1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "AudioBufferSourceNode.h"
#include "AudioContext.h"
#include "AudioNodeOutput.h"
#include "AudioUtilities.h"
#include "FloatConversion.h"
#include "ScriptCallStack.h"
#include "ScriptController.h"
#include "ScriptExecutionContext.h"
#include <algorithm>
#include <wtf/MainThread.h>
#include <wtf/MathExtras.h>
using namespace std;
namespace WebCore {
const double DefaultGrainDuration = 0.020; // 20ms
// Arbitrary upper limit on playback rate.
// Higher than expected rates can be useful when playing back oversampled buffers
// to minimize linear interpolation aliasing.
const double MaxRate = 1024;
PassRefPtr<AudioBufferSourceNode> AudioBufferSourceNode::create(AudioContext* context, float sampleRate)
{
return adoptRef(new AudioBufferSourceNode(context, sampleRate));
}
AudioBufferSourceNode::AudioBufferSourceNode(AudioContext* context, float sampleRate)
: AudioScheduledSourceNode(context, sampleRate)
, m_buffer(0)
, m_isLooping(false)
, m_loopStart(0)
, m_loopEnd(0)
, m_virtualReadIndex(0)
, m_isGrain(false)
, m_grainOffset(0.0)
, m_grainDuration(DefaultGrainDuration)
, m_lastGain(1.0)
, m_pannerNode(0)
{
setNodeType(NodeTypeAudioBufferSource);
m_gain = AudioParam::create(context, "gain", 1.0, 0.0, 1.0);
m_playbackRate = AudioParam::create(context, "playbackRate", 1.0, 0.0, MaxRate);
// Default to mono. A call to setBuffer() will set the number of output channels to that of the buffer.
addOutput(adoptPtr(new AudioNodeOutput(this, 1)));
initialize();
}
AudioBufferSourceNode::~AudioBufferSourceNode()
{
clearPannerNode();
uninitialize();
}
void AudioBufferSourceNode::process(size_t framesToProcess)
{
AudioBus* outputBus = output(0)->bus();
if (!isInitialized()) {
outputBus->zero();
return;
}
// The audio thread can't block on this lock, so we call tryLock() instead.
MutexTryLocker tryLocker(m_processLock);
if (tryLocker.locked()) {
if (!buffer()) {
outputBus->zero();
return;
}
// After calling setBuffer() with a buffer having a different number of channels, there can in rare cases be a slight delay
// before the output bus is updated to the new number of channels because of use of tryLocks() in the context's updating system.
// In this case, if the the buffer has just been changed and we're not quite ready yet, then just output silence.
if (numberOfChannels() != buffer()->numberOfChannels()) {
outputBus->zero();
return;
}
size_t quantumFrameOffset;
size_t bufferFramesToProcess;
updateSchedulingInfo(framesToProcess,
outputBus,
quantumFrameOffset,
bufferFramesToProcess);
if (!bufferFramesToProcess) {
outputBus->zero();
return;
}
for (unsigned i = 0; i < outputBus->numberOfChannels(); ++i)
m_destinationChannels[i] = outputBus->channel(i)->mutableData();
// Render by reading directly from the buffer.
if (!renderFromBuffer(outputBus, quantumFrameOffset, bufferFramesToProcess)) {
outputBus->zero();
return;
}
// Apply the gain (in-place) to the output bus.
float totalGain = gain()->value() * m_buffer->gain();
outputBus->copyWithGainFrom(*outputBus, &m_lastGain, totalGain);
outputBus->clearSilentFlag();
} else {
// Too bad - the tryLock() failed. We must be in the middle of changing buffers and were already outputting silence anyway.
outputBus->zero();
}
}
// Returns true if we're finished.
bool AudioBufferSourceNode::renderSilenceAndFinishIfNotLooping(AudioBus*, unsigned index, size_t framesToProcess)
{
if (!loop()) {
// If we're not looping, then stop playing when we get to the end.
if (framesToProcess > 0) {
// We're not looping and we've reached the end of the sample data, but we still need to provide more output,
// so generate silence for the remaining.
