1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
/*
* Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGGraph_h
#define DFGGraph_h
#include <wtf/Platform.h>
#if ENABLE(DFG_JIT)
#include "CodeBlock.h"
#include "DFGArgumentPosition.h"
#include "DFGAssemblyHelpers.h"
#include "DFGBasicBlock.h"
#include "DFGDominators.h"
#include "DFGLongLivedState.h"
#include "DFGNode.h"
#include "DFGNodeAllocator.h"
#include "DFGVariadicFunction.h"
#include "JSStack.h"
#include "MethodOfGettingAValueProfile.h"
#include <wtf/BitVector.h>
#include <wtf/HashMap.h>
#include <wtf/Vector.h>
#include <wtf/StdLibExtras.h>
namespace JSC {
class CodeBlock;
class ExecState;
namespace DFG {
struct StorageAccessData {
size_t offset;
unsigned identifierNumber;
};
struct ResolveGlobalData {
unsigned identifierNumber;
ResolveOperations* resolveOperations;
PutToBaseOperation* putToBaseOperation;
unsigned resolvePropertyIndex;
};
struct ResolveOperationData {
unsigned identifierNumber;
ResolveOperations* resolveOperations;
PutToBaseOperation* putToBaseOperation;
};
struct PutToBaseOperationData {
PutToBaseOperation* putToBaseOperation;
};
enum AddSpeculationMode {
DontSpeculateInteger,
SpeculateIntegerAndTruncateConstants,
SpeculateInteger
};
//
// === Graph ===
//
// The order may be significant for nodes with side-effects (property accesses, value conversions).
// Nodes that are 'dead' remain in the vector with refCount 0.
class Graph {
public:
Graph(VM&, CodeBlock*, unsigned osrEntryBytecodeIndex, const Operands<JSValue>& mustHandleValues);
~Graph();
void changeChild(Edge& edge, Node* newNode)
{
edge.setNode(newNode);
}
void changeEdge(Edge& edge, Edge newEdge)
{
edge = newEdge;
}
void compareAndSwap(Edge& edge, Node* oldNode, Node* newNode)
{
if (edge.node() != oldNode)
return;
changeChild(edge, newNode);
}
void compareAndSwap(Edge& edge, Edge oldEdge, Edge newEdge)
{
if (edge != oldEdge)
return;
changeEdge(edge, newEdge);
}
void clearAndDerefChild(Node* node, unsigned index)
{
if (!node->children.child(index))
return;
node->children.setChild(index, Edge());
}
void clearAndDerefChild1(Node* node) { clearAndDerefChild(node, 0); }
void clearAndDerefChild2(Node* node) { clearAndDerefChild(node, 1); }
void clearAndDerefChild3(Node* node) { clearAndDerefChild(node, 2); }
void performSubstitution(Node* node)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); childIdx++)
performSubstitutionForEdge(m_varArgChildren[childIdx]);
} else {
performSubstitutionForEdge(node->child1());
performSubstitutionForEdge(node->child2());
performSubstitutionForEdge(node->child3());
}
}
void performSubstitutionForEdge(Edge& child)
{
// Check if this operand is actually unused.
if (!child)
return;
// Check if there is any replacement.
Node* replacement = child->replacement;
if (!replacement)
return;
child.setNode(replacement);
// There is definitely a replacement. Assert that the replacement does not
// have a replacement.
ASSERT(!child->replacement);
}
#define DFG_DEFINE_ADD_NODE(templatePre, templatePost, typeParams, valueParamsComma, valueParams, valueArgs) \
templatePre typeParams templatePost Node* addNode(SpeculatedType type valueParamsComma valueParams) \
{ \
Node* node = new (m_allocator) Node(valueArgs); \
node->predict(type); \
return node; \
}
DFG_VARIADIC_TEMPLATE_FUNCTION(DFG_DEFINE_ADD_NODE)
#undef DFG_DEFINE_ADD_NODE
void dethread();
void convertToConstant(Node* node, unsigned constantNumber)
{
if (node->op() == GetLocal)
dethread();
else
ASSERT(!node->hasVariableAccessData());
node->convertToConstant(constantNumber);
}
void convertToConstant(Node* node, JSValue value)
{
convertToConstant(node, m_codeBlock->addOrFindConstant(value));
}
// CodeBlock is optional, but may allow additional information to be dumped (e.g. Identifier names).
