1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*
* Copyright (C) 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGCFGSimplificationPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractState.h"
#include "DFGBasicBlockInlines.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "DFGValidate.h"
#include "Operations.h"
namespace JSC { namespace DFG {
class CFGSimplificationPhase : public Phase {
public:
CFGSimplificationPhase(Graph& graph)
: Phase(graph, "CFG simplification")
{
}
bool run()
{
const bool extremeLogging = false;
bool outerChanged = false;
bool innerChanged;
do {
innerChanged = false;
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) {
BasicBlock* block = m_graph.m_blocks[blockIndex].get();
if (!block)
continue;
ASSERT(block->isReachable);
switch (block->last()->op()) {
case Jump: {
// Successor with one predecessor -> merge.
if (m_graph.m_blocks[m_graph.successor(block, 0)]->m_predecessors.size() == 1) {
ASSERT(m_graph.m_blocks[m_graph.successor(block, 0)]->m_predecessors[0]
== blockIndex);
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("CFGSimplify: Jump merge on Block #%u to Block #%u.\n",
blockIndex, m_graph.successor(block, 0));
#endif
if (extremeLogging)
m_graph.dump();
m_graph.dethread();
mergeBlocks(blockIndex, m_graph.successor(block, 0), NoBlock);
innerChanged = outerChanged = true;
break;
} else {
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("Not jump merging on Block #%u to Block #%u because predecessors = ",
blockIndex, m_graph.successor(block, 0));
for (unsigned i = 0; i < m_graph.m_blocks[m_graph.successor(block, 0)]->m_predecessors.size(); ++i) {
if (i)
dataLogF(", ");
dataLogF("#%u", m_graph.m_blocks[m_graph.successor(block, 0)]->m_predecessors[i]);
}
dataLogF(".\n");
#endif
}
// FIXME: Block only has a jump -> remove. This is tricky though because of
// liveness. What we really want is to slam in a phantom at the end of the
// block, after the terminal. But we can't right now. :-(
// Idea: what if I slam the ghosties into my successor? Nope, that's
// suboptimal, because if my successor has multiple predecessors then we'll
// be keeping alive things on other predecessor edges unnecessarily.
// What we really need is the notion of end-of-block ghosties!
break;
}
case Branch: {
// Branch on constant -> jettison the not-taken block and merge.
if (isKnownDirection(block->cfaBranchDirection)) {
bool condition = branchCondition(block->cfaBranchDirection);
BasicBlock* targetBlock = m_graph.m_blocks[
m_graph.successorForCondition(block, condition)].get();
if (targetBlock->m_predecessors.size() == 1) {
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("CFGSimplify: Known condition (%s) branch merge on Block #%u to Block #%u, jettisoning Block #%u.\n",
condition ? "true" : "false",
blockIndex, m_graph.successorForCondition(block, condition),
m_graph.successorForCondition(block, !condition));
#endif
if (extremeLogging)
m_graph.dump();
m_graph.dethread();
mergeBlocks(
blockIndex,
m_graph.successorForCondition(block, condition),
m_graph.successorForCondition(block, !condition));
} else {
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("CFGSimplify: Known condition (%s) branch->jump conversion on Block #%u to Block #%u, jettisoning Block #%u.\n",
condition ? "true" : "false",
blockIndex, m_graph.successorForCondition(block, condition),
m_graph.successorForCondition(block, !condition));
#endif
if (extremeLogging)
m_graph.dump();
m_graph.dethread();
BlockIndex takenBlockIndex = m_graph.successorForCondition(block, condition);
BlockIndex notTakenBlockIndex = m_graph.successorForCondition(block, !condition);
ASSERT(block->last()->isTerminal());
CodeOrigin boundaryCodeOrigin = block->last()->codeOrigin;
block->last()->convertToPhantom();
ASSERT(block->last()->refCount() == 1);
jettisonBlock(blockIndex, notTakenBlockIndex, boundaryCodeOrigin);
block->appendNode(
m_graph, SpecNone, Jump, boundaryCodeOrigin,
OpInfo(takenBlockIndex));
}
innerChanged = outerChanged = true;
break;
}
if (m_graph.successor(block, 0) == m_graph.successor(block, 1)) {
BlockIndex targetBlockIndex = m_graph.successor(block, 0);
BasicBlock* targetBlock = m_graph.m_blocks[targetBlockIndex].get();
ASSERT(targetBlock);
ASSERT(targetBlock->isReachable);
if (targetBlock->m_predecessors.size() == 1) {
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("CFGSimplify: Branch to same successor merge on Block #%u to Block #%u.\n",
blockIndex, targetBlockIndex);
#endif
m_graph.dethread();
mergeBlocks(blockIndex, targetBlockIndex, NoBlock);
} else {
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("CFGSimplify: Branch->jump conversion to same successor on Block #%u to Block #%u.\n",
blockIndex, targetBlockIndex);
#endif
Node* branch = block->last();
ASSERT(branch->isTerminal());
ASSERT(branch->op() == Branch);
branch->convertToPhantom();
ASSERT(branch->refCount() == 1);
block->appendNode(
m_graph, SpecNone, Jump, branch->codeOrigin,
OpInfo(targetBlockIndex));
}
innerChanged = outerChanged = true;
break;
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("Not branch simplifying on Block #%u because the successors differ and the condition is not known.\n",
blockIndex);
#endif
// Branch to same destination -> jump.
