= 10.;
ieps++;
}
dval(&eps) = (ieps * dval(&u)) + 7.;
word0(&eps) -= (P - 1) * Exp_msk1;
if (!ilim) {
S.clear();
mhi.clear();
dval(&u) -= 5.;
if (dval(&u) > dval(&eps))
goto oneDigit;
if (dval(&u) < -dval(&eps))
goto noDigits;
goto fastFailed;
}
if (leftright) {
/* Use Steele & White method of only
* generating digits needed.
*/
dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
for (i = 0;;) {
L = (long int)dval(&u);
dval(&u) -= L;
*s++ = '0' + (int)L;
if (dval(&u) < dval(&eps))
goto ret;
if (1. - dval(&u) < dval(&eps))
goto bumpUp;
if (++i >= ilim)
break;
dval(&eps) *= 10.;
dval(&u) *= 10.;
}
} else {
/* Generate ilim digits, then fix them up. */
dval(&eps) *= tens[ilim - 1];
for (i = 1;; i++, dval(&u) *= 10.) {
L = (int32_t)(dval(&u));
if (!(dval(&u) -= L))
ilim = i;
*s++ = '0' + (int)L;
if (i == ilim) {
if (dval(&u) > 0.5 + dval(&eps))
goto bumpUp;
if (dval(&u) < 0.5 - dval(&eps)) {
while (*--s == '0') { }
s++;
goto ret;
}
break;
}
}
}
fastFailed:
s = s0;
dval(&u) = dval(&d2);
k = k0;
ilim = ilim0;
}
/* Do we have a "small" integer? */
if (be >= 0 && k <= Int_max) {
/* Yes. */
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S.clear();
mhi.clear();
if (ilim < 0 || dval(&u) <= 5 * ds)
goto noDigits;
goto oneDigit;
}
for (i = 1;; i++, dval(&u) *= 10.) {
L = (int32_t)(dval(&u) / ds);
dval(&u) -= L * ds;
*s++ = '0' + (int)L;
if (!dval(&u)) {
break;
}
if (i == ilim) {
dval(&u) += dval(&u);
if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
bumpUp:
while (*--s == '9')
if (s == s0) {
k++;
*s = '0';
break;
}
++*s++;
}
break;
}
}
goto ret;
}
m2 = b2;
m5 = b5;
mhi.clear();
mlo.clear();
if (leftright) {
i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
b2 += i;
s2 += i;
i2b(mhi, 1);
}
if (m2 > 0 && s2 > 0) {
i = m2 < s2 ? m2 : s2;
b2 -= i;
m2 -= i;
s2 -= i;
}
if (b5 > 0) {
if (leftright) {
if (m5 > 0) {
pow5mult(mhi, m5);
mult(b, mhi);
}
if ((j = b5 - m5))
pow5mult(b, j);
} else
pow5mult(b, b5);
}
i2b(S, 1);
if (s5 > 0)
pow5mult(S, s5);
/* Check for special case that d is a normalized power of 2. */
spec_case = 0;
if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
/* The special case */
b2 += Log2P;
s2 += Log2P;
spec_case = 1;
}
/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*
* Perhaps we should just compute leading 28 bits of S once
* and for all and pass them and a shift to quorem, so it
* can do shifts and ors to compute the numerator for q.
*/
if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
i = 32 - i;
if (i > 4) {
i -= 4;
b2 += i;
m2 += i;
s2 += i;
} else if (i < 4) {
i += 28;
b2 += i;
m2 += i;
s2 += i;
}
if (b2 > 0)
lshift(b, b2);
if (s2 > 0)
lshift(S, s2);
if (k_check) {
if (cmp(b, S) < 0) {
k--;
multadd(b, 10, 0); /* we botched the k estimate */
if (leftright)
multadd(mhi, 10, 0);
ilim = ilim1;
}
}
if (ilim <= 0 && roundingDecimalPlaces) {
if (ilim < 0)
goto noDigits;
multadd(S, 5, 0);
// For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
if (cmp(b, S) < 0)
goto noDigits;
goto oneDigit;
}
if (leftright) {
if (m2 > 0)
lshift(mhi, m2);
/* Compute mlo -- check for special case
* that d is a normalized power of 2.
*/
mlo = mhi;
if (spec_case)
lshift(mhi, Log2P);
for (i = 1;;i++) {
dig = quorem(b, S) + '0';
/* Do we yet have the shortest decimal string
* that will round to d?
