1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
# udis86 - scripts/ud_opcode.py
#
# Copyright (c) 2009 Vivek Thampi
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
class UdOpcodeTables:
TableInfo = {
'opctbl' : { 'name' : 'UD_TAB__OPC_TABLE', 'size' : 256 },
'/sse' : { 'name' : 'UD_TAB__OPC_SSE', 'size' : 4 },
'/reg' : { 'name' : 'UD_TAB__OPC_REG', 'size' : 8 },
'/rm' : { 'name' : 'UD_TAB__OPC_RM', 'size' : 8 },
'/mod' : { 'name' : 'UD_TAB__OPC_MOD', 'size' : 2 },
'/m' : { 'name' : 'UD_TAB__OPC_MODE', 'size' : 3 },
'/x87' : { 'name' : 'UD_TAB__OPC_X87', 'size' : 64 },
'/a' : { 'name' : 'UD_TAB__OPC_ASIZE', 'size' : 3 },
'/o' : { 'name' : 'UD_TAB__OPC_OSIZE', 'size' : 3 },
'/3dnow' : { 'name' : 'UD_TAB__OPC_3DNOW', 'size' : 256 },
'vendor' : { 'name' : 'UD_TAB__OPC_VENDOR', 'size' : 3 },
}
OpcodeTable0 = {
'type' : 'opctbl',
'entries' : {},
'meta' : 'table0'
}
OpcExtIndex = {
# ssef2, ssef3, sse66
'sse': {
'none' : '00',
'f2' : '01',
'f3' : '02',
'66' : '03'
},
# /mod=
'mod': {
'!11' : '00',
'11' : '01'
},
# /m=, /o=, /a=
'mode': {
'16' : '00',
'32' : '01',
'64' : '02'
},
'vendor' : {
'amd' : '00',
'intel' : '01',
'any' : '02'
}
}
InsnTable = []
MnemonicsTable = []
ThreeDNowTable = {}
def sizeOfTable( self, t ):
return self.TableInfo[ t ][ 'size' ]
def nameOfTable( self, t ):
return self.TableInfo[ t ][ 'name' ]
#
# Updates a table entry: If the entry doesn't exist
# it will create the entry, otherwise, it will walk
# while validating the path.
#
def updateTable( self, table, index, type, meta ):
if not index in table[ 'entries' ]:
table[ 'entries' ][ index ] = { 'type' : type, 'entries' : {}, 'meta' : meta }
if table[ 'entries' ][ index ][ 'type' ] != type:
raise NameError( "error: violation in opcode mapping (overwrite) %s with %s." %
( table[ 'entries' ][ index ][ 'type' ], type) )
return table[ 'entries' ][ index ]
class Insn:
"""An abstract type representing an instruction in the opcode map.
"""
# A mapping of opcode extensions to their representational
# values used in the opcode map.
OpcExtMap = {
'/rm' : lambda v: "%02x" % int(v, 16),
'/x87' : lambda v: "%02x" % int(v, 16),
'/3dnow' : lambda v: "%02x" % int(v, 16),
'/reg' : lambda v: "%02x" % int(v, 16),
# modrm.mod
# (!11, 11) => (00, 01)
'/mod' : lambda v: '00' if v == '!11' else '01',
# Mode extensions:
# (16, 32, 64) => (00, 01, 02)
'/o' : lambda v: "%02x" % (int(v) // 32),
'/a' : lambda v: "%02x" % (int(v) // 32),
'/m' : lambda v: "%02x" % (int(v) // 32),
'/sse' : lambda v: UdOpcodeTables.OpcExtIndex['sse'][v]
}
def __init__(self, prefixes, mnemonic, opcodes, operands, vendor):
self.opcodes = opcodes
self.prefixes = prefixes
self.mnemonic = mnemonic
self.operands = operands
self.vendor = vendor
self.opcext = {}
ssePrefix = None
if self.opcodes[0] in ('ssef2', 'ssef3', 'sse66'):
ssePrefix = self.opcodes[0][3:]
self.opcodes.pop(0)