for (unsigned i = 0; i < numberOfChannels(); ++i)
memset(m_destinationChannels[i] + index, 0, sizeof(float) * framesToProcess);
}
finish();
return true;
}
return false;
}
bool AudioBufferSourceNode::renderFromBuffer(AudioBus* bus, unsigned destinationFrameOffset, size_t numberOfFrames)
{
ASSERT(context()->isAudioThread());
// Basic sanity checking
ASSERT(bus);
ASSERT(buffer());
if (!bus || !buffer())
return false;
unsigned numberOfChannels = this->numberOfChannels();
unsigned busNumberOfChannels = bus->numberOfChannels();
bool channelCountGood = numberOfChannels && numberOfChannels == busNumberOfChannels;
ASSERT(channelCountGood);
if (!channelCountGood)
return false;
// Sanity check destinationFrameOffset, numberOfFrames.
size_t destinationLength = bus->length();
bool isLengthGood = destinationLength <= 4096 && numberOfFrames <= 4096;
ASSERT(isLengthGood);
if (!isLengthGood)
return false;
bool isOffsetGood = destinationFrameOffset <= destinationLength && destinationFrameOffset + numberOfFrames <= destinationLength;
ASSERT(isOffsetGood);
if (!isOffsetGood)
return false;
// Potentially zero out initial frames leading up to the offset.
if (destinationFrameOffset) {
for (unsigned i = 0; i < numberOfChannels; ++i)
memset(m_destinationChannels[i], 0, sizeof(float) * destinationFrameOffset);
}
// Offset the pointers to the correct offset frame.
unsigned writeIndex = destinationFrameOffset;
size_t bufferLength = buffer()->length();
double bufferSampleRate = buffer()->sampleRate();
// Avoid converting from time to sample-frames twice by computing
// the grain end time first before computing the sample frame.
unsigned endFrame = m_isGrain ? AudioUtilities::timeToSampleFrame(m_grainOffset + m_grainDuration, bufferSampleRate) : bufferLength;
// This is a HACK to allow for HRTF tail-time - avoids glitch at end.
// FIXME: implement tailTime for each AudioNode for a more general solution to this problem.
// https://bugs.webkit.org/show_bug.cgi?id=77224
if (m_isGrain)
endFrame += 512;
// Do some sanity checking.
if (endFrame > bufferLength)
endFrame = bufferLength;
if (m_virtualReadIndex >= endFrame)
m_virtualReadIndex = 0; // reset to start
// If the .loop attribute is true, then values of m_loopStart == 0 && m_loopEnd == 0 implies
// that we should use the entire buffer as the loop, otherwise use the loop values in m_loopStart and m_loopEnd.
double virtualEndFrame = endFrame;
double virtualDeltaFrames = endFrame;
if (loop() && (m_loopStart || m_loopEnd) && m_loopStart >= 0 && m_loopEnd > 0 && m_loopStart < m_loopEnd) {
// Convert from seconds to sample-frames.
double loopStartFrame = m_loopStart * buffer()->sampleRate();
double loopEndFrame = m_loopEnd * buffer()->sampleRate();
virtualEndFrame = min(loopEndFrame, virtualEndFrame);
virtualDeltaFrames = virtualEndFrame - loopStartFrame;
}
double pitchRate = totalPitchRate();
// Sanity check that our playback rate isn't larger than the loop size.
if (pitchRate >= virtualDeltaFrames)
return false;
// Get local copy.
double virtualReadIndex = m_virtualReadIndex;
// Render loop - reading from the source buffer to the destination using linear interpolation.
int framesToProcess = numberOfFrames;
const float** sourceChannels = m_sourceChannels.get();
float** destinationChannels = m_destinationChannels.get();
// Optimize for the very common case of playing back with pitchRate == 1.