void dump(PrintStream& = WTF::dataFile());
enum PhiNodeDumpMode { DumpLivePhisOnly, DumpAllPhis };
void dumpBlockHeader(PrintStream&, const char* prefix, BlockIndex, PhiNodeDumpMode);
void dump(PrintStream&, Edge);
void dump(PrintStream&, const char* prefix, Node*);
static int amountOfNodeWhiteSpace(Node*);
static void printNodeWhiteSpace(PrintStream&, Node*);
// Dump the code origin of the given node as a diff from the code origin of the
// preceding node. Returns true if anything was printed.
bool dumpCodeOrigin(PrintStream&, const char* prefix, Node* previousNode, Node* currentNode);
BlockIndex blockIndexForBytecodeOffset(Vector<BlockIndex>& blocks, unsigned bytecodeBegin);
SpeculatedType getJSConstantSpeculation(Node* node)
{
return speculationFromValue(node->valueOfJSConstant(m_codeBlock));
}
AddSpeculationMode addSpeculationMode(Node* add, bool leftShouldSpeculateInteger, bool rightShouldSpeculateInteger)
{
ASSERT(add->op() == ValueAdd || add->op() == ArithAdd || add->op() == ArithSub);
Node* left = add->child1().node();
Node* right = add->child2().node();
if (left->hasConstant())
return addImmediateShouldSpeculateInteger(add, rightShouldSpeculateInteger, left);
if (right->hasConstant())
return addImmediateShouldSpeculateInteger(add, leftShouldSpeculateInteger, right);
return (leftShouldSpeculateInteger && rightShouldSpeculateInteger && add->canSpeculateInteger()) ? SpeculateInteger : DontSpeculateInteger;
}
AddSpeculationMode valueAddSpeculationMode(Node* add)
{
return addSpeculationMode(add, add->child1()->shouldSpeculateIntegerExpectingDefined(), add->child2()->shouldSpeculateIntegerExpectingDefined());
}
AddSpeculationMode arithAddSpeculationMode(Node* add)
{
return addSpeculationMode(add, add->child1()->shouldSpeculateIntegerForArithmetic(), add->child2()->shouldSpeculateIntegerForArithmetic());
}
AddSpeculationMode addSpeculationMode(Node* add)
{
if (add->op() == ValueAdd)
return valueAddSpeculationMode(add);
return arithAddSpeculationMode(add);
}
bool addShouldSpeculateInteger(Node* add)
{
return addSpeculationMode(add) != DontSpeculateInteger;
}
bool mulShouldSpeculateInteger(Node* mul)
{
ASSERT(mul->op() == ArithMul);
Node* left = mul->child1().node();
Node* right = mul->child2().node();
return Node::shouldSpeculateIntegerForArithmetic(left, right) && mul->canSpeculateInteger();
}
bool negateShouldSpeculateInteger(Node* negate)
{
ASSERT(negate->op() == ArithNegate);
return negate->child1()->shouldSpeculateIntegerForArithmetic() && negate->canSpeculateInteger();
}
// Helper methods to check nodes for constants.
bool isConstant(Node* node)
{
return node->hasConstant();
}
bool isJSConstant(Node* node)
{
return node->hasConstant();
}
bool isInt32Constant(Node* node)
{
return node->isInt32Constant(m_codeBlock);
}
bool isDoubleConstant(Node* node)
{
return node->isDoubleConstant(m_codeBlock);
}
bool isNumberConstant(Node* node)
{
return node->isNumberConstant(m_codeBlock);
}
bool isBooleanConstant(Node* node)
{
return node->isBooleanConstant(m_codeBlock);
}
bool isCellConstant(Node* node)
{
if (!isJSConstant(node))
return false;
JSValue value = valueOfJSConstant(node);
return value.isCell() && !!value;
}
bool isFunctionConstant(Node* node)
{
if (!isJSConstant(node))
return false;
if (!getJSFunction(valueOfJSConstant(node)))
return false;
return true;
}
bool isInternalFunctionConstant(Node* node)
{
if (!isJSConstant(node))
return false;
JSValue value = valueOfJSConstant(node);
if (!value.isCell() || !value)
return false;
JSCell* cell = value.asCell();
if (!cell->inherits(&InternalFunction::s_info))
return false;
return true;
}
// Helper methods get constant values from nodes.
