1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
/*
* Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "TouchAdjustment.h"
#include "ContainerNode.h"
#include "Editor.h"
#include "FloatPoint.h"
#include "FloatQuad.h"
#include "FrameView.h"
#include "HTMLFrameOwnerElement.h"
#include "HTMLInputElement.h"
#include "HTMLLabelElement.h"
#include "HTMLNames.h"
#include "IntPoint.h"
#include "IntSize.h"
#include "Node.h"
#include "NodeRenderStyle.h"
#include "RenderBox.h"
#include "RenderObject.h"
#include "RenderStyle.h"
#include "RenderText.h"
#include "ShadowRoot.h"
#include "Text.h"
#include "TextBreakIterator.h"
namespace WebCore {
namespace TouchAdjustment {
const float zeroTolerance = 1e-6f;
// Class for remembering absolute quads of a target node and what node they represent.
class SubtargetGeometry {
public:
SubtargetGeometry(Node* node, const FloatQuad& quad)
: m_node(node)
, m_quad(quad)
{ }
Node* node() const { return m_node; }
FloatQuad quad() const { return m_quad; }
IntRect boundingBox() const { return m_quad.enclosingBoundingBox(); }
private:
Node* m_node;
FloatQuad m_quad;
};
typedef Vector<SubtargetGeometry> SubtargetGeometryList;
typedef bool (*NodeFilter)(Node*);
typedef void (*AppendSubtargetsForNode)(Node*, SubtargetGeometryList&);
typedef float (*DistanceFunction)(const IntPoint&, const IntRect&, const SubtargetGeometry&);
// Takes non-const Node* because isContentEditable is a non-const function.
bool nodeRespondsToTapGesture(Node* node)
{
if (node->willRespondToMouseClickEvents() || node->willRespondToMouseMoveEvents())
return true;
// Accept nodes that has a CSS effect when touched.
if (node->isElementNode()) {
Element* element = toElement(node);
if (element->isMouseFocusable())
return true;
if (element->childrenAffectedByActive() || element->childrenAffectedByHover())
return true;
}
if (RenderStyle* renderStyle = node->renderStyle()) {
if (renderStyle->affectedByActive() || renderStyle->affectedByHover())
return true;
}
return false;
}
bool nodeIsZoomTarget(Node* node)
{
if (node->isTextNode() || node->isShadowRoot())
return false;
ASSERT(node->renderer());
return node->renderer()->isBox();
}
bool providesContextMenuItems(Node* node)
{
// This function tries to match the nodes that receive special context-menu items in
// ContextMenuController::populate(), and should be kept uptodate with those.
ASSERT(node->renderer() || node->isShadowRoot());
if (!node->renderer())
return false;
if (node->isContentEditable())
return true;
if (node->isLink())
return true;
if (node->renderer()->isImage())
return true;
if (node->renderer()->isMedia())
return true;
if (node->renderer()->canBeSelectionLeaf()) {
// If the context menu gesture will trigger a selection all selectable nodes are valid targets.
if (node->renderer()->frame()->editor().behavior().shouldSelectOnContextualMenuClick())
return true;
// Only the selected part of the renderer is a valid target, but this will be corrected in
// appendContextSubtargetsForNode.
if (node->renderer()->selectionState() != RenderObject::SelectionNone)
return true;
}
return false;
}
static inline void appendQuadsToSubtargetList(Vector<FloatQuad>& quads, Node* node, SubtargetGeometryList& subtargets)
{
Vector<FloatQuad>::const_iterator it = quads.begin();
const Vector<FloatQuad>::const_iterator end = quads.end();
for (; it != end; ++it)
subtargets.append(SubtargetGeometry(node, *it));
}
static inline void appendBasicSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
// Node guaranteed to have renderer due to check in node filter.
ASSERT(node->renderer());
Vector<FloatQuad> quads;
node->renderer()->absoluteQuads(quads);
appendQuadsToSubtargetList(quads, node, subtargets);
}
static inline void appendContextSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
// This is a variant of appendBasicSubtargetsForNode that adds special subtargets for
// selected or auto-selectable parts of text nodes.
ASSERT(node->renderer());
if (!node->isTextNode())
return appendBasicSubtargetsForNode(node, subtargets);
Text* textNode = static_cast<WebCore::Text*>(node);
RenderText* textRenderer = static_cast<RenderText*>(textNode->renderer());
if (textRenderer->frame()->editor().behavior().shouldSelectOnContextualMenuClick()) {
// Make subtargets out of every word.