// We can avoid the linear interpolation.
if (pitchRate == 1 && virtualReadIndex == floor(virtualReadIndex)
&& virtualDeltaFrames == floor(virtualDeltaFrames)
&& virtualEndFrame == floor(virtualEndFrame)) {
unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
unsigned deltaFrames = static_cast<unsigned>(virtualDeltaFrames);
endFrame = static_cast<unsigned>(virtualEndFrame);
while (framesToProcess > 0) {
int framesToEnd = endFrame - readIndex;
int framesThisTime = min(framesToProcess, framesToEnd);
framesThisTime = max(0, framesThisTime);
for (unsigned i = 0; i < numberOfChannels; ++i)
memcpy(destinationChannels[i] + writeIndex, sourceChannels[i] + readIndex, sizeof(float) * framesThisTime);
writeIndex += framesThisTime;
readIndex += framesThisTime;
framesToProcess -= framesThisTime;
// Wrap-around.
if (readIndex >= endFrame) {
readIndex -= deltaFrames;
if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
break;
}
}
virtualReadIndex = readIndex;
} else {
while (framesToProcess--) {
unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
double interpolationFactor = virtualReadIndex - readIndex;
// For linear interpolation we need the next sample-frame too.
unsigned readIndex2 = readIndex + 1;
if (readIndex2 >= bufferLength) {
if (loop()) {
// Make sure to wrap around at the end of the buffer.
readIndex2 = static_cast<unsigned>(virtualReadIndex + 1 - virtualDeltaFrames);
} else
readIndex2 = readIndex;
}
// Final sanity check on buffer access.
// FIXME: as an optimization, try to get rid of this inner-loop check and put assertions and guards before the loop.
if (readIndex >= bufferLength || readIndex2 >= bufferLength)
break;
// Linear interpolation.
for (unsigned i = 0; i < numberOfChannels; ++i) {
float* destination = destinationChannels[i];
const float* source = sourceChannels[i];
double sample1 = source[readIndex];
double sample2 = source[readIndex2];
double sample = (1.0 - interpolationFactor) * sample1 + interpolationFactor * sample2;
destination[writeIndex] = narrowPrecisionToFloat(sample);
}
writeIndex++;
virtualReadIndex += pitchRate;
// Wrap-around, retaining sub-sample position since virtualReadIndex is floating-point.
if (virtualReadIndex >= virtualEndFrame) {
virtualReadIndex -= virtualDeltaFrames;
if (renderSilenceAndFinishIfNotLooping(bus, writeIndex, framesToProcess))
break;
}
}
}
bus->clearSilentFlag();
m_virtualReadIndex = virtualReadIndex;
return true;
}
void AudioBufferSourceNode::reset()
{
m_virtualReadIndex = 0;
m_lastGain = gain()->value();
}
bool AudioBufferSourceNode::setBuffer(AudioBuffer* buffer)
{
ASSERT(isMainThread());
// The context must be locked since changing the buffer can re-configure the number of channels that are output.
AudioContext::AutoLocker contextLocker(context());
// This synchronizes with process().
MutexLocker processLocker(m_processLock);
if (buffer) {
// Do any necesssary re-configuration to the buffer's number of channels.
unsigned numberOfChannels = buffer->numberOfChannels();
if (numberOfChannels > AudioContext::maxNumberOfChannels())
return false;
output(0)->setNumberOfChannels(numberOfChannels);
m_sourceChannels = adoptArrayPtr(new const float* [numberOfChannels]);
m_destinationChannels = adoptArrayPtr(new float* [numberOfChannels]);
for (unsigned i = 0; i < numberOfChannels; ++i)
m_sourceChannels[i] = buffer->getChannelData(i)->data();
}
m_virtualReadIndex = 0;
m_buffer = buffer;
return true;
}
unsigned AudioBufferSourceNode::numberOfChannels()
{
return output(0)->numberOfChannels();
}
void AudioBufferSourceNode::startGrain(double when, double grainOffset, ExceptionCode& ec)
{
// Duration of 0 has special value, meaning calculate based on the entire buffer's duration.
startGrain(when, grainOffset, 0, ec);
}
void AudioBufferSourceNode::startGrain(double when, double grainOffset, double grainDuration, ExceptionCode& ec)
{
ASSERT(isMainThread());
if (ScriptController::processingUserGesture())
context()->removeBehaviorRestriction(AudioContext::RequireUserGestureForAudioStartRestriction);
if (m_playbackState != UNSCHEDULED_STATE) {
ec = INVALID_STATE_ERR;
return;
}
if (!buffer())
return;
// Do sanity checking of grain parameters versus buffer size.