// FIXME: this will currently not be hit because of the lack of jump-only
// block simplification.
break;
}
default:
break;
}
}
if (innerChanged) {
// Here's the reason for this pass:
// Blocks: A, B, C, D, E, F
// A -> B, C
// B -> F
// C -> D, E
// D -> F
// E -> F
//
// Assume that A's branch is determined to go to B. Then the rest of this phase
// is smart enough to simplify down to:
// A -> B
// B -> F
// C -> D, E
// D -> F
// E -> F
//
// We will also merge A and B. But then we don't have any other mechanism to
// remove D, E as predecessors for F. Worse, the rest of this phase does not
// know how to fix the Phi functions of F to ensure that they no longer refer
// to variables in D, E. In general, we need a way to handle Phi simplification
// upon:
// 1) Removal of a predecessor due to branch simplification. The branch
// simplifier already does that.
// 2) Invalidation of a predecessor because said predecessor was rendered
// unreachable. We do this here.
//
// This implies that when a block is unreachable, we must inspect its
// successors' Phi functions to remove any references from them into the
// removed block.
m_graph.resetReachability();
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex) {
BasicBlock* block = m_graph.m_blocks[blockIndex].get();
if (!block)
continue;
if (block->isReachable)
continue;
killUnreachable(blockIndex);
}
}
if (Options::validateGraphAtEachPhase())
validate(m_graph);
} while (innerChanged);
return outerChanged;
}
private:
void killUnreachable(BlockIndex blockIndex)
{
BasicBlock* block = m_graph.m_blocks[blockIndex].get();
ASSERT(block);
ASSERT(!block->isReachable);
for (unsigned phiIndex = block->phis.size(); phiIndex--;)
m_graph.m_allocator.free(block->phis[phiIndex]);
for (unsigned nodeIndex = block->size(); nodeIndex--;)
m_graph.m_allocator.free(block->at(nodeIndex));
m_graph.m_blocks[blockIndex].clear();
}
void keepOperandAlive(BasicBlock* block, BasicBlock* jettisonedBlock, CodeOrigin codeOrigin, int operand)
{
Node* livenessNode = jettisonedBlock->variablesAtHead.operand(operand);
if (!livenessNode)
return;
if (livenessNode->variableAccessData()->isCaptured())
return;
block->appendNode(
m_graph, SpecNone, PhantomLocal, codeOrigin,
OpInfo(livenessNode->variableAccessData()));
}
void jettisonBlock(BlockIndex blockIndex, BlockIndex jettisonedBlockIndex, CodeOrigin boundaryCodeOrigin)
{
BasicBlock* block = m_graph.m_blocks[blockIndex].get();
BasicBlock* jettisonedBlock = m_graph.m_blocks[jettisonedBlockIndex].get();
for (size_t i = 0; i < jettisonedBlock->variablesAtHead.numberOfArguments(); ++i)
keepOperandAlive(block, jettisonedBlock, boundaryCodeOrigin, argumentToOperand(i));
for (size_t i = 0; i < jettisonedBlock->variablesAtHead.numberOfLocals(); ++i)
keepOperandAlive(block, jettisonedBlock, boundaryCodeOrigin, i);
fixJettisonedPredecessors(blockIndex, jettisonedBlockIndex);
}
void fixJettisonedPredecessors(BlockIndex blockIndex, BlockIndex jettisonedBlockIndex)
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("Fixing predecessors and phis due to jettison of Block #%u from Block #%u.\n",
jettisonedBlockIndex, blockIndex);
#endif
BasicBlock* jettisonedBlock = m_graph.m_blocks[jettisonedBlockIndex].get();
for (unsigned i = 0; i < jettisonedBlock->m_predecessors.size(); ++i) {