JSValue valueOfJSConstant(Node* node)
{
return node->valueOfJSConstant(m_codeBlock);
}
int32_t valueOfInt32Constant(Node* node)
{
return valueOfJSConstant(node).asInt32();
}
double valueOfNumberConstant(Node* node)
{
return valueOfJSConstant(node).asNumber();
}
bool valueOfBooleanConstant(Node* node)
{
return valueOfJSConstant(node).asBoolean();
}
JSFunction* valueOfFunctionConstant(Node* node)
{
JSCell* function = getJSFunction(valueOfJSConstant(node));
ASSERT(function);
return jsCast<JSFunction*>(function);
}
static const char *opName(NodeType);
StructureSet* addStructureSet(const StructureSet& structureSet)
{
ASSERT(structureSet.size());
m_structureSet.append(structureSet);
return &m_structureSet.last();
}
StructureTransitionData* addStructureTransitionData(const StructureTransitionData& structureTransitionData)
{
m_structureTransitionData.append(structureTransitionData);
return &m_structureTransitionData.last();
}
JSGlobalObject* globalObjectFor(CodeOrigin codeOrigin)
{
return m_codeBlock->globalObjectFor(codeOrigin);
}
JSObject* globalThisObjectFor(CodeOrigin codeOrigin)
{
JSGlobalObject* object = globalObjectFor(codeOrigin);
return object->methodTable()->toThisObject(object, 0);
}
ExecutableBase* executableFor(InlineCallFrame* inlineCallFrame)
{
if (!inlineCallFrame)
return m_codeBlock->ownerExecutable();
return inlineCallFrame->executable.get();
}
ExecutableBase* executableFor(const CodeOrigin& codeOrigin)
{
return executableFor(codeOrigin.inlineCallFrame);
}
CodeBlock* baselineCodeBlockFor(const CodeOrigin& codeOrigin)
{
return baselineCodeBlockForOriginAndBaselineCodeBlock(codeOrigin, m_profiledBlock);
}
bool hasGlobalExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(exitKind));
}
bool hasExitSite(const CodeOrigin& codeOrigin, ExitKind exitKind)
{
return baselineCodeBlockFor(codeOrigin)->hasExitSite(FrequentExitSite(codeOrigin.bytecodeIndex, exitKind));
}
int argumentsRegisterFor(const CodeOrigin& codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return m_codeBlock->argumentsRegister();
return baselineCodeBlockForInlineCallFrame(
codeOrigin.inlineCallFrame)->argumentsRegister() +
codeOrigin.inlineCallFrame->stackOffset;
}
int uncheckedArgumentsRegisterFor(const CodeOrigin& codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return m_codeBlock->uncheckedArgumentsRegister();
CodeBlock* codeBlock = baselineCodeBlockForInlineCallFrame(
codeOrigin.inlineCallFrame);
if (!codeBlock->usesArguments())
return InvalidVirtualRegister;
return codeBlock->argumentsRegister() +
codeOrigin.inlineCallFrame->stackOffset;
}
int uncheckedActivationRegisterFor(const CodeOrigin&)
{
// This will ignore CodeOrigin because we don't inline code that uses activations.
