1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
/*
* Copyright (C) 2011, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGOSRExitCompiler.h"
#if ENABLE(DFG_JIT) && USE(JSVALUE64)
#include "DFGOperations.h"
#include "Operations.h"
#include <wtf/DataLog.h>
namespace JSC { namespace DFG {
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
// 1) Pro-forma stuff.
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLogF("OSR exit for (");
for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) {
dataLogF("bc#%u", codeOrigin.bytecodeIndex);
if (!codeOrigin.inlineCallFrame)
break;
dataLogF(" -> %p ", codeOrigin.inlineCallFrame->executable.get());
}
dataLogF(") ");
dumpOperands(operands, WTF::dataFile());
#endif
if (Options::printEachOSRExit()) {
SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
debugInfo->codeBlock = m_jit.codeBlock();
m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
}
#if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE)
m_jit.breakpoint();
#endif
#if DFG_ENABLE(SUCCESS_STATS)
static SamplingCounter counter("SpeculationFailure");
m_jit.emitCount(counter);
#endif
// 2) Perform speculation recovery. This only comes into play when an operation
// starts mutating state before verifying the speculation it has already made.
GPRReg alreadyBoxed = InvalidGPRReg;
if (recovery) {
switch (recovery->type()) {
case SpeculativeAdd:
m_jit.sub32(recovery->src(), recovery->dest());
m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest());
alreadyBoxed = recovery->dest();
break;
case BooleanSpeculationCheck:
m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
break;
default:
break;
}
}
// 3) Refine some array and/or value profile, if appropriate.
if (!!exit.m_jsValueSource) {
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
// If the instruction that this originated from has an array profile, then
// refine it. If it doesn't, then do nothing. The latter could happen for
// hoisted checks, or checks emitted for operations that didn't have array
// profiling - either ops that aren't array accesses at all, or weren't
// known to be array acceses in the bytecode. The latter case is a FIXME
// while the former case is an outcome of a CheckStructure not knowing why
// it was emitted (could be either due to an inline cache of a property
// property access, or due to an array profile).
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
GPRReg usedRegister;
if (exit.m_jsValueSource.isAddress())
usedRegister = exit.m_jsValueSource.base();
else
usedRegister = exit.m_jsValueSource.gpr();
GPRReg scratch1;
GPRReg scratch2;
scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister);
scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1);
m_jit.push(scratch1);
m_jit.push(scratch2);
GPRReg value;
if (exit.m_jsValueSource.isAddress()) {
value = scratch1;
m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
} else
value = exit.m_jsValueSource.gpr();
m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureOffset()), scratch1);
m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructure());
m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1);
m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
m_jit.lshift32(scratch1, scratch2);
m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
m_jit.pop(scratch2);
m_jit.pop(scratch1);
}
}
if (!!exit.m_valueProfile) {
EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
if (exit.m_jsValueSource.isAddress()) {
// We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
// since we know how to restore it.
m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket);
m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
} else
m_jit.store64(exit.m_jsValueSource.gpr(), bucket);
}
}
// 4) Figure out how many scratch slots we'll need. We need one for every GPR/FPR
// whose destination is now occupied by a DFG virtual register, and we need
// one for every displaced virtual register if there are more than
// GPRInfo::numberOfRegisters of them. Also see if there are any constants,
// any undefined slots, any FPR slots, and any unboxed ints.
Vector<bool> poisonedVirtualRegisters(operands.numberOfLocals());
for (unsigned i = 0; i < poisonedVirtualRegisters.size(); ++i)
poisonedVirtualRegisters[i] = false;
unsigned numberOfPoisonedVirtualRegisters = 0;
unsigned numberOfDisplacedVirtualRegisters = 0;
// Booleans for fast checks. We expect that most OSR exits do not have to rebox
// Int32s, have no FPRs, and have no constants. If there are constants, we
// expect most of them to be jsUndefined(); if that's true then we handle that
// specially to minimize code size and execution time.
bool haveUnboxedInt32s = false;
bool haveUnboxedDoubles = false;
bool haveFPRs = false;
bool haveConstants = false;
bool haveUndefined = false;
bool haveUInt32s = false;
bool haveArguments = false;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case Int32DisplacedInJSStack:
case DoubleDisplacedInJSStack:
case DisplacedInJSStack:
numberOfDisplacedVirtualRegisters++;
ASSERT((int)recovery.virtualRegister() >= 0);
// See if we might like to store to this virtual register before doing
// virtual register shuffling. If so, we say that the virtual register
// is poisoned: it cannot be stored to until after displaced virtual
// registers are handled. We track poisoned virtual register carefully
// to ensure this happens efficiently. Note that we expect this case
// to be rare, so the handling of it is optimized for the cases in
// which it does not happen.