double bufferDuration = buffer()->duration();
grainOffset = max(0.0, grainOffset);
grainOffset = min(bufferDuration, grainOffset);
m_grainOffset = grainOffset;
// Handle default/unspecified duration.
double maxDuration = bufferDuration - grainOffset;
if (!grainDuration)
grainDuration = maxDuration;
grainDuration = max(0.0, grainDuration);
grainDuration = min(maxDuration, grainDuration);
m_grainDuration = grainDuration;
m_isGrain = true;
m_startTime = when;
// We call timeToSampleFrame here since at playbackRate == 1 we don't want to go through linear interpolation
// at a sub-sample position since it will degrade the quality.
// When aligned to the sample-frame the playback will be identical to the PCM data stored in the buffer.
// Since playbackRate == 1 is very common, it's worth considering quality.
m_virtualReadIndex = AudioUtilities::timeToSampleFrame(m_grainOffset, buffer()->sampleRate());
m_playbackState = SCHEDULED_STATE;
}
#if ENABLE(LEGACY_WEB_AUDIO)
void AudioBufferSourceNode::noteGrainOn(double when, double grainOffset, double grainDuration, ExceptionCode& ec)
{
startGrain(when, grainOffset, grainDuration, ec);
}
#endif
double AudioBufferSourceNode::totalPitchRate()
{
double dopplerRate = 1.0;
if (m_pannerNode)
dopplerRate = m_pannerNode->dopplerRate();
// Incorporate buffer's sample-rate versus AudioContext's sample-rate.
// Normally it's not an issue because buffers are loaded at the AudioContext's sample-rate, but we can handle it in any case.
double sampleRateFactor = 1.0;
if (buffer())
sampleRateFactor = buffer()->sampleRate() / sampleRate();
double basePitchRate = playbackRate()->value();
double totalRate = dopplerRate * sampleRateFactor * basePitchRate;
// Sanity check the total rate. It's very important that the resampler not get any bad rate values.
totalRate = max(0.0, totalRate);
if (!totalRate)
totalRate = 1; // zero rate is considered illegal
totalRate = min(MaxRate, totalRate);
bool isTotalRateValid = !std::isnan(totalRate) && !std::isinf(totalRate);
ASSERT(isTotalRateValid);
if (!isTotalRateValid)
totalRate = 1.0;
return totalRate;
}
bool AudioBufferSourceNode::looping()
{
static bool firstTime = true;
if (firstTime && context() && context()->scriptExecutionContext()) {
context()->scriptExecutionContext()->addConsoleMessage(JSMessageSource, WarningMessageLevel, "AudioBufferSourceNode 'looping' attribute is deprecated. Use 'loop' instead.");
firstTime = false;
}
return m_isLooping;
}
void AudioBufferSourceNode::setLooping(bool looping)
{
static bool firstTime = true;
if (firstTime && context() && context()->scriptExecutionContext()) {
context()->scriptExecutionContext()->addConsoleMessage(JSMessageSource, WarningMessageLevel, "AudioBufferSourceNode 'looping' attribute is deprecated. Use 'loop' instead.");
firstTime = false;
}
m_isLooping = looping;
}
bool AudioBufferSourceNode::propagatesSilence() const
{
return !isPlayingOrScheduled() || hasFinished() || !m_buffer;
}
void AudioBufferSourceNode::setPannerNode(PannerNode* pannerNode)
{
if (m_pannerNode != pannerNode && !hasFinished()) {
if (pannerNode)
pannerNode->ref(AudioNode::RefTypeConnection);
if (m_pannerNode)
m_pannerNode->deref(AudioNode::RefTypeConnection);
m_pannerNode = pannerNode;
}
}
void AudioBufferSourceNode::clearPannerNode()
{
if (m_pannerNode) {
m_pannerNode->deref(AudioNode::RefTypeConnection);
m_pannerNode = 0;
}
}
void AudioBufferSourceNode::finish()
{
clearPannerNode();
ASSERT(!m_pannerNode);
AudioScheduledSourceNode::finish();
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|