// Hence for inlined call frames it will return the outermost code block's
// activation register. This method is only used to compare the result to a local
// to see if we're mucking with the activation register. Hence if we return the
// "wrong" activation register for the frame then it will compare false, which is
// what we wanted.
return m_codeBlock->uncheckedActivationRegister();
}
ValueProfile* valueProfileFor(Node* node)
{
if (!node)
return 0;
CodeBlock* profiledBlock = baselineCodeBlockFor(node->codeOrigin);
if (node->hasLocal()) {
if (!operandIsArgument(node->local()))
return 0;
int argument = operandToArgument(node->local());
if (node->variableAccessData() != m_arguments[argument]->variableAccessData())
return 0;
return profiledBlock->valueProfileForArgument(argument);
}
if (node->hasHeapPrediction())
return profiledBlock->valueProfileForBytecodeOffset(node->codeOrigin.bytecodeIndexForValueProfile());
return 0;
}
MethodOfGettingAValueProfile methodOfGettingAValueProfileFor(Node* node)
{
if (!node)
return MethodOfGettingAValueProfile();
CodeBlock* profiledBlock = baselineCodeBlockFor(node->codeOrigin);
if (node->op() == GetLocal) {
return MethodOfGettingAValueProfile::fromLazyOperand(
profiledBlock,
LazyOperandValueProfileKey(
node->codeOrigin.bytecodeIndex, node->local()));
}
return MethodOfGettingAValueProfile(valueProfileFor(node));
}
bool needsActivation() const
{
return m_codeBlock->needsFullScopeChain() && m_codeBlock->codeType() != GlobalCode;
}
bool usesArguments() const
{
return m_codeBlock->usesArguments();
}
unsigned numSuccessors(BasicBlock* block)
{
return block->last()->numSuccessors();
}
BlockIndex successor(BasicBlock* block, unsigned index)
{
return block->last()->successor(index);
}
BlockIndex successorForCondition(BasicBlock* block, bool condition)
{
return block->last()->successorForCondition(condition);
}
bool isPredictedNumerical(Node* node)
{
return isNumerical(node->child1().useKind()) && isNumerical(node->child2().useKind());
}
// Note that a 'true' return does not actually mean that the ByVal access clobbers nothing.
// It really means that it will not clobber the entire world. It's still up to you to
// carefully consider things like:
// - PutByVal definitely changes the array it stores to, and may even change its length.
// - PutByOffset definitely changes the object it stores to.
// - and so on.
bool byValIsPure(Node* node)
{
switch (node->arrayMode().type()) {
case Array::Generic:
return false;
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage:
return !node->arrayMode().isOutOfBounds();
case Array::SlowPutArrayStorage:
return !node->arrayMode().mayStoreToHole();
case Array::String:
return node->op() == GetByVal;
#if USE(JSVALUE32_64)
case Array::Arguments:
if (node->op() == GetByVal)
return true;
return false;
#endif // USE(JSVALUE32_64)
default:
return true;
}
}
bool clobbersWorld(Node* node)
{
if (node->flags() & NodeClobbersWorld)
return true;
if (!(node->flags() & NodeMightClobber))
return false;
switch (node->op()) {
case ValueAdd:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
return !isPredictedNumerical(node);
case GetByVal:
case PutByVal:
case PutByValAlias:
return !byValIsPure(node);
case ToString:
switch (node->child1().useKind()) {
case StringObjectUse:
case StringOrStringObjectUse:
return false;
case CellUse:
case UntypedUse:
return true;
default:
RELEASE_ASSERT_NOT_REACHED();
return true;
}
default:
RELEASE_ASSERT_NOT_REACHED();
return true; // If by some oddity we hit this case in release build it's safer to have CSE assume the worst.