if (recovery.virtualRegister() < (int)operands.numberOfLocals()) {
switch (operands.local(recovery.virtualRegister()).technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
case InFPR:
if (!poisonedVirtualRegisters[recovery.virtualRegister()]) {
poisonedVirtualRegisters[recovery.virtualRegister()] = true;
numberOfPoisonedVirtualRegisters++;
}
break;
default:
break;
}
}
break;
case UnboxedInt32InGPR:
case AlreadyInJSStackAsUnboxedInt32:
haveUnboxedInt32s = true;
break;
case AlreadyInJSStackAsUnboxedDouble:
haveUnboxedDoubles = true;
break;
case UInt32InGPR:
haveUInt32s = true;
break;
case InFPR:
haveFPRs = true;
break;
case Constant:
haveConstants = true;
if (recovery.constant().isUndefined())
haveUndefined = true;
break;
case ArgumentsThatWereNotCreated:
haveArguments = true;
break;
default:
break;
}
}
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLogF(" ");
if (numberOfPoisonedVirtualRegisters)
dataLogF("Poisoned=%u ", numberOfPoisonedVirtualRegisters);
if (numberOfDisplacedVirtualRegisters)
dataLogF("Displaced=%u ", numberOfDisplacedVirtualRegisters);
if (haveUnboxedInt32s)
dataLogF("UnboxedInt32 ");
if (haveUnboxedDoubles)
dataLogF("UnboxedDoubles ");
if (haveUInt32s)
dataLogF("UInt32 ");
if (haveFPRs)
dataLogF("FPR ");
if (haveConstants)
dataLogF("Constants ");
if (haveUndefined)
dataLogF("Undefined ");
dataLogF(" ");
#endif
ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * std::max(haveUInt32s ? 2u : 0u, numberOfPoisonedVirtualRegisters + (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters ? 0 : numberOfDisplacedVirtualRegisters)));
EncodedJSValue* scratchDataBuffer = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
// From here on, the code assumes that it is profitable to maximize the distance
// between when something is computed and when it is stored.
// 5) Perform all reboxing of integers.
if (haveUnboxedInt32s || haveUInt32s) {
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case UnboxedInt32InGPR:
if (recovery.gpr() != alreadyBoxed)
m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery.gpr());
break;
case AlreadyInJSStackAsUnboxedInt32:
m_jit.store32(AssemblyHelpers::TrustedImm32(static_cast<uint32_t>(TagTypeNumber >> 32)), AssemblyHelpers::tagFor(static_cast<VirtualRegister>(operands.operandForIndex(index))));
break;
case UInt32InGPR: {
// This occurs when the speculative JIT left an unsigned 32-bit integer
// in a GPR. If it's positive, we can just box the int. Otherwise we
// need to turn it into a boxed double.
// We don't try to be clever with register allocation here; we assume
// that the program is using FPRs and we don't try to figure out which
// ones it is using. Instead just temporarily save fpRegT0 and then
// restore it. This makes sense because this path is not cheap to begin
// with, and should happen very rarely.
GPRReg addressGPR = GPRInfo::regT0;
if (addressGPR == recovery.gpr())
addressGPR = GPRInfo::regT1;
m_jit.store64(addressGPR, scratchDataBuffer);
m_jit.move(AssemblyHelpers::TrustedImmPtr(scratchDataBuffer + 1), addressGPR);
m_jit.storeDouble(FPRInfo::fpRegT0, addressGPR);
AssemblyHelpers::Jump positive = m_jit.branch32(AssemblyHelpers::GreaterThanOrEqual, recovery.gpr(), AssemblyHelpers::TrustedImm32(0));
m_jit.convertInt32ToDouble(recovery.gpr(), FPRInfo::fpRegT0);
m_jit.addDouble(AssemblyHelpers::AbsoluteAddress(&AssemblyHelpers::twoToThe32), FPRInfo::fpRegT0);
m_jit.boxDouble(FPRInfo::fpRegT0, recovery.gpr());
AssemblyHelpers::Jump done = m_jit.jump();
positive.link(&m_jit);
m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery.gpr());
done.link(&m_jit);
m_jit.loadDouble(addressGPR, FPRInfo::fpRegT0);
m_jit.load64(scratchDataBuffer, addressGPR);
break;
}
default:
break;
}
}
}
// 6) Dump all non-poisoned GPRs. For poisoned GPRs, save them into the scratch storage.
