1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/*
* Copyright (C) 2012 University of Szeged
* Copyright (C) 2012 Tamas Czene <tczene@inf.u-szeged.hu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(FILTERS) && ENABLE(OPENCL)
#include "FETurbulence.h"
#include "FETurbulence.cpp"
#include "FilterContextOpenCL.h"
#include "SVGFilter.h"
namespace WebCore {
static const char* turbulenceKernelProgram =
PROGRAM(
__constant int s_perlinNoise = 4096;
__constant int s_blockSize = 256;
__constant int s_blockMask = 255;
typedef struct {
int noisePositionIntegerValue;
float noisePositionFractionValue;
} Noise;
typedef struct {
int width;
int wrapX;
int height;
int wrapY;
} StitchData;
float linearInterpolation(float t, float a, float b)
{
return mad(b - a, t, a);
}
float noise2D(__constant float *component, __constant int *latticeSelector, StitchData stitchData, float noiseVectorX, float noiseVectorY, int stitchTiles)
{
Noise noiseX;
noiseX.noisePositionIntegerValue = (int)(noiseVectorX + s_perlinNoise);
noiseX.noisePositionFractionValue = (noiseVectorX + s_perlinNoise) - noiseX.noisePositionIntegerValue;
Noise noiseY;
noiseY.noisePositionIntegerValue = (int)(noiseVectorY + s_perlinNoise);
noiseY.noisePositionFractionValue = (noiseVectorY + s_perlinNoise) - noiseY.noisePositionIntegerValue;
// If stitching, adjust lattice points accordingly.
if (stitchTiles) {
if (noiseX.noisePositionIntegerValue >= stitchData.wrapX)
noiseX.noisePositionIntegerValue -= stitchData.width;
if (noiseX.noisePositionIntegerValue >= stitchData.wrapX - 1)
noiseX.noisePositionIntegerValue -= stitchData.width - 1;
if (noiseY.noisePositionIntegerValue >= stitchData.wrapY)
noiseY.noisePositionIntegerValue -= stitchData.height;
if (noiseY.noisePositionIntegerValue >= stitchData.wrapY - 1)
noiseY.noisePositionIntegerValue -= stitchData.height - 1;
}
noiseX.noisePositionIntegerValue &= s_blockMask;
noiseY.noisePositionIntegerValue &= s_blockMask;
int latticeIndex = latticeSelector[noiseX.noisePositionIntegerValue];
int nextLatticeIndex = latticeSelector[(noiseX.noisePositionIntegerValue + 1) & s_blockMask];
float sx = noiseX.noisePositionFractionValue * noiseX.noisePositionFractionValue * (3 - 2 * noiseX.noisePositionFractionValue);
float sy = noiseY.noisePositionFractionValue * noiseY.noisePositionFractionValue * (3 - 2 * noiseY.noisePositionFractionValue);
// This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement.
int temp = latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue];
float u = noiseX.noisePositionFractionValue * component[temp * 2] + noiseY.noisePositionFractionValue * component[temp * 2 + 1];
temp = latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue];
float v = (noiseX.noisePositionFractionValue - 1) * component[temp * 2] + noiseY.noisePositionFractionValue * component[temp * 2 + 1];
float a = linearInterpolation(sx, u, v);
temp = latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue + 1];
u = noiseX.noisePositionFractionValue * component[temp * 2] + (noiseY.noisePositionFractionValue - 1) * component[temp * 2 + 1];
temp = latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue + 1];
v = (noiseX.noisePositionFractionValue - 1) * component[temp * 2] + (noiseY.noisePositionFractionValue - 1) * component[temp * 2 + 1];
float b = linearInterpolation(sx, u, v);
return linearInterpolation(sy, a, b);
}
__kernel void Turbulence(__write_only image2d_t destination, __constant float *transform, __constant float *redComponent,
__constant float *greenComponent, __constant float *blueComponent, __constant float *alphaComponent,
__constant int *latticeSelector, __private int offsetX, __private int offsetY, __private int tileWidth,
__private int tileHeight, __private float baseFrequencyX, __private float baseFrequencyY, __private int stitchTiles,
__private int numOctaves, __private int type, __private int filter_height)
{
StitchData stitchData = { 0, 0, 0, 0 };
// Adjust the base frequencies if necessary for stitching.
if (stitchTiles) {
// When stitching tiled turbulence, the frequencies must be adjusted
// so that the tile borders will be continuous.
if (baseFrequencyX) {
float lowFrequency = floor(tileWidth * baseFrequencyX) / tileWidth;
float highFrequency = ceil(tileWidth * baseFrequencyX) / tileWidth;
// BaseFrequency should be non-negative according to the standard.
baseFrequencyX = (baseFrequencyX / lowFrequency < highFrequency / baseFrequencyX) ? lowFrequency : highFrequency;
}
if (baseFrequencyY) {
float lowFrequency = floor(tileHeight * baseFrequencyY) / tileHeight;
float highFrequency = ceil(tileHeight * baseFrequencyY) / tileHeight;
baseFrequencyY = (baseFrequencyY / lowFrequency < highFrequency / baseFrequencyY) ? lowFrequency : highFrequency;
}
// Set up TurbulenceInitial stitch values.
