1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
/*
* Copyright (C) 2012, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "OscillatorNode.h"
#include "AudioContext.h"
#include "AudioNodeOutput.h"
#include "AudioUtilities.h"
#include "ExceptionCode.h"
#include "PeriodicWave.h"
#include "VectorMath.h"
#include <algorithm>
#include <wtf/MathExtras.h>
using namespace std;
namespace WebCore {
using namespace VectorMath;
PeriodicWave* OscillatorNode::s_periodicWaveSine = 0;
PeriodicWave* OscillatorNode::s_periodicWaveSquare = 0;
PeriodicWave* OscillatorNode::s_periodicWaveSawtooth = 0;
PeriodicWave* OscillatorNode::s_periodicWaveTriangle = 0;
PassRefPtr<OscillatorNode> OscillatorNode::create(AudioContext* context, float sampleRate)
{
return adoptRef(new OscillatorNode(context, sampleRate));
}
OscillatorNode::OscillatorNode(AudioContext* context, float sampleRate)
: AudioScheduledSourceNode(context, sampleRate)
, m_type(SINE)
, m_firstRender(true)
, m_virtualReadIndex(0)
, m_phaseIncrements(AudioNode::ProcessingSizeInFrames)
, m_detuneValues(AudioNode::ProcessingSizeInFrames)
{
setNodeType(NodeTypeOscillator);
// Use musical pitch standard A440 as a default.
m_frequency = AudioParam::create(context, "frequency", 440, 0, 100000);
// Default to no detuning.
m_detune = AudioParam::create(context, "detune", 0, -4800, 4800);
// Sets up default wave.
setType(m_type);
// An oscillator is always mono.
addOutput(adoptPtr(new AudioNodeOutput(this, 1)));
initialize();
}
OscillatorNode::~OscillatorNode()
{
uninitialize();
}
String OscillatorNode::type() const
{
switch (m_type) {
case SINE:
return "sine";
case SQUARE:
return "square";
case SAWTOOTH:
return "sawtooth";
case TRIANGLE:
return "triangle";
case CUSTOM:
return "custom";
default:
ASSERT_NOT_REACHED();
return "custom";
}
}
void OscillatorNode::setType(const String& type)
{
if (type == "sine")
setType(SINE);
else if (type == "square")
setType(SQUARE);
else if (type == "sawtooth")
setType(SAWTOOTH);
else if (type == "triangle")
setType(TRIANGLE);
else
ASSERT_NOT_REACHED();
}
bool OscillatorNode::setType(unsigned type)
{
PeriodicWave* periodicWave = 0;
float sampleRate = this->sampleRate();
switch (type) {
case SINE:
if (!s_periodicWaveSine)
s_periodicWaveSine = PeriodicWave::createSine(sampleRate).leakRef();
periodicWave = s_periodicWaveSine;
break;
case SQUARE:
if (!s_periodicWaveSquare)
s_periodicWaveSquare = PeriodicWave::createSquare(sampleRate).leakRef();
periodicWave = s_periodicWaveSquare;
break;
case SAWTOOTH:
if (!s_periodicWaveSawtooth)
s_periodicWaveSawtooth = PeriodicWave::createSawtooth(sampleRate).leakRef();
periodicWave = s_periodicWaveSawtooth;
break;
case TRIANGLE:
if (!s_periodicWaveTriangle)
s_periodicWaveTriangle = PeriodicWave::createTriangle(sampleRate).leakRef();
periodicWave = s_periodicWaveTriangle;
break;
case CUSTOM:
default:
// Return error for invalid types, including CUSTOM since setPeriodicWave() method must be
// called explicitly.
return false;
}
setPeriodicWave(periodicWave);
m_type = type;
return true;
}
bool OscillatorNode::calculateSampleAccuratePhaseIncrements(size_t framesToProcess)
{
bool isGood = framesToProcess <= m_phaseIncrements.size() && framesToProcess <= m_detuneValues.size();
ASSERT(isGood);
if (!isGood)
return false;
if (m_firstRender) {
m_firstRender = false;
m_frequency->resetSmoothedValue();
m_detune->resetSmoothedValue();
}
bool hasSampleAccurateValues = false;
bool hasFrequencyChanges = false;
float* phaseIncrements = m_phaseIncrements.data();
float finalScale = m_periodicWave->rateScale();
if (m_frequency->hasSampleAccurateValues()) {
hasSampleAccurateValues = true;
hasFrequencyChanges = true;
// Get the sample-accurate frequency values and convert to phase increments.