// Note that GPRs do not have a fast change (like haveFPRs) because we expect that
// most OSR failure points will have at least one GPR that needs to be dumped.
initializePoisoned(operands.numberOfLocals());
unsigned currentPoisonIndex = 0;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
int operand = operands.operandForIndex(index);
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
if (operands.isVariable(index) && poisonedVirtualRegisters[operands.variableForIndex(index)]) {
m_jit.store64(recovery.gpr(), scratchDataBuffer + currentPoisonIndex);
m_poisonScratchIndices[operands.variableForIndex(index)] = currentPoisonIndex;
currentPoisonIndex++;
} else
m_jit.store64(recovery.gpr(), AssemblyHelpers::addressFor((VirtualRegister)operand));
break;
default:
break;
}
}
// At this point all GPRs are available for scratch use.
if (haveFPRs) {
// 7) Box all doubles (relies on there being more GPRs than FPRs)
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != InFPR)
continue;
FPRReg fpr = recovery.fpr();
GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(fpr));
m_jit.boxDouble(fpr, gpr);
}
// 8) Dump all doubles into the stack, or to the scratch storage if
// the destination virtual register is poisoned.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != InFPR)
continue;
GPRReg gpr = GPRInfo::toRegister(FPRInfo::toIndex(recovery.fpr()));
if (operands.isVariable(index) && poisonedVirtualRegisters[operands.variableForIndex(index)]) {
m_jit.store64(gpr, scratchDataBuffer + currentPoisonIndex);
m_poisonScratchIndices[operands.variableForIndex(index)] = currentPoisonIndex;
currentPoisonIndex++;
} else
m_jit.store64(gpr, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
}
}
// At this point all GPRs and FPRs are available for scratch use.
// 9) Box all unboxed doubles in the stack.
if (haveUnboxedDoubles) {
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != AlreadyInJSStackAsUnboxedDouble)
continue;
m_jit.loadDouble(AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)), FPRInfo::fpRegT0);
m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
}
}
ASSERT(currentPoisonIndex == numberOfPoisonedVirtualRegisters);
// 10) Reshuffle displaced virtual registers. Optimize for the case that
// the number of displaced virtual registers is not more than the number
// of available physical registers.
if (numberOfDisplacedVirtualRegisters) {
if (numberOfDisplacedVirtualRegisters <= GPRInfo::numberOfRegisters) {
// So far this appears to be the case that triggers all the time, but
// that is far from guaranteed.
unsigned displacementIndex = 0;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::toRegister(displacementIndex++));
break;
case Int32DisplacedInJSStack: {
GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
m_jit.or64(GPRInfo::tagTypeNumberRegister, gpr);
break;
}
case DoubleDisplacedInJSStack: {
GPRReg gpr = GPRInfo::toRegister(displacementIndex++);
m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), gpr);
m_jit.sub64(GPRInfo::tagTypeNumberRegister, gpr);
break;
}
default:
break;
}
}
displacementIndex = 0;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
case Int32DisplacedInJSStack:
case DoubleDisplacedInJSStack:
m_jit.store64(GPRInfo::toRegister(displacementIndex++), AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
break;
default:
break;
}
}
} else {
// FIXME: This should use the shuffling algorithm that we use
// for speculative->non-speculative jumps, if we ever discover that
// some hot code with lots of live values that get displaced and
// spilled really enjoys frequently failing speculation.