stitchData.width = round(tileWidth * baseFrequencyX);
stitchData.wrapX = s_perlinNoise + stitchData.width;
stitchData.height = round(tileHeight * baseFrequencyY);
stitchData.wrapY = s_perlinNoise + stitchData.height;
}
float4 turbulenceFunctionResult = (float4)(0, 0, 0, 0);
float x = (get_global_id(0) + offsetX) * baseFrequencyX;
float y = (get_global_id(1) + offsetY) * baseFrequencyY;
float noiseVectorX = transform[0] * x + transform[2] * y + transform[4];
float noiseVectorY = transform[1] * x + transform[3] * y + transform[5];
float ratio = 1;
for (int octave = 0; octave < numOctaves; ++octave) {
float4 noise2DResult = (float4)( noise2D(redComponent, latticeSelector, stitchData, noiseVectorX, noiseVectorY, stitchTiles) / ratio,
noise2D(greenComponent, latticeSelector, stitchData, noiseVectorX, noiseVectorY, stitchTiles) / ratio,
noise2D(blueComponent, latticeSelector, stitchData, noiseVectorX, noiseVectorY, stitchTiles) / ratio,
noise2D(alphaComponent, latticeSelector, stitchData, noiseVectorX, noiseVectorY, stitchTiles) / ratio);
turbulenceFunctionResult += (type == 1) ? noise2DResult : fabs(noise2DResult);
noiseVectorX *= 2;
noiseVectorY *= 2;
ratio *= 2;
if (stitchTiles) {
// Update stitch values. Subtracting s_perlinNoiseoise before the multiplication and
// adding it afterward simplifies to subtracting it once.
stitchData.width *= 2;
stitchData.wrapX = 2 * stitchData.wrapX - s_perlinNoise;
stitchData.height *= 2;
stitchData.wrapY = 2 * stitchData.wrapY - s_perlinNoise;
}
}
if (type == 1)
turbulenceFunctionResult = mad(0.5f, turbulenceFunctionResult, 0.5f);
// Clamp result.
turbulenceFunctionResult = clamp(turbulenceFunctionResult, 0.0f, 1.0f);
write_imagef(destination, (int2)(get_global_id(0), get_global_id(1)), turbulenceFunctionResult);
}
); // End of OpenCL kernels
inline bool FilterContextOpenCL::compileFETurbulence()
{
if (m_turbulenceWasCompiled || inError())
return !inError();
m_turbulenceWasCompiled = true;
if (isResourceAllocationFailed((m_turbulenceProgram = compileProgram(turbulenceKernelProgram))))
return false;
if (isResourceAllocationFailed((m_turbulenceOperation = kernelByName(m_turbulenceProgram, "Turbulence"))))
return false;
return true;
}
inline void FilterContextOpenCL::applyFETurbulence(OpenCLHandle destination,
IntSize destinationSize, int totalBlockSize,
void* transform, void* redComponent, void* greenComponent,
void* blueComponent, void* alphaComponent,
int* latticeSelector, int offsetX, int offsetY, int tileWidth, int tileHeight,
float baseFrequencyX, float baseFrequencyY, bool stitchTiles, int numOctaves, int type)
{
RunKernel kernel(this, m_turbulenceOperation, destinationSize.width(), destinationSize.height());
kernel.addArgument(destination);
OpenCLHandle transformHandle(kernel.addArgument(transform, sizeof(float) * 6));
OpenCLHandle redComponentHandle(kernel.addArgument(redComponent, sizeof(float) * totalBlockSize * 2));
OpenCLHandle greenComponentHandle(kernel.addArgument(greenComponent, sizeof(float) * totalBlockSize * 2));
OpenCLHandle blueComponentHandle(kernel.addArgument(blueComponent, sizeof(float) * totalBlockSize * 2));
OpenCLHandle alphaComponentHandle(kernel.addArgument(alphaComponent, sizeof(float) * totalBlockSize * 2));
OpenCLHandle latticeSelectorHandle(kernel.addArgument(latticeSelector, sizeof(int) * totalBlockSize));
kernel.addArgument(offsetX);
kernel.addArgument(offsetY);
kernel.addArgument(tileWidth);
kernel.addArgument(tileHeight);
kernel.addArgument(baseFrequencyX);
kernel.addArgument(baseFrequencyY);
kernel.addArgument(stitchTiles);
kernel.addArgument(numOctaves);
kernel.addArgument(type);
kernel.addArgument(destinationSize.height());
kernel.run();
transformHandle.clear();
redComponentHandle.clear();
greenComponentHandle.clear();
blueComponentHandle.clear();
alphaComponentHandle.clear();
latticeSelectorHandle.clear();
}
bool FETurbulence::platformApplyOpenCL()
{
FilterContextOpenCL* context = FilterContextOpenCL::context();
if (!context)
return false;
if (!context->compileFETurbulence())
return true;
OpenCLHandle destination = createOpenCLImageResult();
PaintingData paintingData(m_seed, roundedIntSize(filterPrimitiveSubregion().size()));
initPaint(paintingData);
AffineTransform invertedTransform = reinterpret_cast<SVGFilter*>(filter())->absoluteTransform().inverse();
float transformComponents[6] = { invertedTransform.a(), invertedTransform.b(), invertedTransform.c(), invertedTransform.d(), invertedTransform.e(), invertedTransform.f() };
context->applyFETurbulence(destination, absolutePaintRect().size(), 2 * s_blockSize + 2, transformComponents, paintingData.gradient,
paintingData.gradient + 1, paintingData.gradient + 2, paintingData.gradient + 3, paintingData.latticeSelector,
absolutePaintRect().x(), absolutePaintRect().y(), paintingData.filterSize.width(), paintingData.filterSize.height(),
m_baseFrequencyX, m_baseFrequencyY, m_stitchTiles, m_numOctaves, m_type);
return true;
}
} // namespace WebCore
#endif // ENABLE(FILTERS) && ENABLE(OPENCL)
|