*/
j = cmp(b, mlo);
diff(delta, S, mhi);
j1 = delta.sign ? 1 : cmp(b, delta);
#ifdef DTOA_ROUND_BIASED
if (j < 0 || !j) {
#else
// FIXME: ECMA-262 specifies that equidistant results round away from
// zero, which probably means we shouldn't be on the unbiased code path
// (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
// yet understood this code well enough to make the call, but we should
// probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
// case to understand is probably "Math.pow(0.5, 24).toString()".
// I believe this value is interesting because I think it is precisely
// representable in binary floating point, and its decimal representation
// has a single digit that Steele & White reduction can remove, with the
// value 5 (thus equidistant from the next numbers above and below).
// We produce the correct answer using either codepath, and I don't as
// yet understand why. :-)
if (!j1 && !(word1(&u) & 1)) {
if (dig == '9')
goto round9up;
if (j > 0)
dig++;
*s++ = dig;
goto ret;
}
if (j < 0 || (!j && !(word1(&u) & 1))) {
#endif
if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
lshift(b, 1);
j1 = cmp(b, S);
// For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
// but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
// be rounded away from zero.
if (j1 >= 0) {
if (dig == '9')
goto round9up;
dig++;
}
}
*s++ = dig;
goto ret;
}
if (j1 > 0) {
if (dig == '9') { /* possible if i == 1 */
round9up:
*s++ = '9';
goto roundoff;
}
*s++ = dig + 1;
goto ret;
}
*s++ = dig;
if (i == ilim)
break;
multadd(b, 10, 0);
multadd(mlo, 10, 0);
multadd(mhi, 10, 0);
}
} else {
for (i = 1;; i++) {
*s++ = dig = quorem(b, S) + '0';
if (!b.words()[0] && b.size() <= 1)
goto ret;
if (i >= ilim)
break;
multadd(b, 10, 0);
}
}
/* Round off last digit */
lshift(b, 1);
j = cmp(b, S);
// For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
// but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
// be rounded away from zero.
if (j >= 0) {
roundoff:
while (*--s == '9')
if (s == s0) {
k++;
*s++ = '1';
goto ret;
}
++*s++;
} else {
while (*--s == '0') { }
s++;
}
goto ret;
noDigits:
exponentOut = 0;
precisionOut = 1;
result[0] = '0';
result[1] = '\0';
return;
oneDigit:
*s++ = '1';
k++;
goto ret;
ret:
ASSERT(s > result);
*s = 0;
exponentOut = k;
precisionOut = s - result;
}
void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
{
// flags are roundingNone, leftright.
dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
}
void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
{
// flag is roundingSignificantFigures.
dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
}
void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
{
// flag is roundingDecimalPlaces.
dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
}
const char* numberToString(double d, NumberToStringBuffer buffer)
{
double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
converter.ToShortest(d, &builder);
return builder.Finalize();
}
static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
{
size_t length = builder.position();
size_t decimalPointPosition = 0;
for (; decimalPointPosition < length; ++decimalPointPosition) {
if (buffer[decimalPointPosition] == '.')
break;
}
// No decimal seperator found, early exit.
if (decimalPointPosition == length)
return builder.Finalize();
size_t truncatedLength = length - 1;
for (; truncatedLength > decimalPointPosition; --truncatedLength) {
if (buffer[truncatedLength] != '0')
break;
}
// No trailing zeros found to strip.
if (truncatedLength == length - 1)
return builder.Finalize();
// If we removed all trailing zeros, remove the decimal point as well.
if (truncatedLength == decimalPointPosition) {
ASSERT(truncatedLength > 0);
--truncatedLength;
}
// Truncate the StringBuilder, and return the final result.
builder.SetPosition(truncatedLength + 1);
return builder.Finalize();
}
const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
{
// Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
// "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
// The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
// precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
// "precision": The precision specifies the maximum number of significant digits printed.
double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
converter.ToPrecision(d, significantFigures, &builder);
if (!truncateTrailingZeros)
return builder.Finalize();
return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
}
const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
{
// Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
// "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
// The number of digits before the decimal point depends on the magnitude of the number, and
// the number of digits after the decimal point depends on the requested precision.
// "precision": The precision value specifies the number of digits after the decimal point.
// If a decimal point appears, at least one digit appears before it.
// The value is rounded to the appropriate number of digits.
double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
converter.ToFixed(d, decimalPlaces, &builder);
return builder.Finalize();
}
namespace Internal {
double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
{
Vector<LChar> conversionBuffer(length);
for (size_t i = 0; i < length; ++i)
conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
return parseDouble(conversionBuffer.data(), length, parsedLength);
}
} // namespace Internal
} // namespace WTF
|