// For now this code is engineered to be correct but probably not
// super. In particular, it correctly handles cases where for example
// the displacements are a permutation of the destination values, like
//
// 1 -> 2
// 2 -> 1
//
// It accomplishes this by simply lifting all of the virtual registers
// from their old (DFG JIT) locations and dropping them in a scratch
// location in memory, and then transferring from that scratch location
// to their new (old JIT) locations.
unsigned scratchIndex = numberOfPoisonedVirtualRegisters;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
break;
case Int32DisplacedInJSStack: {
m_jit.load32(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
break;
}
case DoubleDisplacedInJSStack: {
m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
m_jit.sub64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, scratchDataBuffer + scratchIndex++);
break;
}
default:
break;
}
}
scratchIndex = numberOfPoisonedVirtualRegisters;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
case Int32DisplacedInJSStack:
case DoubleDisplacedInJSStack:
m_jit.load64(scratchDataBuffer + scratchIndex++, GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
break;
default:
break;
}
}
ASSERT(scratchIndex == numberOfPoisonedVirtualRegisters + numberOfDisplacedVirtualRegisters);
}
}
// 11) Dump all poisoned virtual registers.
if (numberOfPoisonedVirtualRegisters) {
for (int virtualRegister = 0; virtualRegister < (int)operands.numberOfLocals(); ++virtualRegister) {
if (!poisonedVirtualRegisters[virtualRegister])
continue;
const ValueRecovery& recovery = operands.local(virtualRegister);
switch (recovery.technique()) {
case InGPR:
case UnboxedInt32InGPR:
case UInt32InGPR:
case InFPR:
m_jit.load64(scratchDataBuffer + poisonIndex(virtualRegister), GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)virtualRegister));
break;
default:
break;
}
}
}
// 12) Dump all constants. Optimize for Undefined, since that's a constant we see
// often.
if (haveConstants) {
if (haveUndefined)
m_jit.move(AssemblyHelpers::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0);
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != Constant)
continue;
if (recovery.constant().isUndefined())
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
else
m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor((VirtualRegister)operands.operandForIndex(index)));
}
}
// 13) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
// that all new calls into this code will go to the new JIT, so the execute
// counter only affects call frames that performed OSR exit and call frames
// that were still executing the old JIT at the time of another call frame's
// OSR exit. We want to ensure that the following is true:
//
// (a) Code the performs an OSR exit gets a chance to reenter optimized
// code eventually, since optimized code is faster. But we don't
// want to do such reentery too aggressively (see (c) below).
//
// (b) If there is code on the call stack that is still running the old
// JIT's code and has never OSR'd, then it should get a chance to
// perform OSR entry despite the fact that we've exited.
//
// (c) Code the performs an OSR exit should not immediately retry OSR
// entry, since both forms of OSR are expensive. OSR entry is
// particularly expensive.
//
// (d) Frequent OSR failures, even those that do not result in the code
// running in a hot loop, result in recompilation getting triggered.
//
// To ensure (c), we'd like to set the execute counter to
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
// (a) and (b), since then every OSR exit would delay the opportunity for
// every call frame to perform OSR entry. Essentially, if OSR exit happens
// frequently and the function has few loops, then the counter will never
// become non-negative and OSR entry will never be triggered. OSR entry
// will only happen if a loop gets hot in the old JIT, which does a pretty
// good job of ensuring (a) and (b). But that doesn't take care of (d),
// since each speculation failure would reset the execute counter.
// So we check here if the number of speculation failures is significantly
// larger than the number of successes (we want 90% success rate), and if
// there have been a large enough number of failures. If so, we set the
// counter to 0; otherwise we set the counter to
// counterValueForOptimizeAfterWarmUp().
handleExitCounts(exit);
// 14) Reify inlined call frames.
ASSERT(m_jit.baselineCodeBlock()->getJITType() == JITCode::BaselineJIT);
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(m_jit.baselineCodeBlock()), AssemblyHelpers::addressFor((VirtualRegister)JSStack::CodeBlock));
for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) {
InlineCallFrame* inlineCallFrame = codeOrigin.inlineCallFrame;
CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(codeOrigin);
CodeBlock* baselineCodeBlockForCaller = m_jit.baselineCodeBlockFor(inlineCallFrame->caller);
Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlockForCaller);
unsigned returnBytecodeIndex = inlineCallFrame->caller.bytecodeIndex + OPCODE_LENGTH(op_call);
BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned>(decodedCodeMap, decodedCodeMap.size(), returnBytecodeIndex, BytecodeAndMachineOffset::getBytecodeIndex);
ASSERT(mapping);
ASSERT(mapping->m_bytecodeIndex == returnBytecodeIndex);
void* jumpTarget = baselineCodeBlockForCaller->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
GPRReg callerFrameGPR;
if (inlineCallFrame->caller.inlineCallFrame) {
m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->caller.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT3);
callerFrameGPR = GPRInfo::regT3;
} else
callerFrameGPR = GPRInfo::callFrameRegister;
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(baselineCodeBlock), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::CodeBlock)));
if (!inlineCallFrame->isClosureCall())
m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue(inlineCallFrame->callee->scope()))), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ScopeChain)));
m_jit.store64(callerFrameGPR, AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::CallerFrame)));
m_jit.storePtr(AssemblyHelpers::TrustedImmPtr(jumpTarget), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ReturnPC)));
m_jit.store32(AssemblyHelpers::TrustedImm32(inlineCallFrame->arguments.size()), AssemblyHelpers::payloadFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::ArgumentCount)));
if (!inlineCallFrame->isClosureCall())
m_jit.store64(AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue(inlineCallFrame->callee.get()))), AssemblyHelpers::addressFor((VirtualRegister)(inlineCallFrame->stackOffset + JSStack::Callee)));
}
// 15) Create arguments if necessary and place them into the appropriate aliased
// registers.