String textValue = textNode->data();
TextBreakIterator* wordIterator = wordBreakIterator(textValue.characters(), textValue.length());
int lastOffset = textBreakFirst(wordIterator);
if (lastOffset == -1)
return;
int offset;
while ((offset = textBreakNext(wordIterator)) != -1) {
if (isWordTextBreak(wordIterator)) {
Vector<FloatQuad> quads;
textRenderer->absoluteQuadsForRange(quads, lastOffset, offset);
appendQuadsToSubtargetList(quads, textNode, subtargets);
}
lastOffset = offset;
}
} else {
if (textRenderer->selectionState() == RenderObject::SelectionNone)
return appendBasicSubtargetsForNode(node, subtargets);
// If selected, make subtargets out of only the selected part of the text.
int startPos, endPos;
switch (textRenderer->selectionState()) {
case RenderObject::SelectionInside:
startPos = 0;
endPos = textRenderer->textLength();
break;
case RenderObject::SelectionStart:
textRenderer->selectionStartEnd(startPos, endPos);
endPos = textRenderer->textLength();
break;
case RenderObject::SelectionEnd:
textRenderer->selectionStartEnd(startPos, endPos);
startPos = 0;
break;
case RenderObject::SelectionBoth:
textRenderer->selectionStartEnd(startPos, endPos);
break;
default:
ASSERT_NOT_REACHED();
return;
}
Vector<FloatQuad> quads;
textRenderer->absoluteQuadsForRange(quads, startPos, endPos);
appendQuadsToSubtargetList(quads, textNode, subtargets);
}
}
static inline void appendZoomableSubtargets(Node* node, SubtargetGeometryList& subtargets)
{
RenderBox* renderer = toRenderBox(node->renderer());
ASSERT(renderer);
Vector<FloatQuad> quads;
FloatRect borderBoxRect = renderer->borderBoxRect();
FloatRect contentBoxRect = renderer->contentBoxRect();
quads.append(renderer->localToAbsoluteQuad(borderBoxRect));
if (borderBoxRect != contentBoxRect)
quads.append(renderer->localToAbsoluteQuad(contentBoxRect));
// FIXME: For RenderBlocks, add column boxes and content boxes cleared for floats.
Vector<FloatQuad>::const_iterator it = quads.begin();
const Vector<FloatQuad>::const_iterator end = quads.end();
for (; it != end; ++it)
subtargets.append(SubtargetGeometry(node, *it));
}
static inline Node* parentShadowHostOrOwner(const Node* node)
{
if (Node* ancestor = node->parentOrShadowHostNode())
return ancestor;
if (node->isDocumentNode())
return toDocument(node)->ownerElement();
return 0;
}
// Compiles a list of subtargets of all the relevant target nodes.
void compileSubtargetList(const NodeListHashSet& intersectedNodes, SubtargetGeometryList& subtargets, NodeFilter nodeFilter, AppendSubtargetsForNode appendSubtargetsForNode)
{
// Find candidates responding to tap gesture events in O(n) time.
HashMap<Node*, Node*> responderMap;
HashSet<Node*> ancestorsToRespondersSet;
Vector<Node*> candidates;
HashSet<Node*> editableAncestors;
// A node matching the NodeFilter is called a responder. Candidate nodes must either be a
// responder or have an ancestor that is a responder.
// This iteration tests all ancestors at most once by caching earlier results.
NodeListHashSet::const_iterator end = intersectedNodes.end();
for (NodeListHashSet::const_iterator it = intersectedNodes.begin(); it != end; ++it) {
Node* const node = it->get();
Vector<Node*> visitedNodes;
Node* respondingNode = 0;
for (Node* visitedNode = node; visitedNode; visitedNode = visitedNode->parentOrShadowHostNode()) {
// Check if we already have a result for a common ancestor from another candidate.
respondingNode = responderMap.get(visitedNode);
if (respondingNode)
break;
visitedNodes.append(visitedNode);
// Check if the node filter applies, which would mean we have found a responding node.
if (nodeFilter(visitedNode)) {
respondingNode = visitedNode;
// Continue the iteration to collect the ancestors of the responder, which we will need later.
for (visitedNode = parentShadowHostOrOwner(visitedNode); visitedNode; visitedNode = parentShadowHostOrOwner(visitedNode)) {
HashSet<Node*>::AddResult addResult = ancestorsToRespondersSet.add(visitedNode);
if (!addResult.isNewEntry)
break;
}
break;
}
}
// Insert the detected responder for all the visited nodes.
