1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*
* Copyright (C) 2012 Igalia S.L
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
// FFTFrame implementation using the GStreamer FFT library.
#include "config.h"
#if USE(WEBAUDIO_GSTREAMER)
#include "FFTFrame.h"
#include "VectorMath.h"
#include <wtf/FastAllocBase.h>
namespace {
size_t unpackedFFTDataSize(unsigned fftSize)
{
return fftSize / 2 + 1;
}
} // anonymous namespace
namespace WebCore {
// Normal constructor: allocates for a given fftSize.
FFTFrame::FFTFrame(unsigned fftSize)
: m_FFTSize(fftSize)
, m_log2FFTSize(static_cast<unsigned>(log2(fftSize)))
, m_realData(unpackedFFTDataSize(m_FFTSize))
, m_imagData(unpackedFFTDataSize(m_FFTSize))
{
m_complexData = WTF::fastNewArray<GstFFTF32Complex>(unpackedFFTDataSize(m_FFTSize));
int fftLength = gst_fft_next_fast_length(m_FFTSize);
m_fft = gst_fft_f32_new(fftLength, FALSE);
m_inverseFft = gst_fft_f32_new(fftLength, TRUE);
}
// Creates a blank/empty frame (interpolate() must later be called).
FFTFrame::FFTFrame()
: m_FFTSize(0)
, m_log2FFTSize(0)
, m_complexData(0)
{
int fftLength = gst_fft_next_fast_length(m_FFTSize);
m_fft = gst_fft_f32_new(fftLength, FALSE);
m_inverseFft = gst_fft_f32_new(fftLength, TRUE);
}
// Copy constructor.
FFTFrame::FFTFrame(const FFTFrame& frame)
: m_FFTSize(frame.m_FFTSize)
, m_log2FFTSize(frame.m_log2FFTSize)
, m_realData(unpackedFFTDataSize(frame.m_FFTSize))
, m_imagData(unpackedFFTDataSize(frame.m_FFTSize))
{
m_complexData = WTF::fastNewArray<GstFFTF32Complex>(unpackedFFTDataSize(m_FFTSize));
int fftLength = gst_fft_next_fast_length(m_FFTSize);
m_fft = gst_fft_f32_new(fftLength, FALSE);
m_inverseFft = gst_fft_f32_new(fftLength, TRUE);
// Copy/setup frame data.
memcpy(realData(), frame.realData(), sizeof(float) * unpackedFFTDataSize(m_FFTSize));
memcpy(imagData(), frame.imagData(), sizeof(float) * unpackedFFTDataSize(m_FFTSize));
}
void FFTFrame::initialize()
{
}
void FFTFrame::cleanup()
{
}
FFTFrame::~FFTFrame()
{
if (!m_fft)
return;
gst_fft_f32_free(m_fft);
m_fft = 0;
gst_fft_f32_free(m_inverseFft);
m_inverseFft = 0;
WTF::fastDeleteArray(m_complexData);
}
void FFTFrame::multiply(const FFTFrame& frame)
{
FFTFrame& frame1 = *this;
FFTFrame& frame2 = const_cast<FFTFrame&>(frame);
float* realP1 = frame1.realData();
float* imagP1 = frame1.imagData();
const float* realP2 = frame2.realData();
const float* imagP2 = frame2.imagData();
size_t size = unpackedFFTDataSize(m_FFTSize);
VectorMath::zvmul(realP1, imagP1, realP2, imagP2, realP1, imagP1, size);
// Scale accounts the peculiar scaling of vecLib on the Mac.
// This ensures the right scaling all the way back to inverse FFT.
// FIXME: if we change the scaling on the Mac then this scale
// factor will need to change too.
float scale = 0.5f;
VectorMath::vsmul(realP1, 1, &scale, realP1, 1, size);
VectorMath::vsmul(imagP1, 1, &scale, imagP1, 1, size);
}
void FFTFrame::doFFT(const float* data)
{
gst_fft_f32_fft(m_fft, data, m_complexData);
// Scale the frequency domain data to match vecLib's scale factor
// on the Mac. FIXME: if we change the definition of FFTFrame to
// eliminate this scale factor then this code will need to change.
// Also, if this loop turns out to be hot then we should use SSE
// or other intrinsics to accelerate it.
float scaleFactor = 2;
float* imagData = m_imagData.data();
float* realData = m_realData.data();
for (unsigned i = 0; i < unpackedFFTDataSize(m_FFTSize); ++i) {
imagData[i] = m_complexData[i].i * scaleFactor;
realData[i] = m_complexData[i].r * scaleFactor;
}
}
void FFTFrame::doInverseFFT(float* data)
{
// Merge the real and imaginary vectors to complex vector.
float* realData = m_realData.data();
float* imagData = m_imagData.data();
for (size_t i = 0; i < unpackedFFTDataSize(m_FFTSize); ++i) {
m_complexData[i].i = imagData[i];
m_complexData[i].r = realData[i];
}
gst_fft_f32_inverse_fft(m_inverseFft, m_complexData, data);
// Scale so that a forward then inverse FFT yields exactly the original data.
const float scaleFactor = 1.0 / (2 * m_FFTSize);
VectorMath::vsmul(data, 1, &scaleFactor, data, 1, m_FFTSize);
}
float* FFTFrame::realData() const
{
return const_cast<float*>(m_realData.data());
}
float* FFTFrame::imagData() const
{
return const_cast<float*>(m_imagData.data());
}
} // namespace WebCore
#endif // USE(WEBAUDIO_GSTREAMER)
|