if (haveArguments) {
HashSet<InlineCallFrame*, DefaultHash<InlineCallFrame*>::Hash,
NullableHashTraits<InlineCallFrame*> > didCreateArgumentsObject;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
if (recovery.technique() != ArgumentsThatWereNotCreated)
continue;
int operand = operands.operandForIndex(index);
// Find the right inline call frame.
InlineCallFrame* inlineCallFrame = 0;
for (InlineCallFrame* current = exit.m_codeOrigin.inlineCallFrame;
current;
current = current->caller.inlineCallFrame) {
if (current->stackOffset <= operand) {
inlineCallFrame = current;
break;
}
}
if (!m_jit.baselineCodeBlockFor(inlineCallFrame)->usesArguments())
continue;
int argumentsRegister = m_jit.argumentsRegisterFor(inlineCallFrame);
if (didCreateArgumentsObject.add(inlineCallFrame).isNewEntry) {
// We know this call frame optimized out an arguments object that
// the baseline JIT would have created. Do that creation now.
if (inlineCallFrame) {
m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT0);
m_jit.setupArguments(GPRInfo::regT0);
} else
m_jit.setupArgumentsExecState();
m_jit.move(
AssemblyHelpers::TrustedImmPtr(
bitwise_cast<void*>(operationCreateArguments)),
GPRInfo::nonArgGPR0);
m_jit.call(GPRInfo::nonArgGPR0);
m_jit.store64(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(argumentsRegister));
m_jit.store64(
GPRInfo::returnValueGPR,
AssemblyHelpers::addressFor(unmodifiedArgumentsRegister(argumentsRegister)));
m_jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); // no-op move on almost all platforms.
}
m_jit.load64(AssemblyHelpers::addressFor(argumentsRegister), GPRInfo::regT0);
m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
}
}
// 16) Load the result of the last bytecode operation into regT0.
if (exit.m_lastSetOperand != std::numeric_limits<int>::max())
m_jit.load64(AssemblyHelpers::addressFor((VirtualRegister)exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
// 17) Adjust the call frame pointer.
if (exit.m_codeOrigin.inlineCallFrame)
m_jit.addPtr(AssemblyHelpers::TrustedImm32(exit.m_codeOrigin.inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister);
// 18) Jump into the corresponding baseline JIT code.
CodeBlock* baselineCodeBlock = m_jit.baselineCodeBlockFor(exit.m_codeOrigin);
Vector<BytecodeAndMachineOffset>& decodedCodeMap = m_jit.decodedCodeMapFor(baselineCodeBlock);
BytecodeAndMachineOffset* mapping = binarySearch<BytecodeAndMachineOffset, unsigned>(decodedCodeMap, decodedCodeMap.size(), exit.m_codeOrigin.bytecodeIndex, BytecodeAndMachineOffset::getBytecodeIndex);
ASSERT(mapping);
ASSERT(mapping->m_bytecodeIndex == exit.m_codeOrigin.bytecodeIndex);
void* jumpTarget = baselineCodeBlock->getJITCode().executableAddressAtOffset(mapping->m_machineCodeOffset);
ASSERT(GPRInfo::regT1 != GPRInfo::cachedResultRegister);
m_jit.move(AssemblyHelpers::TrustedImmPtr(jumpTarget), GPRInfo::regT1);
m_jit.jump(GPRInfo::regT1);
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLogF("-> %p\n", jumpTarget);
#endif
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT) && USE(JSVALUE64)
|