for (unsigned j = 0; j < visitedNodes.size(); j++)
responderMap.add(visitedNodes[j], respondingNode);
if (respondingNode)
candidates.append(node);
}
// We compile the list of component absolute quads instead of using the bounding rect
// to be able to perform better hit-testing on inline links on line-breaks.
unsigned length = candidates.size();
for (unsigned i = 0; i < length; i++) {
Node* candidate = candidates[i];
// Skip nodes who's responders are ancestors of other responders. This gives preference to
// the inner-most event-handlers. So that a link is always preferred even when contained
// in an element that monitors all click-events.
Node* respondingNode = responderMap.get(candidate);
ASSERT(respondingNode);
if (ancestorsToRespondersSet.contains(respondingNode))
continue;
// Consolidate bounds for editable content.
if (editableAncestors.contains(candidate))
continue;
if (candidate->isContentEditable()) {
Node* replacement = candidate;
Node* parent = candidate->parentOrShadowHostNode();
while (parent && parent->isContentEditable()) {
replacement = parent;
if (editableAncestors.contains(replacement)) {
replacement = 0;
break;
}
editableAncestors.add(replacement);
parent = parent->parentOrShadowHostNode();
}
candidate = replacement;
}
if (candidate)
appendSubtargetsForNode(candidate, subtargets);
}
}
// Compiles a list of zoomable subtargets.
void compileZoomableSubtargets(const NodeListHashSet& intersectedNodes, SubtargetGeometryList& subtargets)
{
NodeListHashSet::const_iterator end = intersectedNodes.end();
for (NodeListHashSet::const_iterator it = intersectedNodes.begin(); it != end; ++it) {
Node* const candidate = it->get();
if (nodeIsZoomTarget(candidate))
appendZoomableSubtargets(candidate, subtargets);
}
}
// This returns quotient of the target area and its intersection with the touch area.
// This will prioritize largest intersection and smallest area, while balancing the two against each other.
float zoomableIntersectionQuotient(const IntPoint& touchHotspot, const IntRect& touchArea, const SubtargetGeometry& subtarget)
{
IntRect rect = subtarget.boundingBox();
// Convert from frame coordinates to window coordinates.
rect = subtarget.node()->document()->view()->contentsToWindow(rect);
// Check the rectangle is meaningful zoom target. It should at least contain the hotspot.
if (!rect.contains(touchHotspot))
return std::numeric_limits<float>::infinity();
IntRect intersection = rect;
intersection.intersect(touchArea);
// Return the quotient of the intersection.
return rect.size().area() / (float)intersection.size().area();
}
// Uses a hybrid of distance to adjust and intersect ratio, normalizing each score between 0 and 1
// and combining them. The distance to adjust works best for disambiguating clicks on targets such
// as links, where the width may be significantly larger than the touch width. Using area of overlap
// in such cases can lead to a bias towards shorter links. Conversely, percentage of overlap can
// provide strong confidence in tapping on a small target, where the overlap is often quite high,
// and works well for tightly packed controls.
float hybridDistanceFunction(const IntPoint& touchHotspot, const IntRect& touchRect, const SubtargetGeometry& subtarget)
{
IntRect rect = subtarget.boundingBox();
// Convert from frame coordinates to window coordinates.
rect = subtarget.node()->document()->view()->contentsToWindow(rect);
float radiusSquared = 0.25f * (touchRect.size().diagonalLengthSquared());
float distanceToAdjustScore = rect.distanceSquaredToPoint(touchHotspot) / radiusSquared;
int maxOverlapWidth = std::min(touchRect.width(), rect.width());
int maxOverlapHeight = std::min(touchRect.height(), rect.height());
float maxOverlapArea = std::max(maxOverlapWidth * maxOverlapHeight, 1);
rect.intersect(touchRect);
float intersectArea = rect.size().area();
float intersectionScore = 1 - intersectArea / maxOverlapArea;
float hybridScore = intersectionScore + distanceToAdjustScore;
return hybridScore;
}
FloatPoint contentsToWindow(FrameView *view, FloatPoint pt)
{
int x = static_cast<int>(pt.x() + 0.5f);
int y = static_cast<int>(pt.y() + 0.5f);
IntPoint adjusted = view->contentsToWindow(IntPoint(x, y));
return FloatPoint(adjusted.x(), adjusted.y());
}
// Adjusts 'point' to the nearest point inside rect, and leaves it unchanged if already inside.