# do some preliminary decoding of the instruction type
# 1byte, 2byte or 3byte instruction?
self.nByteInsn = 1
if self.opcodes[0] == '0f': # 2byte
# 2+ byte opcodes are always disambiguated by an
# sse prefix, unless it is a 3d now instruction
# which is 0f 0f ...
if self.opcodes[1] != '0f' and ssePrefix is None:
ssePrefix = 'none'
if self.opcodes[1] in ('38', '3a'): # 3byte
self.nByteInsn = 3
else:
self.nByteInsn = 2
# The opcode that indexes into the opcode table.
self.opcode = self.opcodes[self.nByteInsn - 1]
# Record opcode extensions
for opcode in self.opcodes[self.nByteInsn:]:
arg, val = opcode.split('=')
self.opcext[arg] = self.OpcExtMap[arg](val)
# Record sse extension: the reason sse extension is handled
# separately is that historically sse was handled as a first
# class opcode, not as an extension. Now that sse is handled
# as an extension, we do the manual conversion here, as opposed
# to modifying the opcode xml file.
if ssePrefix is not None:
self.opcext['/sse'] = self.OpcExtMap['/sse'](ssePrefix)
def parse(self, table, insn):
index = insn.opcodes[0];
if insn.nByteInsn > 1:
assert index == '0f'
table = self.updateTable(table, index, 'opctbl', '0f')
index = insn.opcodes[1]
if insn.nByteInsn == 3:
table = self.updateTable(table, index, 'opctbl', index)
index = insn.opcodes[2]
# Walk down the tree, create levels as needed, for opcode
# extensions. The order is important, and determines how
# well the opcode table is packed. Also note, /sse must be
# before /o, because /sse may consume operand size prefix
# affect the outcome of /o.
for ext in ('/mod', '/x87', '/reg', '/rm', '/sse',
'/o', '/a', '/m', '/3dnow'):
if ext in insn.opcext:
table = self.updateTable(table, index, ext, ext)
index = insn.opcext[ext]
# additional table for disambiguating vendor
if len(insn.vendor):
table = self.updateTable(table, index, 'vendor', insn.vendor)
index = self.OpcExtIndex['vendor'][insn.vendor]
# make leaf node entries
leaf = self.updateTable(table, index, 'insn', '')
leaf['mnemonic'] = insn.mnemonic
leaf['prefixes'] = insn.prefixes
leaf['operands'] = insn.operands
# add instruction to linear table of instruction forms
self.InsnTable.append({ 'prefixes' : insn.prefixes,
'mnemonic' : insn.mnemonic,
'operands' : insn.operands })
# add mnemonic to mnemonic table
if not insn.mnemonic in self.MnemonicsTable:
self.MnemonicsTable.append(insn.mnemonic)
# Adds an instruction definition to the opcode tables
def addInsnDef( self, prefixes, mnemonic, opcodes, operands, vendor ):
insn = self.Insn(prefixes=prefixes,
mnemonic=mnemonic,
opcodes=opcodes,
operands=operands,
vendor=vendor)
self.parse(self.OpcodeTable0, insn)
def print_table( self, table, pfxs ):
print("%s |" % pfxs)
keys = table[ 'entries' ].keys()
if ( len( keys ) ):
keys.sort()
for idx in keys:
e = table[ 'entries' ][ idx ]
if e[ 'type' ] == 'insn':
print("%s |-<%s>" % ( pfxs, idx )),
print("%s %s" % ( e[ 'mnemonic' ], ' '.join( e[ 'operands'] )))
else:
print("%s |-<%s> %s" % ( pfxs, idx, e['type'] ))
self.print_table( e, pfxs + ' |' )
def print_tree( self ):
self.print_table( self.OpcodeTable0, '' )
|