1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* The contents of this file are subject to the Netscape Public
* License Version 1.1 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.mozilla.org/NPL/
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code is Mozilla Communicator client code, released March
* 31, 1998.
*
* The Initial Developer of the Original Code is Netscape Communications
* Corporation. Portions created by Netscape are
* Copyright (C) 1998 Netscape Communications Corporation. All
* Rights Reserved.
*
* Contributor(s):
*
*/
/**
File Name: 11.5.3.js
ECMA Section: 11.5.3 Applying the % operator
Description:
The binary % operator is said to yield the remainder of its operands from
an implied division; the left operand is the dividend and the right operand
is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.
The result of a floating-point remainder operation as computed by the %
operator is not the same as the "remainder" operation defined by IEEE 754.
The IEEE 754 "remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not analogous
to that of the usual integer remainder operator. Instead the ECMAScript
language defines % on floating-point operations to behave in a manner
analogous to that of the Java integer remainder operator; this may be
compared with the C library function fmod.
The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
If either operand is NaN, the result is NaN.
The sign of the result equals the sign of the dividend.
If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
If the dividend is finite and the divisor is an infinity, the result equals the dividend.
If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
possible without exceeding the magnitude of the true mathematical quotient of n and d.
Author: christine@netscape.com
Date: 12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
startTest();
var testcases = getTestCases();
var BUGNUMBER="111202";
writeHeaderToLog( SECTION + " Applying the % operator");
test();
function test() {
for ( tc=0; tc < testcases.length; tc++ ) {
testcases[tc].passed = writeTestCaseResult(
testcases[tc].expect,
testcases[tc].actual,
testcases[tc].description +" = "+
testcases[tc].actual );
testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
}
stopTest();
return ( testcases );
}
function getTestCases() {
var array = new Array();
var item = 0;
// if either operand is NaN, the result is NaN.
array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 );
array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN );
// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
// dividend is an infinity
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE );
array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
// divisor is 0
array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 );
array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 );
array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 );
array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 );
array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 );
array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 );
array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 );
array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 );
// If the dividend is finite and the divisor is an infinity, the result equals the dividend.
array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY );
array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY );
// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 );
array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 );
array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 );
array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 );
// In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
// from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
// is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
// possible without exceeding the magnitude of the true mathematical quotient of n and d.
return ( array );
}
|