void adjustPointToRect(FloatPoint& point, const FloatRect& rect)
{
if (point.x() < rect.x())
point.setX(rect.x());
else if (point.x() > rect.maxX())
point.setX(rect.maxX());
if (point.y() < rect.y())
point.setY(rect.y());
else if (point.y() > rect.maxY())
point.setY(rect.maxY());
}
bool snapTo(const SubtargetGeometry& geom, const IntPoint& touchPoint, const IntRect& touchArea, IntPoint& adjustedPoint)
{
FrameView* view = geom.node()->document()->view();
FloatQuad quad = geom.quad();
if (quad.isRectilinear()) {
IntRect contentBounds = geom.boundingBox();
// Convert from frame coordinates to window coordinates.
IntRect bounds = view->contentsToWindow(contentBounds);
if (bounds.contains(touchPoint)) {
adjustedPoint = touchPoint;
return true;
}
if (bounds.intersects(touchArea)) {
bounds.intersect(touchArea);
adjustedPoint = bounds.center();
return true;
}
return false;
}
// The following code tries to adjust the point to place inside a both the touchArea and the non-rectilinear quad.
// FIXME: This will return the point inside the touch area that is the closest to the quad center, but does not
// guarantee that the point will be inside the quad. Corner-cases exist where the quad will intersect but this
// will fail to adjust the point to somewhere in the intersection.
// Convert quad from content to window coordinates.
FloatPoint p1 = contentsToWindow(view, quad.p1());
FloatPoint p2 = contentsToWindow(view, quad.p2());
FloatPoint p3 = contentsToWindow(view, quad.p3());
FloatPoint p4 = contentsToWindow(view, quad.p4());
quad = FloatQuad(p1, p2, p3, p4);
if (quad.containsPoint(touchPoint)) {
adjustedPoint = touchPoint;
return true;
}
// Pull point towards the center of the element.
FloatPoint center = quad.center();
adjustPointToRect(center, touchArea);
adjustedPoint = roundedIntPoint(center);
return quad.containsPoint(adjustedPoint);
}
// A generic function for finding the target node with the lowest distance metric. A distance metric here is the result
// of a distance-like function, that computes how well the touch hits the node.
// Distance functions could for instance be distance squared or area of intersection.
bool findNodeWithLowestDistanceMetric(Node*& targetNode, IntPoint& targetPoint, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, SubtargetGeometryList& subtargets, DistanceFunction distanceFunction)
{
targetNode = 0;
float bestDistanceMetric = std::numeric_limits<float>::infinity();
SubtargetGeometryList::const_iterator it = subtargets.begin();
const SubtargetGeometryList::const_iterator end = subtargets.end();
IntPoint adjustedPoint;
for (; it != end; ++it) {
Node* node = it->node();
float distanceMetric = distanceFunction(touchHotspot, touchArea, *it);
if (distanceMetric < bestDistanceMetric) {
if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
targetPoint = adjustedPoint;
targetArea = it->boundingBox();
targetNode = node;
bestDistanceMetric = distanceMetric;
}
} else if (distanceMetric - bestDistanceMetric < zeroTolerance) {
if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
if (node->isDescendantOf(targetNode)) {
// Try to always return the inner-most element.
targetPoint = adjustedPoint;
targetNode = node;
targetArea = it->boundingBox();
}
}
}
}
if (targetNode) {
targetArea = targetNode->document()->view()->contentsToWindow(targetArea);
}
return (targetNode);
}
} // namespace TouchAdjustment
bool findBestClickableCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const NodeListHashSet& nodeList)
{
IntRect targetArea;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileSubtargetList(nodeList, subtargets, TouchAdjustment::nodeRespondsToTapGesture, TouchAdjustment::appendBasicSubtargetsForNode);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}
bool findBestContextMenuCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const NodeListHashSet& nodeList)
{
IntRect targetArea;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileSubtargetList(nodeList, subtargets, TouchAdjustment::providesContextMenuItems, TouchAdjustment::appendContextSubtargetsForNode);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}
bool findBestZoomableArea(Node*& targetNode, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, const NodeListHashSet& nodeList)
{
IntPoint targetPoint;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileZoomableSubtargets(nodeList, subtargets);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::zoomableIntersectionQuotient);
}
} // namespace WebCore
|