}
}
void determineReachability();
void resetReachability();
void resetExitStates();
unsigned varArgNumChildren(Node* node)
{
ASSERT(node->flags() & NodeHasVarArgs);
return node->numChildren();
}
unsigned numChildren(Node* node)
{
if (node->flags() & NodeHasVarArgs)
return varArgNumChildren(node);
return AdjacencyList::Size;
}
Edge& varArgChild(Node* node, unsigned index)
{
ASSERT(node->flags() & NodeHasVarArgs);
return m_varArgChildren[node->firstChild() + index];
}
Edge& child(Node* node, unsigned index)
{
if (node->flags() & NodeHasVarArgs)
return varArgChild(node, index);
return node->children.child(index);
}
void voteNode(Node* node, unsigned ballot)
{
switch (node->op()) {
case ValueToInt32:
case UInt32ToNumber:
node = node->child1().node();
break;
default:
break;
}
if (node->op() == GetLocal)
node->variableAccessData()->vote(ballot);
}
void voteNode(Edge edge, unsigned ballot)
{
voteNode(edge.node(), ballot);
}
void voteChildren(Node* node, unsigned ballot)
{
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild();
childIdx < node->firstChild() + node->numChildren();
childIdx++) {
if (!!m_varArgChildren[childIdx])
voteNode(m_varArgChildren[childIdx], ballot);
}
return;
}
if (!node->child1())
return;
voteNode(node->child1(), ballot);
if (!node->child2())
return;
voteNode(node->child2(), ballot);
if (!node->child3())
return;
voteNode(node->child3(), ballot);
}
template<typename T> // T = Node* or Edge
void substitute(BasicBlock& block, unsigned startIndexInBlock, T oldThing, T newThing)
{
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
if (node->flags() & NodeHasVarArgs) {
for (unsigned childIdx = node->firstChild(); childIdx < node->firstChild() + node->numChildren(); ++childIdx) {
if (!!m_varArgChildren[childIdx])
compareAndSwap(m_varArgChildren[childIdx], oldThing, newThing);
}
continue;
}
if (!node->child1())
continue;
compareAndSwap(node->children.child1(), oldThing, newThing);
if (!node->child2())
continue;
compareAndSwap(node->children.child2(), oldThing, newThing);
if (!node->child3())
continue;
compareAndSwap(node->children.child3(), oldThing, newThing);
}
}
// Use this if you introduce a new GetLocal and you know that you introduced it *before*
// any GetLocals in the basic block.
// FIXME: it may be appropriate, in the future, to generalize this to handle GetLocals
// introduced anywhere in the basic block.
void substituteGetLocal(BasicBlock& block, unsigned startIndexInBlock, VariableAccessData* variableAccessData, Node* newGetLocal)
{
if (variableAccessData->isCaptured()) {
// Let CSE worry about this one.
return;
}
for (unsigned indexInBlock = startIndexInBlock; indexInBlock < block.size(); ++indexInBlock) {
Node* node = block[indexInBlock];
bool shouldContinue = true;
switch (node->op()) {
case SetLocal: {
if (node->local() == variableAccessData->local())
shouldContinue = false;
break;
}
case GetLocal: {
if (node->variableAccessData() != variableAccessData)
continue;
substitute(block, indexInBlock, node, newGetLocal);
Node* oldTailNode = block.variablesAtTail.operand(variableAccessData->local());
if (oldTailNode == node)
block.variablesAtTail.operand(variableAccessData->local()) = newGetLocal;
shouldContinue = false;
break;
}
default:
break;
}
if (!shouldContinue)
break;
}
}
VM& m_vm;
CodeBlock* m_codeBlock;
RefPtr<Profiler::Compilation> m_compilation;
CodeBlock* m_profiledBlock;
NodeAllocator& m_allocator;
Vector< OwnPtr<BasicBlock> , 8> m_blocks;
Vector<Edge, 16> m_varArgChildren;
Vector<StorageAccessData> m_storageAccessData;
Vector<ResolveGlobalData> m_resolveGlobalData;
Vector<ResolveOperationData> m_resolveOperationsData;
Vector<PutToBaseOperationData> m_putToBaseOperationData;
Vector<Node*, 8> m_arguments;