if (jettisonedBlock->m_predecessors[i] != blockIndex)
continue;
jettisonedBlock->m_predecessors[i] = jettisonedBlock->m_predecessors.last();
jettisonedBlock->m_predecessors.removeLast();
break;
}
}
void mergeBlocks(
BlockIndex firstBlockIndex, BlockIndex secondBlockIndex, BlockIndex jettisonedBlockIndex)
{
// This will add all of the nodes in secondBlock to firstBlock, but in so doing
// it will also ensure that any GetLocals from the second block that refer to
// SetLocals in the first block are relinked. If jettisonedBlock is not NoBlock,
// then Phantoms are inserted for anything that the jettisonedBlock would have
// kept alive.
BasicBlock* firstBlock = m_graph.m_blocks[firstBlockIndex].get();
BasicBlock* secondBlock = m_graph.m_blocks[secondBlockIndex].get();
// Remove the terminal of firstBlock since we don't need it anymore. Well, we don't
// really remove it; we actually turn it into a Phantom.
ASSERT(firstBlock->last()->isTerminal());
CodeOrigin boundaryCodeOrigin = firstBlock->last()->codeOrigin;
firstBlock->last()->convertToPhantom();
ASSERT(firstBlock->last()->refCount() == 1);
if (jettisonedBlockIndex != NoBlock) {
BasicBlock* jettisonedBlock = m_graph.m_blocks[jettisonedBlockIndex].get();
// Time to insert ghosties for things that need to be kept alive in case we OSR
// exit prior to hitting the firstBlock's terminal, and end up going down a
// different path than secondBlock.
for (size_t i = 0; i < jettisonedBlock->variablesAtHead.numberOfArguments(); ++i)
keepOperandAlive(firstBlock, jettisonedBlock, boundaryCodeOrigin, argumentToOperand(i));
for (size_t i = 0; i < jettisonedBlock->variablesAtHead.numberOfLocals(); ++i)
keepOperandAlive(firstBlock, jettisonedBlock, boundaryCodeOrigin, i);
}
for (size_t i = 0; i < secondBlock->phis.size(); ++i)
firstBlock->phis.append(secondBlock->phis[i]);
for (size_t i = 0; i < secondBlock->size(); ++i)
firstBlock->append(secondBlock->at(i));
ASSERT(firstBlock->last()->isTerminal());
// Fix the predecessors of my new successors. This is tricky, since we are going to reset
// all predecessors anyway due to reachability analysis. But we need to fix the
// predecessors eagerly to ensure that we know what they are in case the next block we
// consider in this phase wishes to query the predecessors of one of the blocks we
// affected.
for (unsigned i = m_graph.numSuccessors(firstBlock); i--;) {
BasicBlock* successor = m_graph.m_blocks[m_graph.successor(firstBlock, i)].get();
for (unsigned j = 0; j < successor->m_predecessors.size(); ++j) {
if (successor->m_predecessors[j] == secondBlockIndex)
successor->m_predecessors[j] = firstBlockIndex;
}
}
// Fix the predecessors of my former successors. Again, we'd rather not do this, but it's
// an unfortunate necessity. See above comment.
if (jettisonedBlockIndex != NoBlock)
fixJettisonedPredecessors(firstBlockIndex, jettisonedBlockIndex);
firstBlock->valuesAtTail = secondBlock->valuesAtTail;
firstBlock->cfaBranchDirection = secondBlock->cfaBranchDirection;
m_graph.m_blocks[secondBlockIndex].clear();
}
};
bool performCFGSimplification(Graph& graph)
{
SamplingRegion samplingRegion("DFG CFG Simplification Phase");
return runPhase<CFGSimplificationPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|