// They will be converted to phase increments below.
m_frequency->calculateSampleAccurateValues(phaseIncrements, framesToProcess);
} else {
// Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes.
m_frequency->smooth();
float frequency = m_frequency->smoothedValue();
finalScale *= frequency;
}
if (m_detune->hasSampleAccurateValues()) {
hasSampleAccurateValues = true;
// Get the sample-accurate detune values.
float* detuneValues = hasFrequencyChanges ? m_detuneValues.data() : phaseIncrements;
m_detune->calculateSampleAccurateValues(detuneValues, framesToProcess);
// Convert from cents to rate scalar.
float k = 1.0 / 1200;
vsmul(detuneValues, 1, &k, detuneValues, 1, framesToProcess);
for (unsigned i = 0; i < framesToProcess; ++i)
detuneValues[i] = powf(2, detuneValues[i]); // FIXME: converting to expf() will be faster.
if (hasFrequencyChanges) {
// Multiply frequencies by detune scalings.
vmul(detuneValues, 1, phaseIncrements, 1, phaseIncrements, 1, framesToProcess);
}
} else {
// Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes.
m_detune->smooth();
float detune = m_detune->smoothedValue();
float detuneScale = powf(2, detune / 1200);
finalScale *= detuneScale;
}
if (hasSampleAccurateValues) {
// Convert from frequency to wave increment.
vsmul(phaseIncrements, 1, &finalScale, phaseIncrements, 1, framesToProcess);
}
return hasSampleAccurateValues;
}
void OscillatorNode::process(size_t framesToProcess)
{
AudioBus* outputBus = output(0)->bus();
if (!isInitialized() || !outputBus->numberOfChannels()) {
outputBus->zero();
return;
}
ASSERT(framesToProcess <= m_phaseIncrements.size());
if (framesToProcess > m_phaseIncrements.size())
return;
// The audio thread can't block on this lock, so we call tryLock() instead.
MutexTryLocker tryLocker(m_processLock);
if (!tryLocker.locked()) {
// Too bad - the tryLock() failed. We must be in the middle of changing wave-tables.
outputBus->zero();
return;
}
// We must access m_periodicWave only inside the lock.
if (!m_periodicWave.get()) {
outputBus->zero();
return;
}
size_t quantumFrameOffset;
size_t nonSilentFramesToProcess;
updateSchedulingInfo(framesToProcess, outputBus, quantumFrameOffset, nonSilentFramesToProcess);
if (!nonSilentFramesToProcess) {
outputBus->zero();
return;
}
unsigned periodicWaveSize = m_periodicWave->periodicWaveSize();
double invPeriodicWaveSize = 1.0 / periodicWaveSize;
float* destP = outputBus->channel(0)->mutableData();
ASSERT(quantumFrameOffset <= framesToProcess);
// We keep virtualReadIndex double-precision since we're accumulating values.
double virtualReadIndex = m_virtualReadIndex;
float rateScale = m_periodicWave->rateScale();
float invRateScale = 1 / rateScale;
bool hasSampleAccurateValues = calculateSampleAccuratePhaseIncrements(framesToProcess);
float frequency = 0;
float* higherWaveData = 0;
float* lowerWaveData = 0;
float tableInterpolationFactor;
if (!hasSampleAccurateValues) {
frequency = m_frequency->smoothedValue();
float detune = m_detune->smoothedValue();
float detuneScale = powf(2, detune / 1200);
frequency *= detuneScale;
m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor);
}
float incr = frequency * rateScale;
float* phaseIncrements = m_phaseIncrements.data();
unsigned readIndexMask = periodicWaveSize - 1;
// Start rendering at the correct offset.
destP += quantumFrameOffset;
int n = nonSilentFramesToProcess;
while (n--) {
unsigned readIndex = static_cast<unsigned>(virtualReadIndex);
unsigned readIndex2 = readIndex + 1;
// Contain within valid range.
readIndex = readIndex & readIndexMask;
readIndex2 = readIndex2 & readIndexMask;
if (hasSampleAccurateValues) {
incr = *phaseIncrements++;
frequency = invRateScale * incr;
m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor);
}
float sample1Lower = lowerWaveData[readIndex];
float sample2Lower = lowerWaveData[readIndex2];
float sample1Higher = higherWaveData[readIndex];
float sample2Higher = higherWaveData[readIndex2];
// Linearly interpolate within each table (lower and higher).
float interpolationFactor = static_cast<float>(virtualReadIndex) - readIndex;
float sampleHigher = (1 - interpolationFactor) * sample1Higher + interpolationFactor * sample2Higher;
float sampleLower = (1 - interpolationFactor) * sample1Lower + interpolationFactor * sample2Lower;
// Then interpolate between the two tables.
float sample = (1 - tableInterpolationFactor) * sampleHigher + tableInterpolationFactor * sampleLower;
*destP++ = sample;
// Increment virtual read index and wrap virtualReadIndex into the range 0 -> periodicWaveSize.
virtualReadIndex += incr;
virtualReadIndex -= floor(virtualReadIndex * invPeriodicWaveSize) * periodicWaveSize;
}
m_virtualReadIndex = virtualReadIndex;
outputBus->clearSilentFlag();
}
void OscillatorNode::reset()
{
m_virtualReadIndex = 0;
}
void OscillatorNode::setPeriodicWave(PeriodicWave* periodicWave)
{
ASSERT(isMainThread());
// This synchronizes with process().
MutexLocker processLocker(m_processLock);
m_periodicWave = periodicWave;
m_type = CUSTOM;
}
bool OscillatorNode::propagatesSilence() const
{
return !isPlayingOrScheduled() || hasFinished() || !m_periodicWave.get();
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|