SegmentedVector<VariableAccessData, 16> m_variableAccessData;
SegmentedVector<ArgumentPosition, 8> m_argumentPositions;
SegmentedVector<StructureSet, 16> m_structureSet;
SegmentedVector<StructureTransitionData, 8> m_structureTransitionData;
SegmentedVector<NewArrayBufferData, 4> m_newArrayBufferData;
bool m_hasArguments;
HashSet<ExecutableBase*> m_executablesWhoseArgumentsEscaped;
BitVector m_preservedVars;
Dominators m_dominators;
unsigned m_localVars;
unsigned m_parameterSlots;
unsigned m_osrEntryBytecodeIndex;
Operands<JSValue> m_mustHandleValues;
OptimizationFixpointState m_fixpointState;
GraphForm m_form;
UnificationState m_unificationState;
RefCountState m_refCountState;
private:
void handleSuccessor(Vector<BlockIndex, 16>& worklist, BlockIndex blockIndex, BlockIndex successorIndex);
AddSpeculationMode addImmediateShouldSpeculateInteger(Node* add, bool variableShouldSpeculateInteger, Node* immediate)
{
ASSERT(immediate->hasConstant());
JSValue immediateValue = immediate->valueOfJSConstant(m_codeBlock);
if (!immediateValue.isNumber())
return DontSpeculateInteger;
if (!variableShouldSpeculateInteger)
return DontSpeculateInteger;
if (immediateValue.isInt32())
return add->canSpeculateInteger() ? SpeculateInteger : DontSpeculateInteger;
double doubleImmediate = immediateValue.asDouble();
const double twoToThe48 = 281474976710656.0;
if (doubleImmediate < -twoToThe48 || doubleImmediate > twoToThe48)
return DontSpeculateInteger;
return nodeCanTruncateInteger(add->arithNodeFlags()) ? SpeculateIntegerAndTruncateConstants : DontSpeculateInteger;
}
bool mulImmediateShouldSpeculateInteger(Node* mul, Node* variable, Node* immediate)
{
ASSERT(immediate->hasConstant());
JSValue immediateValue = immediate->valueOfJSConstant(m_codeBlock);
if (!immediateValue.isInt32())
return false;
if (!variable->shouldSpeculateIntegerForArithmetic())
return false;
int32_t intImmediate = immediateValue.asInt32();
// Doubles have a 53 bit mantissa so we expect a multiplication of 2^31 (the highest
// magnitude possible int32 value) and any value less than 2^22 to not result in any
// rounding in a double multiplication - hence it will be equivalent to an integer
// multiplication, if we are doing int32 truncation afterwards (which is what
// canSpeculateInteger() implies).
const int32_t twoToThe22 = 1 << 22;
if (intImmediate <= -twoToThe22 || intImmediate >= twoToThe22)
return mul->canSpeculateInteger() && !nodeMayOverflow(mul->arithNodeFlags());
return mul->canSpeculateInteger();
}
};
class GetBytecodeBeginForBlock {
public:
GetBytecodeBeginForBlock(Graph& graph)
: m_graph(graph)
{
}
unsigned operator()(BlockIndex* blockIndex) const
{
return m_graph.m_blocks[*blockIndex]->bytecodeBegin;
}
private:
Graph& m_graph;
};
inline BlockIndex Graph::blockIndexForBytecodeOffset(Vector<BlockIndex>& linkingTargets, unsigned bytecodeBegin)
{
return *binarySearch<BlockIndex, unsigned>(linkingTargets, linkingTargets.size(), bytecodeBegin, GetBytecodeBeginForBlock(*this));
}
#define DFG_NODE_DO_TO_CHILDREN(graph, node, thingToDo) do { \
Node* _node = (node); \
if (_node->flags() & NodeHasVarArgs) { \
for (unsigned _childIdx = _node->firstChild(); \
_childIdx < _node->firstChild() + _node->numChildren(); \
_childIdx++) { \
if (!!(graph).m_varArgChildren[_childIdx]) \
thingToDo(_node, (graph).m_varArgChildren[_childIdx]); \
} \
} else { \
if (!_node->child1()) { \
ASSERT( \
!_node->child2() \
&& !_node->child3()); \
break; \
} \
thingToDo(_node, _node->child1()); \
\
if (!_node->child2()) { \
ASSERT(!_node->child3()); \
break; \
} \
thingToDo(_node, _node->child2()); \
\
if (!_node->child3()) \
break; \
thingToDo(_node, _node->child3()); \
} \
} while (false)
} } // namespace JSC::DFG
#endif
#endif
|